File size: 4,664 Bytes
0fb0631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
library_name: transformers
language:
- ru
license: apache-2.0
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-russian
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Wav2vec2-large ru - slowlydoor
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 17.0
      type: mozilla-foundation/common_voice_17_0
      config: ru
      split: None
      args: 'config: ru, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 22.3988525667842
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Wav2vec2-large ru - slowlydoor

This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-russian](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-russian) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2124
- Wer: 22.3989
- Cer: 4.8036
- Ser: 75.4264

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer     | Cer    | Ser     |
|:-------------:|:------:|:-----:|:---------------:|:-------:|:------:|:-------:|
| 0.3421        | 0.1516 | 500   | 0.2593          | 27.7416 | 6.2518 | 81.6311 |
| 0.2979        | 0.3032 | 1000  | 0.2741          | 27.9854 | 6.3745 | 82.2290 |
| 0.2787        | 0.4548 | 1500  | 0.2538          | 27.3041 | 6.0743 | 81.1998 |
| 0.325         | 0.6064 | 2000  | 0.2701          | 29.4006 | 6.5501 | 83.6503 |
| 0.3048        | 0.7580 | 2500  | 0.2435          | 27.0914 | 6.0148 | 80.8077 |
| 0.294         | 0.9096 | 3000  | 0.2495          | 26.9503 | 5.9946 | 80.9939 |
| 0.2648        | 1.0612 | 3500  | 0.2675          | 26.8356 | 6.0261 | 80.8175 |
| 0.2691        | 1.2129 | 4000  | 0.2372          | 26.1220 | 5.8259 | 80.2294 |
| 0.2245        | 1.3645 | 4500  | 0.2394          | 26.1603 | 5.8315 | 80.3470 |
| 0.2738        | 1.5161 | 5000  | 0.2388          | 26.0420 | 5.7826 | 79.9941 |
| 0.2767        | 1.6677 | 5500  | 0.2330          | 25.8089 | 5.7248 | 79.5138 |
| 0.2689        | 1.8193 | 6000  | 0.2284          | 25.7312 | 5.6832 | 79.6216 |
| 0.2571        | 1.9709 | 6500  | 0.2370          | 25.3403 | 5.6065 | 79.3080 |
| 0.2479        | 2.1225 | 7000  | 0.2372          | 25.2065 | 5.5776 | 78.9943 |
| 0.2021        | 2.2741 | 7500  | 0.2284          | 24.8718 | 5.4638 | 78.6610 |
| 0.1864        | 2.4257 | 8000  | 0.2280          | 24.8132 | 5.4340 | 78.8669 |
| 0.1953        | 2.5773 | 8500  | 0.2237          | 24.4941 | 5.3856 | 78.3670 |
| 0.195         | 2.7289 | 9000  | 0.2190          | 24.2658 | 5.2770 | 77.8279 |
| 0.1829        | 2.8805 | 9500  | 0.2194          | 24.2443 | 5.2697 | 77.8671 |
| 0.1457        | 3.0321 | 10000 | 0.2205          | 24.2587 | 5.2398 | 77.8279 |
| 0.1435        | 3.1837 | 10500 | 0.2223          | 23.7985 | 5.1608 | 77.1613 |
| 0.1435        | 3.3354 | 11000 | 0.2219          | 23.6551 | 5.1230 | 76.9065 |
| 0.1752        | 3.4870 | 11500 | 0.2186          | 23.4829 | 5.0767 | 76.5438 |
| 0.1793        | 3.6386 | 12000 | 0.2232          | 23.4339 | 5.0977 | 76.4556 |
| 0.1682        | 3.7902 | 12500 | 0.2133          | 23.1853 | 5.0090 | 76.0929 |
| 0.1607        | 3.9418 | 13000 | 0.2135          | 22.7610 | 4.9091 | 75.7597 |
| 0.1463        | 4.0934 | 13500 | 0.2138          | 22.8495 | 4.9314 | 76.1125 |
| 0.1654        | 4.2450 | 14000 | 0.2138          | 22.6379 | 4.8814 | 75.7008 |
| 0.1586        | 4.3966 | 14500 | 0.2173          | 22.6678 | 4.8705 | 75.5342 |
| 0.1438        | 4.5482 | 15000 | 0.2166          | 22.5411 | 4.8437 | 75.5342 |
| 0.1645        | 4.6998 | 15500 | 0.2146          | 22.4658 | 4.8308 | 75.3774 |
| 0.1254        | 4.8514 | 16000 | 0.2124          | 22.3989 | 4.8036 | 75.4264 |


### Framework versions

- Transformers 4.52.2
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1