Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- config.json +43 -0
- configuration_qwen3_moe.py +240 -0
- generation_config.json +13 -0
- merges.txt +0 -0
- model-00001-of-00016.safetensors +3 -0
- model-00002-of-00016.safetensors +3 -0
- model-00003-of-00016.safetensors +3 -0
- model-00004-of-00016.safetensors +3 -0
- model-00005-of-00016.safetensors +3 -0
- model-00006-of-00016.safetensors +3 -0
- model-00007-of-00016.safetensors +3 -0
- model-00008-of-00016.safetensors +3 -0
- model-00009-of-00016.safetensors +3 -0
- model-00010-of-00016.safetensors +3 -0
- model-00011-of-00016.safetensors +3 -0
- model-00012-of-00016.safetensors +3 -0
- model-00013-of-00016.safetensors +3 -0
- model-00014-of-00016.safetensors +3 -0
- model-00015-of-00016.safetensors +3 -0
- model-00016-of-00016.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_grove_moe.py +2023 -0
- tokenizer.json +3 -0
- tokenizer_config.json +239 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"modeling_grove_moe.GroveMoeForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_qwen3_moe.Qwen3MoeConfig",
|
7 |
+
"AutoModel": "modeling_grove_moe.GroveMoeModel",
|
8 |
+
"AutoModelForCausalLM": "modeling_grove_moe.GroveMoeForCausalLM"
|
9 |
+
},
|
10 |
+
"attention_bias": false,
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 151643,
|
13 |
+
"decoder_sparse_step": 1,
|
14 |
+
"eos_token_id": 151645,
|
15 |
+
"head_dim": 128,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 2048,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 6144,
|
20 |
+
"max_position_embeddings": 40960,
|
21 |
+
"max_window_layers": 48,
|
22 |
+
"mlp_only_layers": [],
|
23 |
+
"model_type": "qwen3_moe",
|
24 |
+
"moe_intermediate_size": 768,
|
25 |
+
"norm_topk_prob": true,
|
26 |
+
"num_attention_heads": 32,
|
27 |
+
"num_experts": 128,
|
28 |
+
"num_experts_per_tok": 8,
|
29 |
+
"num_hidden_layers": 48,
|
30 |
+
"num_key_value_heads": 4,
|
31 |
+
"output_router_logits": false,
|
32 |
+
"rms_norm_eps": 1e-06,
|
33 |
+
"rope_scaling": null,
|
34 |
+
"rope_theta": 1000000.0,
|
35 |
+
"router_aux_loss_coef": 0.001,
|
36 |
+
"sliding_window": null,
|
37 |
+
"tie_word_embeddings": false,
|
38 |
+
"torch_dtype": "bfloat16",
|
39 |
+
"transformers_version": "4.51.0",
|
40 |
+
"use_cache": true,
|
41 |
+
"use_sliding_window": false,
|
42 |
+
"vocab_size": 151936
|
43 |
+
}
|
configuration_qwen3_moe.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Qwen3MoE model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class Qwen3MoeConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`Qwen3MoeModel`]. It is used to instantiate a
|
28 |
+
Qwen3MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
29 |
+
with the defaults will yield a similar configuration to that of [Qwen/Qwen3-MoE-15B-A2B](https://huggingface.co/Qwen/Qwen3-15B-A2B).
|
30 |
+
|
31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
+
documentation from [`PretrainedConfig`] for more information.
|
33 |
+
|
34 |
+
|
35 |
+
Args:
|
36 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
37 |
+
Vocabulary size of the Qwen3MoE model. Defines the number of different tokens that can be represented by the
|
38 |
+
`inputs_ids` passed when calling [`Qwen3MoeModel`]
|
39 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
40 |
+
Dimension of the hidden representations.
|
41 |
+
intermediate_size (`int`, *optional*, defaults to 6144):
|
42 |
+
Dimension of the MLP representations.
|
43 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
44 |
+
Number of hidden layers in the Transformer encoder.
|
45 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
46 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
47 |
+
num_key_value_heads (`int`, *optional*, defaults to 4):
|
48 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
49 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
50 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
51 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
52 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
53 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
54 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
55 |
+
The non-linear activation function (function or string) in the decoder.
|
56 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
57 |
+
The maximum sequence length that this model might ever be used with.
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
61 |
+
The epsilon used by the rms normalization layers.
|
62 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
64 |
+
relevant if `config.is_decoder=True`.
|
65 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether the model's input and output word embeddings should be tied.
|
67 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
68 |
+
The base period of the RoPE embeddings.
|
69 |
+
rope_scaling (`Dict`, *optional*):
|
70 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
71 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
72 |
+
accordingly.
|
73 |
+
Expected contents:
|
74 |
+
`rope_type` (`str`):
|
75 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
76 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
77 |
+
`factor` (`float`, *optional*):
|
78 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
79 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
80 |
+
original maximum pre-trained length.
|
81 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
82 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
83 |
+
pretraining.
|
84 |
+
`attention_factor` (`float`, *optional*):
|
85 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
86 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
87 |
+
`factor` field to infer the suggested value.
|
88 |
+
`beta_fast` (`float`, *optional*):
|
89 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
90 |
+
ramp function. If unspecified, it defaults to 32.
|
91 |
+
`beta_slow` (`float`, *optional*):
|
92 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
93 |
+
ramp function. If unspecified, it defaults to 1.
|
94 |
+
`short_factor` (`List[float]`, *optional*):
|
95 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
96 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
97 |
+
size divided by the number of attention heads divided by 2
|
98 |
+
`long_factor` (`List[float]`, *optional*):
|
99 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
100 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
101 |
+
size divided by the number of attention heads divided by 2
|
102 |
+
`low_freq_factor` (`float`, *optional*):
|
103 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
104 |
+
`high_freq_factor` (`float`, *optional*):
|
105 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
106 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
107 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
108 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
109 |
+
Whether to use sliding window attention.
|
110 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
111 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
112 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
113 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
114 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
115 |
+
The dropout ratio for the attention probabilities.
|
116 |
+
decoder_sparse_step (`int`, *optional*, defaults to 1):
|
117 |
+
The frequency of the MoE layer.
|
118 |
+
moe_intermediate_size (`int`, *optional*, defaults to 768):
|
119 |
+
Intermediate size of the routed expert.
|
120 |
+
num_experts_per_tok (`int`, *optional*, defaults to 8):
|
121 |
+
Number of selected experts.
|
122 |
+
num_experts (`int`, *optional*, defaults to 128):
|
123 |
+
Number of routed experts.
|
124 |
+
norm_topk_prob (`bool`, *optional*, defaults to `False`):
|
125 |
+
Whether to normalize the topk probabilities.
|
126 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
127 |
+
Whether or not the router logits should be returned by the model. Enabeling this will also
|
128 |
+
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
|
129 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
130 |
+
The aux loss factor for the total loss.
|
131 |
+
mlp_only_layers (`List[int]`, *optional*, defaults to `[]`):
|
132 |
+
Indicate which layers use Qwen3MoeMLP rather than Qwen3MoeSparseMoeBlock
|
133 |
+
The list contains layer index, from 0 to num_layers-1 if we have num_layers layers
|
134 |
+
If `mlp_only_layers` is empty, `decoder_sparse_step` is used to determine the sparsity.
|
135 |
+
|
136 |
+
```python
|
137 |
+
>>> from transformers import Qwen3MoeModel, Qwen3MoeConfig
|
138 |
+
|
139 |
+
>>> # Initializing a Qwen3MoE style configuration
|
140 |
+
>>> configuration = Qwen3MoeConfig()
|
141 |
+
|
142 |
+
>>> # Initializing a model from the Qwen3-15B-A2B" style configuration
|
143 |
+
>>> model = Qwen3MoeModel(configuration)
|
144 |
+
|
145 |
+
>>> # Accessing the model configuration
|
146 |
+
>>> configuration = model.config
|
147 |
+
```"""
|
148 |
+
|
149 |
+
model_type = "qwen3_moe"
|
150 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
151 |
+
|
152 |
+
# Default tensor parallel plan for base model `Qwen3Moe`
|
153 |
+
base_model_tp_plan = {
|
154 |
+
"layers.*.self_attn.q_proj": "colwise",
|
155 |
+
"layers.*.self_attn.k_proj": "colwise",
|
156 |
+
"layers.*.self_attn.v_proj": "colwise",
|
157 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
158 |
+
"layers.*.mlp.gate_proj": "colwise",
|
159 |
+
"layers.*.mlp.up_proj": "colwise",
|
160 |
+
"layers.*.mlp.down_proj": "rowwise",
|
161 |
+
}
|
162 |
+
base_model_pp_plan = {
|
163 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
164 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
165 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
166 |
+
}
|
167 |
+
|
168 |
+
def __init__(
|
169 |
+
self,
|
170 |
+
vocab_size=151936,
|
171 |
+
hidden_size=2048,
|
172 |
+
intermediate_size=6144,
|
173 |
+
num_hidden_layers=24,
|
174 |
+
num_attention_heads=32,
|
175 |
+
num_key_value_heads=4,
|
176 |
+
hidden_act="silu",
|
177 |
+
max_position_embeddings=32768,
|
178 |
+
initializer_range=0.02,
|
179 |
+
rms_norm_eps=1e-6,
|
180 |
+
use_cache=True,
|
181 |
+
tie_word_embeddings=False,
|
182 |
+
rope_theta=10000.0,
|
183 |
+
rope_scaling=None,
|
184 |
+
attention_bias=False,
|
185 |
+
use_sliding_window=False,
|
186 |
+
sliding_window=4096,
|
187 |
+
max_window_layers=28,
|
188 |
+
attention_dropout=0.0,
|
189 |
+
decoder_sparse_step=1,
|
190 |
+
moe_intermediate_size=768,
|
191 |
+
num_experts_per_tok=8,
|
192 |
+
num_experts=128,
|
193 |
+
norm_topk_prob=False,
|
194 |
+
output_router_logits=False,
|
195 |
+
router_aux_loss_coef=0.001,
|
196 |
+
mlp_only_layers=None,
|
197 |
+
**kwargs,
|
198 |
+
):
|
199 |
+
self.vocab_size = vocab_size
|
200 |
+
self.max_position_embeddings = max_position_embeddings
|
201 |
+
self.hidden_size = hidden_size
|
202 |
+
self.intermediate_size = intermediate_size
|
203 |
+
self.num_hidden_layers = num_hidden_layers
|
204 |
+
self.num_attention_heads = num_attention_heads
|
205 |
+
self.use_sliding_window = use_sliding_window
|
206 |
+
self.sliding_window = sliding_window if use_sliding_window else None
|
207 |
+
self.max_window_layers = max_window_layers
|
208 |
+
|
209 |
+
self.num_key_value_heads = num_key_value_heads
|
210 |
+
self.hidden_act = hidden_act
|
211 |
+
self.initializer_range = initializer_range
|
212 |
+
self.rms_norm_eps = rms_norm_eps
|
213 |
+
self.use_cache = use_cache
|
214 |
+
self.rope_theta = rope_theta
|
215 |
+
self.rope_scaling = rope_scaling
|
216 |
+
self.attention_bias = attention_bias
|
217 |
+
self.attention_dropout = attention_dropout
|
218 |
+
# Validate the correctness of rotary position embeddings parameters
|
219 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
220 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
221 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
222 |
+
rope_config_validation(self)
|
223 |
+
|
224 |
+
# MoE arguments
|
225 |
+
self.decoder_sparse_step = decoder_sparse_step
|
226 |
+
self.moe_intermediate_size = moe_intermediate_size
|
227 |
+
self.num_experts_per_tok = num_experts_per_tok
|
228 |
+
self.num_experts = num_experts
|
229 |
+
self.norm_topk_prob = norm_topk_prob
|
230 |
+
self.output_router_logits = output_router_logits
|
231 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
232 |
+
self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers
|
233 |
+
|
234 |
+
super().__init__(
|
235 |
+
tie_word_embeddings=tie_word_embeddings,
|
236 |
+
**kwargs,
|
237 |
+
)
|
238 |
+
|
239 |
+
|
240 |
+
__all__ = ["Qwen3MoeConfig"]
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"temperature": 0.7,
|
10 |
+
"top_k": 20,
|
11 |
+
"top_p": 0.8,
|
12 |
+
"transformers_version": "4.51.0"
|
13 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:105905a3029e1c760a6e647eeea9c3bf9d599caaf9f5b7b90d50140c46d610d6
|
3 |
+
size 4293406800
|
model-00002-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de1b6efb02eaffc3c864e384656497c58bc81cc868ef9c0199603b77bb1b5b3d
|
3 |
+
size 4294086536
|
model-00003-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82826f66ca584a3bfaa0470a0bc2afd8439aae23e0d72bbcc9f058a3c9ef1649
|
3 |
+
size 4294086616
|
model-00004-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e404d77d0a7ff64b5b2d5d4ea27f42d41f249e442446bd7b9fff314b20d06b0
|
3 |
+
size 4294087208
|
model-00005-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:856e235b48da5f2b4c200a23690463553f146529294445aa4533c5db7f380d0f
|
3 |
+
size 4294087984
|
model-00006-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01b16f6b978406b72942be836add7e3e403086efdeb5108107fab93a798d40fe
|
3 |
+
size 4294087928
|
model-00007-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d33575f875461376e8f136abe69cdba0f514d631018b45116721eb14fb1a1e37
|
3 |
+
size 4294087984
|
model-00008-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8aa0d7cf6cab9abd2cc74273f0c14c6669c9d9796555df4b84d49610c1910c5
|
3 |
+
size 4294087968
|
model-00009-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd546c56d7e5ad4ea8a270db2e950dc5cc1ffd1a12bcbdadad05b4151835b461
|
3 |
+
size 4294087944
|
model-00010-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fec80f5ddccdd2ea1f85308610d1eee1f0ecaee92d760b80d5b5124140dbc2cc
|
3 |
+
size 4294088008
|
model-00011-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:168297f175585d39e459f6634ed78c6329aaf8e5ad0598329005106cdded1b62
|
3 |
+
size 4294087904
|
model-00012-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d8a26b5b2f669c4c6dcc32490fbb1d757a25156d110191333665fe2807241de
|
3 |
+
size 4294087984
|
model-00013-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fff5881f94ffc5ab1f8c5bda2cfbf1be502158df95ebef468181f88dfd5975d7
|
3 |
+
size 4294087928
|
model-00014-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c9caecb93fcbdcf74b70529a9ee20058aba6211f9b7ad67b12039ad12fdf2ed
|
3 |
+
size 4294087984
|
model-00015-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d1a73cf9fc10593276e659ad0d018f5df1a065a511fe4b6785b103306e5bb1c
|
3 |
+
size 4295829312
|
model-00016-of-00016.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:613d83b0b0ea9bd8607b3574b2c96f9010bdc8c45c901f7923da92853b3cbcf3
|
3 |
+
size 1487245776
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_grove_moe.py
ADDED
@@ -0,0 +1,2023 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from src/transformers/models/qwen3_moe/modular_qwen3_moe.py.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
5 |
+
# modular_qwen3_moe.py file directly. One of our CI enforces this.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2025 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
|
22 |
+
from functools import partial
|
23 |
+
from typing import Callable, List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
from torch import nn
|
28 |
+
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
|
31 |
+
from transformers.generation import GenerationMixin
|
32 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
33 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
34 |
+
from transformers.modeling_outputs import (
|
35 |
+
BaseModelOutputWithPast,
|
36 |
+
CausalLMOutputWithPast,
|
37 |
+
MoeCausalLMOutputWithPast,
|
38 |
+
MoeModelOutputWithPast,
|
39 |
+
QuestionAnsweringModelOutput,
|
40 |
+
SequenceClassifierOutputWithPast,
|
41 |
+
TokenClassifierOutput,
|
42 |
+
)
|
43 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
44 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
45 |
+
from transformers.processing_utils import Unpack
|
46 |
+
from transformers.utils import (
|
47 |
+
LossKwargs,
|
48 |
+
add_code_sample_docstrings,
|
49 |
+
add_start_docstrings,
|
50 |
+
add_start_docstrings_to_model_forward,
|
51 |
+
can_return_tuple,
|
52 |
+
logging,
|
53 |
+
replace_return_docstrings,
|
54 |
+
)
|
55 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
56 |
+
from .configuration_qwen3_moe import Qwen3MoeConfig
|
57 |
+
|
58 |
+
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
_CHECKPOINT_FOR_DOC = "Qwen/Qwen3-MoE-15B-A2B"
|
62 |
+
_CONFIG_FOR_DOC = "Qwen3MoeConfig"
|
63 |
+
|
64 |
+
|
65 |
+
def rotate_half(x):
|
66 |
+
"""Rotates half the hidden dims of the input."""
|
67 |
+
x1 = x[..., : x.shape[-1] // 2]
|
68 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
69 |
+
return torch.cat((-x2, x1), dim=-1)
|
70 |
+
|
71 |
+
|
72 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
73 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
q (`torch.Tensor`): The query tensor.
|
77 |
+
k (`torch.Tensor`): The key tensor.
|
78 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
79 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
80 |
+
position_ids (`torch.Tensor`, *optional*):
|
81 |
+
Deprecated and unused.
|
82 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
83 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
84 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
85 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
86 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
87 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
88 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
89 |
+
Returns:
|
90 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
91 |
+
"""
|
92 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
93 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
94 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
95 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
96 |
+
return q_embed, k_embed
|
97 |
+
|
98 |
+
|
99 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
100 |
+
"""
|
101 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
102 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
103 |
+
"""
|
104 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
105 |
+
if n_rep == 1:
|
106 |
+
return hidden_states
|
107 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
108 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
109 |
+
|
110 |
+
|
111 |
+
def eager_attention_forward(
|
112 |
+
module: nn.Module,
|
113 |
+
query: torch.Tensor,
|
114 |
+
key: torch.Tensor,
|
115 |
+
value: torch.Tensor,
|
116 |
+
attention_mask: Optional[torch.Tensor],
|
117 |
+
scaling: float,
|
118 |
+
dropout: float = 0.0,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
122 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
123 |
+
|
124 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
125 |
+
if attention_mask is not None:
|
126 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
127 |
+
attn_weights = attn_weights + causal_mask
|
128 |
+
|
129 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
130 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
131 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
132 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
133 |
+
|
134 |
+
return attn_output, attn_weights
|
135 |
+
|
136 |
+
|
137 |
+
class Qwen3MoeAttention(nn.Module):
|
138 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
139 |
+
|
140 |
+
def __init__(self, config: Qwen3MoeConfig, layer_idx: int):
|
141 |
+
super().__init__()
|
142 |
+
self.config = config
|
143 |
+
self.layer_idx = layer_idx
|
144 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
145 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
146 |
+
self.scaling = self.head_dim**-0.5
|
147 |
+
self.attention_dropout = config.attention_dropout
|
148 |
+
self.is_causal = True
|
149 |
+
|
150 |
+
self.q_proj = nn.Linear(
|
151 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
152 |
+
)
|
153 |
+
self.k_proj = nn.Linear(
|
154 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
155 |
+
)
|
156 |
+
self.v_proj = nn.Linear(
|
157 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
158 |
+
)
|
159 |
+
self.o_proj = nn.Linear(
|
160 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
161 |
+
)
|
162 |
+
self.q_norm = Qwen3MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim!
|
163 |
+
self.k_norm = Qwen3MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape
|
164 |
+
self.sliding_window = config.sliding_window
|
165 |
+
if not (
|
166 |
+
self.config.use_sliding_window
|
167 |
+
and getattr(self.config, "sliding_window", None) is not None
|
168 |
+
and self.layer_idx >= self.config.max_window_layers
|
169 |
+
):
|
170 |
+
self.sliding_window = None
|
171 |
+
|
172 |
+
def forward(
|
173 |
+
self,
|
174 |
+
hidden_states: torch.Tensor,
|
175 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
176 |
+
attention_mask: Optional[torch.Tensor],
|
177 |
+
past_key_value: Optional[Cache] = None,
|
178 |
+
cache_position: Optional[torch.LongTensor] = None,
|
179 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
180 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
181 |
+
input_shape = hidden_states.shape[:-1]
|
182 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
183 |
+
|
184 |
+
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
185 |
+
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
186 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
187 |
+
|
188 |
+
cos, sin = position_embeddings
|
189 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
190 |
+
|
191 |
+
if past_key_value is not None:
|
192 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
193 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
194 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
195 |
+
|
196 |
+
attention_interface: Callable = eager_attention_forward
|
197 |
+
if self.config._attn_implementation != "eager":
|
198 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
199 |
+
logger.warning_once(
|
200 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
201 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
205 |
+
|
206 |
+
attn_output, attn_weights = attention_interface(
|
207 |
+
self,
|
208 |
+
query_states,
|
209 |
+
key_states,
|
210 |
+
value_states,
|
211 |
+
attention_mask,
|
212 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
213 |
+
scaling=self.scaling,
|
214 |
+
sliding_window=self.sliding_window, # diff with Llama
|
215 |
+
**kwargs,
|
216 |
+
)
|
217 |
+
|
218 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
219 |
+
attn_output = self.o_proj(attn_output)
|
220 |
+
return attn_output, attn_weights
|
221 |
+
|
222 |
+
|
223 |
+
class Qwen3MoeMLP(nn.Module):
|
224 |
+
def __init__(self, config, intermediate_size=None):
|
225 |
+
super().__init__()
|
226 |
+
self.config = config
|
227 |
+
self.hidden_size = config.hidden_size
|
228 |
+
self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
|
229 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
230 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
231 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
232 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
233 |
+
|
234 |
+
def forward(self, x):
|
235 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
236 |
+
return down_proj
|
237 |
+
|
238 |
+
|
239 |
+
class Qwen3MoeSparseMoeBlock(nn.Module):
|
240 |
+
def __init__(self, config):
|
241 |
+
super().__init__()
|
242 |
+
self.num_experts = config.num_experts
|
243 |
+
self.top_k = config.num_experts_per_tok
|
244 |
+
self.norm_topk_prob = config.norm_topk_prob
|
245 |
+
|
246 |
+
# gating
|
247 |
+
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
|
248 |
+
self.experts = nn.ModuleList(
|
249 |
+
[Qwen3MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)]
|
250 |
+
)
|
251 |
+
|
252 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
253 |
+
""" """
|
254 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
255 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
256 |
+
# router_logits: (batch * sequence_length, n_experts)
|
257 |
+
router_logits = self.gate(hidden_states)
|
258 |
+
|
259 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
260 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
261 |
+
if self.norm_topk_prob: # only diff with mixtral sparse moe block!
|
262 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
263 |
+
# we cast back to the input dtype
|
264 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
265 |
+
|
266 |
+
final_hidden_states = torch.zeros(
|
267 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
268 |
+
)
|
269 |
+
|
270 |
+
# One hot encode the selected experts to create an expert mask
|
271 |
+
# this will be used to easily index which expert is going to be sollicitated
|
272 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
273 |
+
|
274 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
275 |
+
for expert_idx in range(self.num_experts):
|
276 |
+
expert_layer = self.experts[expert_idx]
|
277 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
278 |
+
|
279 |
+
# Index the correct hidden states and compute the expert hidden state for
|
280 |
+
# the current expert. We need to make sure to multiply the output hidden
|
281 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
282 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
283 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
284 |
+
|
285 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
286 |
+
# the `top_x` tensor here.
|
287 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
288 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
289 |
+
return final_hidden_states, router_logits
|
290 |
+
|
291 |
+
|
292 |
+
class GroveMoeSparseMoeBlock(nn.Module):
|
293 |
+
def __init__(self, config):
|
294 |
+
super().__init__()
|
295 |
+
self.num_experts = config.num_experts
|
296 |
+
self.top_k = config.num_experts_per_tok
|
297 |
+
self.norm_topk_prob = config.norm_topk_prob
|
298 |
+
self.num_experts_per_group = 2
|
299 |
+
self.parallel_expert_intermediate_size = 128
|
300 |
+
|
301 |
+
# gating
|
302 |
+
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
|
303 |
+
self.register_buffer('expert_bias', torch.zeros(self.num_experts))
|
304 |
+
|
305 |
+
self.experts = nn.ModuleList(
|
306 |
+
[Qwen3MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)]
|
307 |
+
)
|
308 |
+
self.chunk_experts = nn.ModuleList(
|
309 |
+
[Qwen3MoeMLP(config, intermediate_size=self.parallel_expert_intermediate_size) for _ in range(self.num_experts // self.num_experts_per_group)]
|
310 |
+
)
|
311 |
+
|
312 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
313 |
+
""" """
|
314 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
315 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
316 |
+
|
317 |
+
router_logits = self.gate(hidden_states)
|
318 |
+
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
319 |
+
bias_routing_weights = torch.sigmoid(router_logits).to(torch.float)
|
320 |
+
|
321 |
+
_, selected_experts = torch.topk(bias_routing_weights, self.top_k, dim=-1)
|
322 |
+
group_selected_experts = selected_experts // self.num_experts_per_group
|
323 |
+
|
324 |
+
routing_weights = routing_weights.gather(-1, selected_experts)
|
325 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
326 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
327 |
+
|
328 |
+
# forward large
|
329 |
+
large_experts_hidden_states = torch.zeros(
|
330 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
331 |
+
)
|
332 |
+
|
333 |
+
# One hot encode the selected experts to create an expert mask
|
334 |
+
# this will be used to easily index which expert is going to be sollicitated
|
335 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
336 |
+
|
337 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
338 |
+
for expert_idx in range(self.num_experts):
|
339 |
+
expert_layer = self.experts[expert_idx]
|
340 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
341 |
+
|
342 |
+
# Index the correct hidden states and compute the expert hidden state for
|
343 |
+
# the current expert. We need to make sure to multiply the output hidden
|
344 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
345 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
346 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
347 |
+
|
348 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
349 |
+
# the `top_x` tensor here.
|
350 |
+
large_experts_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
351 |
+
|
352 |
+
# forward small
|
353 |
+
small_experts_hidden_states = torch.zeros(
|
354 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
355 |
+
)
|
356 |
+
|
357 |
+
# One hot encode the selected experts to create an expert mask
|
358 |
+
# this will be used to easily index which expert is going to be sollicitated
|
359 |
+
expert_mask = torch.nn.functional.one_hot(group_selected_experts, num_classes=self.num_experts // self.num_experts_per_group).permute(2, 1, 0)
|
360 |
+
|
361 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
362 |
+
for expert_idx in range(self.num_experts // self.num_experts_per_group):
|
363 |
+
expert_layer = self.chunk_experts[expert_idx]
|
364 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
365 |
+
|
366 |
+
# Index the correct hidden states and compute the expert hidden state for
|
367 |
+
# the current expert. We need to make sure to multiply the output hidden
|
368 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
369 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
370 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
371 |
+
|
372 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
373 |
+
# the `top_x` tensor here.
|
374 |
+
small_experts_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
375 |
+
|
376 |
+
final_hidden_states = 0.05 * small_experts_hidden_states + large_experts_hidden_states
|
377 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
378 |
+
|
379 |
+
return final_hidden_states, router_logits
|
380 |
+
|
381 |
+
class Qwen3MoeRMSNorm(nn.Module):
|
382 |
+
def __init__(self, hidden_size, eps=1e-6):
|
383 |
+
"""
|
384 |
+
Qwen3MoeRMSNorm is equivalent to T5LayerNorm
|
385 |
+
"""
|
386 |
+
super().__init__()
|
387 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
388 |
+
self.variance_epsilon = eps
|
389 |
+
|
390 |
+
def forward(self, hidden_states):
|
391 |
+
input_dtype = hidden_states.dtype
|
392 |
+
hidden_states = hidden_states.to(torch.float32)
|
393 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
394 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
395 |
+
return self.weight * hidden_states.to(input_dtype)
|
396 |
+
|
397 |
+
def extra_repr(self):
|
398 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
399 |
+
|
400 |
+
|
401 |
+
class Qwen3MoeDecoderLayer(nn.Module):
|
402 |
+
def __init__(self, config: Qwen3MoeConfig, layer_idx: int):
|
403 |
+
super().__init__()
|
404 |
+
self.hidden_size = config.hidden_size
|
405 |
+
|
406 |
+
self.self_attn = Qwen3MoeAttention(config, layer_idx)
|
407 |
+
self.mlp = Qwen3MoeMLP(config)
|
408 |
+
|
409 |
+
self.self_attn = Qwen3MoeAttention(config, layer_idx)
|
410 |
+
|
411 |
+
if (layer_idx not in config.mlp_only_layers) and (
|
412 |
+
config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0
|
413 |
+
):
|
414 |
+
self.mlp = Qwen3MoeSparseMoeBlock(config)
|
415 |
+
else:
|
416 |
+
self.mlp = Qwen3MoeMLP(config, intermediate_size=config.intermediate_size)
|
417 |
+
|
418 |
+
self.input_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
419 |
+
self.post_attention_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
420 |
+
|
421 |
+
def forward(
|
422 |
+
self,
|
423 |
+
hidden_states: torch.Tensor,
|
424 |
+
attention_mask: Optional[torch.Tensor] = None,
|
425 |
+
position_ids: Optional[torch.LongTensor] = None,
|
426 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
427 |
+
output_attentions: Optional[bool] = False,
|
428 |
+
output_router_logits: Optional[bool] = False,
|
429 |
+
use_cache: Optional[bool] = False,
|
430 |
+
cache_position: Optional[torch.LongTensor] = None,
|
431 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
432 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
433 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
434 |
+
"""
|
435 |
+
Args:
|
436 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
437 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
438 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
439 |
+
output_attentions (`bool`, *optional*):
|
440 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
441 |
+
returned tensors for more detail.
|
442 |
+
output_router_logits (`bool`, *optional*):
|
443 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
|
444 |
+
and should not be returned during inference.
|
445 |
+
use_cache (`bool`, *optional*):
|
446 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
447 |
+
(see `past_key_values`).
|
448 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
449 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
450 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
451 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
452 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
453 |
+
with `head_dim` being the embedding dimension of each attention head.
|
454 |
+
kwargs (`dict`, *optional*):
|
455 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
456 |
+
into the model
|
457 |
+
"""
|
458 |
+
|
459 |
+
residual = hidden_states
|
460 |
+
|
461 |
+
hidden_states = self.input_layernorm(hidden_states)
|
462 |
+
|
463 |
+
# Self Attention
|
464 |
+
hidden_states, self_attn_weights = self.self_attn(
|
465 |
+
hidden_states=hidden_states,
|
466 |
+
attention_mask=attention_mask,
|
467 |
+
position_ids=position_ids,
|
468 |
+
past_key_value=past_key_value,
|
469 |
+
output_attentions=output_attentions,
|
470 |
+
use_cache=use_cache,
|
471 |
+
cache_position=cache_position,
|
472 |
+
position_embeddings=position_embeddings,
|
473 |
+
)
|
474 |
+
hidden_states = residual + hidden_states
|
475 |
+
|
476 |
+
# Fully Connected
|
477 |
+
residual = hidden_states
|
478 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
479 |
+
|
480 |
+
hidden_states = self.mlp(hidden_states)
|
481 |
+
if isinstance(hidden_states, tuple):
|
482 |
+
hidden_states, router_logits = hidden_states
|
483 |
+
else:
|
484 |
+
router_logits = None
|
485 |
+
|
486 |
+
hidden_states = residual + hidden_states
|
487 |
+
|
488 |
+
outputs = (hidden_states,)
|
489 |
+
|
490 |
+
if output_attentions:
|
491 |
+
outputs += (self_attn_weights,)
|
492 |
+
|
493 |
+
if output_router_logits:
|
494 |
+
outputs += (router_logits,)
|
495 |
+
|
496 |
+
return outputs
|
497 |
+
|
498 |
+
|
499 |
+
class GroveMoeDecoderLayer(nn.Module):
|
500 |
+
def __init__(self, config: Qwen3MoeConfig, layer_idx: int):
|
501 |
+
super().__init__()
|
502 |
+
self.hidden_size = config.hidden_size
|
503 |
+
|
504 |
+
self.self_attn = Qwen3MoeAttention(config, layer_idx)
|
505 |
+
self.mlp = Qwen3MoeMLP(config)
|
506 |
+
|
507 |
+
self.self_attn = Qwen3MoeAttention(config, layer_idx)
|
508 |
+
|
509 |
+
if (layer_idx not in config.mlp_only_layers) and (
|
510 |
+
config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0
|
511 |
+
):
|
512 |
+
self.mlp = GroveMoeSparseMoeBlock(config)
|
513 |
+
else:
|
514 |
+
self.mlp = Qwen3MoeMLP(config, intermediate_size=config.intermediate_size)
|
515 |
+
|
516 |
+
self.input_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
517 |
+
self.post_attention_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
518 |
+
|
519 |
+
def forward(
|
520 |
+
self,
|
521 |
+
hidden_states: torch.Tensor,
|
522 |
+
attention_mask: Optional[torch.Tensor] = None,
|
523 |
+
position_ids: Optional[torch.LongTensor] = None,
|
524 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
525 |
+
output_attentions: Optional[bool] = False,
|
526 |
+
output_router_logits: Optional[bool] = False,
|
527 |
+
use_cache: Optional[bool] = False,
|
528 |
+
cache_position: Optional[torch.LongTensor] = None,
|
529 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
530 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
531 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
532 |
+
"""
|
533 |
+
Args:
|
534 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
535 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
536 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
537 |
+
output_attentions (`bool`, *optional*):
|
538 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
539 |
+
returned tensors for more detail.
|
540 |
+
output_router_logits (`bool`, *optional*):
|
541 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
|
542 |
+
and should not be returned during inference.
|
543 |
+
use_cache (`bool`, *optional*):
|
544 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
545 |
+
(see `past_key_values`).
|
546 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
547 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
548 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
549 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
550 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
551 |
+
with `head_dim` being the embedding dimension of each attention head.
|
552 |
+
kwargs (`dict`, *optional*):
|
553 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
554 |
+
into the model
|
555 |
+
"""
|
556 |
+
|
557 |
+
residual = hidden_states
|
558 |
+
|
559 |
+
hidden_states = self.input_layernorm(hidden_states)
|
560 |
+
|
561 |
+
# Self Attention
|
562 |
+
hidden_states, self_attn_weights = self.self_attn(
|
563 |
+
hidden_states=hidden_states,
|
564 |
+
attention_mask=attention_mask,
|
565 |
+
position_ids=position_ids,
|
566 |
+
past_key_value=past_key_value,
|
567 |
+
output_attentions=output_attentions,
|
568 |
+
use_cache=use_cache,
|
569 |
+
cache_position=cache_position,
|
570 |
+
position_embeddings=position_embeddings,
|
571 |
+
)
|
572 |
+
hidden_states = residual + hidden_states
|
573 |
+
|
574 |
+
# Fully Connected
|
575 |
+
residual = hidden_states
|
576 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
577 |
+
|
578 |
+
hidden_states = self.mlp(hidden_states)
|
579 |
+
if isinstance(hidden_states, tuple):
|
580 |
+
hidden_states, router_logits = hidden_states
|
581 |
+
else:
|
582 |
+
router_logits = None
|
583 |
+
|
584 |
+
hidden_states = residual + hidden_states
|
585 |
+
|
586 |
+
outputs = (hidden_states,)
|
587 |
+
|
588 |
+
if output_attentions:
|
589 |
+
outputs += (self_attn_weights,)
|
590 |
+
|
591 |
+
if output_router_logits:
|
592 |
+
outputs += (router_logits,)
|
593 |
+
|
594 |
+
return outputs
|
595 |
+
|
596 |
+
|
597 |
+
class Qwen3MoeRotaryEmbedding(nn.Module):
|
598 |
+
def __init__(self, config: Qwen3MoeConfig, device=None):
|
599 |
+
super().__init__()
|
600 |
+
# BC: "rope_type" was originally "type"
|
601 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
602 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
603 |
+
else:
|
604 |
+
self.rope_type = "default"
|
605 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
606 |
+
self.original_max_seq_len = config.max_position_embeddings
|
607 |
+
|
608 |
+
self.config = config
|
609 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
610 |
+
|
611 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
612 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
613 |
+
self.original_inv_freq = self.inv_freq
|
614 |
+
|
615 |
+
@torch.no_grad()
|
616 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
617 |
+
def forward(self, x, position_ids):
|
618 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
619 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
620 |
+
|
621 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
622 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
623 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
624 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
625 |
+
cos = emb.cos() * self.attention_scaling
|
626 |
+
sin = emb.sin() * self.attention_scaling
|
627 |
+
|
628 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
629 |
+
|
630 |
+
|
631 |
+
QWEN3_MOE_START_DOCSTRING = r"""
|
632 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
633 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
634 |
+
etc.)
|
635 |
+
|
636 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
637 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
638 |
+
and behavior.
|
639 |
+
|
640 |
+
Parameters:
|
641 |
+
config ([`Qwen3MoeConfig`]):
|
642 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
643 |
+
load the weights associated with the model, only the configuration. Check out the
|
644 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
645 |
+
"""
|
646 |
+
|
647 |
+
|
648 |
+
@add_start_docstrings(
|
649 |
+
"The bare Qwen3Moe Model outputting raw hidden-states without any specific head on top.",
|
650 |
+
QWEN3_MOE_START_DOCSTRING,
|
651 |
+
)
|
652 |
+
class Qwen3MoePreTrainedModel(PreTrainedModel):
|
653 |
+
config_class = Qwen3MoeConfig
|
654 |
+
base_model_prefix = "model"
|
655 |
+
supports_gradient_checkpointing = True
|
656 |
+
_no_split_modules = ["Qwen3MoeDecoderLayer"]
|
657 |
+
_skip_keys_device_placement = ["past_key_values"]
|
658 |
+
_supports_flash_attn_2 = True
|
659 |
+
_supports_sdpa = True
|
660 |
+
_supports_flex_attn = True
|
661 |
+
_supports_cache_class = True
|
662 |
+
_supports_quantized_cache = True
|
663 |
+
_supports_static_cache = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
|
664 |
+
_supports_attention_backend = True
|
665 |
+
|
666 |
+
def _init_weights(self, module):
|
667 |
+
std = self.config.initializer_range
|
668 |
+
if isinstance(module, nn.Linear):
|
669 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
670 |
+
if module.bias is not None:
|
671 |
+
module.bias.data.zero_()
|
672 |
+
elif isinstance(module, nn.Embedding):
|
673 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
674 |
+
if module.padding_idx is not None:
|
675 |
+
module.weight.data[module.padding_idx].zero_()
|
676 |
+
|
677 |
+
|
678 |
+
@add_start_docstrings(
|
679 |
+
"The bare Qwen3Moe Model outputting raw hidden-states without any specific head on top.",
|
680 |
+
QWEN3_MOE_START_DOCSTRING,
|
681 |
+
)
|
682 |
+
class GroveMoePreTrainedModel(PreTrainedModel):
|
683 |
+
config_class = Qwen3MoeConfig
|
684 |
+
base_model_prefix = "model"
|
685 |
+
supports_gradient_checkpointing = True
|
686 |
+
_no_split_modules = ["GroveMoeDecoderLayer"]
|
687 |
+
_skip_keys_device_placement = ["past_key_values"]
|
688 |
+
_supports_flash_attn_2 = True
|
689 |
+
_supports_sdpa = True
|
690 |
+
_supports_flex_attn = True
|
691 |
+
_supports_cache_class = True
|
692 |
+
_supports_quantized_cache = True
|
693 |
+
_supports_static_cache = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
|
694 |
+
_supports_attention_backend = True
|
695 |
+
|
696 |
+
def _init_weights(self, module):
|
697 |
+
std = self.config.initializer_range
|
698 |
+
if isinstance(module, nn.Linear):
|
699 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
700 |
+
if module.bias is not None:
|
701 |
+
module.bias.data.zero_()
|
702 |
+
elif isinstance(module, nn.Embedding):
|
703 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
704 |
+
if module.padding_idx is not None:
|
705 |
+
module.weight.data[module.padding_idx].zero_()
|
706 |
+
|
707 |
+
|
708 |
+
QWEN3_MOE_INPUTS_DOCSTRING = r"""
|
709 |
+
Args:
|
710 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
711 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
712 |
+
it.
|
713 |
+
|
714 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
715 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
716 |
+
|
717 |
+
[What are input IDs?](../glossary#input-ids)
|
718 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
719 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
720 |
+
|
721 |
+
- 1 for tokens that are **not masked**,
|
722 |
+
- 0 for tokens that are **masked**.
|
723 |
+
|
724 |
+
[What are attention masks?](../glossary#attention-mask)
|
725 |
+
|
726 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
727 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
728 |
+
|
729 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
730 |
+
`past_key_values`).
|
731 |
+
|
732 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
733 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
734 |
+
information on the default strategy.
|
735 |
+
|
736 |
+
- 1 indicates the head is **not masked**,
|
737 |
+
- 0 indicates the head is **masked**.
|
738 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
739 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
740 |
+
config.n_positions - 1]`.
|
741 |
+
|
742 |
+
[What are position IDs?](../glossary#position-ids)
|
743 |
+
past_key_values (`Cache`, *optional*):
|
744 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
745 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
746 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
747 |
+
|
748 |
+
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
749 |
+
|
750 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
751 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
752 |
+
of shape `(batch_size, sequence_length)`.
|
753 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
754 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
755 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
756 |
+
model's internal embedding lookup matrix.
|
757 |
+
use_cache (`bool`, *optional*):
|
758 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
759 |
+
`past_key_values`).
|
760 |
+
output_attentions (`bool`, *optional*):
|
761 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
762 |
+
tensors for more detail.
|
763 |
+
output_hidden_states (`bool`, *optional*):
|
764 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
765 |
+
more detail.
|
766 |
+
return_dict (`bool`, *optional*):
|
767 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
768 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
769 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
770 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
771 |
+
the complete sequence length.
|
772 |
+
"""
|
773 |
+
|
774 |
+
|
775 |
+
@add_start_docstrings(
|
776 |
+
"The bare Qwen3Moe Model outputting raw hidden-states without any specific head on top.",
|
777 |
+
QWEN3_MOE_START_DOCSTRING,
|
778 |
+
)
|
779 |
+
class Qwen3MoeModel(Qwen3MoePreTrainedModel):
|
780 |
+
"""
|
781 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen3MoeDecoderLayer`]
|
782 |
+
|
783 |
+
Args:
|
784 |
+
config: Qwen3MoeConfig
|
785 |
+
"""
|
786 |
+
|
787 |
+
def __init__(self, config: Qwen3MoeConfig):
|
788 |
+
super().__init__(config)
|
789 |
+
self.padding_idx = config.pad_token_id
|
790 |
+
self.vocab_size = config.vocab_size
|
791 |
+
|
792 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
793 |
+
self.layers = nn.ModuleList(
|
794 |
+
[Qwen3MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
795 |
+
)
|
796 |
+
self.norm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
797 |
+
self.rotary_emb = Qwen3MoeRotaryEmbedding(config=config)
|
798 |
+
self.gradient_checkpointing = False
|
799 |
+
|
800 |
+
# Initialize weights and apply final processing
|
801 |
+
self.post_init()
|
802 |
+
|
803 |
+
def get_input_embeddings(self):
|
804 |
+
return self.embed_tokens
|
805 |
+
|
806 |
+
def set_input_embeddings(self, value):
|
807 |
+
self.embed_tokens = value
|
808 |
+
|
809 |
+
@can_return_tuple
|
810 |
+
@add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING)
|
811 |
+
def forward(
|
812 |
+
self,
|
813 |
+
input_ids: Optional[torch.LongTensor] = None,
|
814 |
+
attention_mask: Optional[torch.Tensor] = None,
|
815 |
+
position_ids: Optional[torch.LongTensor] = None,
|
816 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
817 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
818 |
+
use_cache: Optional[bool] = None,
|
819 |
+
output_attentions: Optional[bool] = None,
|
820 |
+
output_hidden_states: Optional[bool] = None,
|
821 |
+
output_router_logits: Optional[bool] = None,
|
822 |
+
cache_position: Optional[torch.LongTensor] = None,
|
823 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
824 |
+
) -> MoeModelOutputWithPast:
|
825 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
826 |
+
output_router_logits = (
|
827 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
828 |
+
)
|
829 |
+
output_hidden_states = (
|
830 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
831 |
+
)
|
832 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
833 |
+
|
834 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
835 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
836 |
+
|
837 |
+
if self.gradient_checkpointing and self.training:
|
838 |
+
if use_cache:
|
839 |
+
logger.warning_once(
|
840 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
841 |
+
)
|
842 |
+
use_cache = False
|
843 |
+
|
844 |
+
if use_cache and past_key_values is None:
|
845 |
+
past_key_values = DynamicCache()
|
846 |
+
|
847 |
+
if inputs_embeds is None:
|
848 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
849 |
+
|
850 |
+
if cache_position is None:
|
851 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
852 |
+
cache_position = torch.arange(
|
853 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
854 |
+
)
|
855 |
+
if position_ids is None:
|
856 |
+
position_ids = cache_position.unsqueeze(0)
|
857 |
+
|
858 |
+
causal_mask = self._update_causal_mask(
|
859 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
860 |
+
)
|
861 |
+
|
862 |
+
hidden_states = inputs_embeds
|
863 |
+
|
864 |
+
# create position embeddings to be shared across the decoder layers
|
865 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
866 |
+
|
867 |
+
# decoder layers
|
868 |
+
all_hidden_states = () if output_hidden_states else None
|
869 |
+
all_self_attns = () if output_attentions else None
|
870 |
+
all_router_logits = () if output_router_logits else None
|
871 |
+
|
872 |
+
for decoder_layer in self.layers:
|
873 |
+
if output_hidden_states:
|
874 |
+
all_hidden_states += (hidden_states,)
|
875 |
+
|
876 |
+
if self.gradient_checkpointing and self.training:
|
877 |
+
layer_outputs = self._gradient_checkpointing_func(
|
878 |
+
partial(decoder_layer.__call__, **flash_attn_kwargs),
|
879 |
+
hidden_states,
|
880 |
+
causal_mask,
|
881 |
+
position_ids,
|
882 |
+
past_key_values,
|
883 |
+
output_attentions,
|
884 |
+
output_router_logits,
|
885 |
+
use_cache,
|
886 |
+
cache_position,
|
887 |
+
position_embeddings,
|
888 |
+
)
|
889 |
+
else:
|
890 |
+
layer_outputs = decoder_layer(
|
891 |
+
hidden_states,
|
892 |
+
attention_mask=causal_mask,
|
893 |
+
position_ids=position_ids,
|
894 |
+
past_key_value=past_key_values,
|
895 |
+
output_attentions=output_attentions,
|
896 |
+
output_router_logits=output_router_logits,
|
897 |
+
use_cache=use_cache,
|
898 |
+
cache_position=cache_position,
|
899 |
+
position_embeddings=position_embeddings,
|
900 |
+
**flash_attn_kwargs,
|
901 |
+
)
|
902 |
+
|
903 |
+
hidden_states = layer_outputs[0]
|
904 |
+
|
905 |
+
if output_attentions:
|
906 |
+
all_self_attns += (layer_outputs[1],)
|
907 |
+
|
908 |
+
if output_router_logits:
|
909 |
+
all_router_logits += (layer_outputs[-1],)
|
910 |
+
|
911 |
+
hidden_states = self.norm(hidden_states)
|
912 |
+
|
913 |
+
# add hidden states from the last decoder layer
|
914 |
+
if output_hidden_states:
|
915 |
+
all_hidden_states += (hidden_states,)
|
916 |
+
|
917 |
+
return MoeModelOutputWithPast(
|
918 |
+
last_hidden_state=hidden_states,
|
919 |
+
past_key_values=past_key_values,
|
920 |
+
hidden_states=all_hidden_states,
|
921 |
+
attentions=all_self_attns,
|
922 |
+
router_logits=all_router_logits,
|
923 |
+
)
|
924 |
+
|
925 |
+
def _update_causal_mask(
|
926 |
+
self,
|
927 |
+
attention_mask: torch.Tensor,
|
928 |
+
input_tensor: torch.Tensor,
|
929 |
+
cache_position: torch.Tensor,
|
930 |
+
past_key_values: Cache,
|
931 |
+
output_attentions: bool = False,
|
932 |
+
):
|
933 |
+
if self.config._attn_implementation == "flash_attention_2":
|
934 |
+
if attention_mask is not None and past_key_values is not None:
|
935 |
+
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
936 |
+
if is_padding_right:
|
937 |
+
raise ValueError(
|
938 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
939 |
+
" this may lead to unexpected behaviour for Flash Attention version of Qwen3Moe. Make sure to "
|
940 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
941 |
+
)
|
942 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
943 |
+
return attention_mask
|
944 |
+
return None
|
945 |
+
|
946 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
947 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
948 |
+
# to infer the attention mask.
|
949 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
950 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
951 |
+
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
952 |
+
|
953 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
954 |
+
if (
|
955 |
+
self.config._attn_implementation == "sdpa"
|
956 |
+
and not (using_static_cache or using_sliding_window_cache)
|
957 |
+
and not output_attentions
|
958 |
+
):
|
959 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
960 |
+
attention_mask,
|
961 |
+
inputs_embeds=input_tensor,
|
962 |
+
past_key_values_length=past_seen_tokens,
|
963 |
+
sliding_window=self.config.sliding_window,
|
964 |
+
is_training=self.training,
|
965 |
+
):
|
966 |
+
return None
|
967 |
+
|
968 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
969 |
+
min_dtype = torch.finfo(dtype).min
|
970 |
+
sequence_length = input_tensor.shape[1]
|
971 |
+
# SlidingWindowCache or StaticCache
|
972 |
+
if using_sliding_window_cache or using_static_cache:
|
973 |
+
target_length = past_key_values.get_max_cache_shape()
|
974 |
+
# DynamicCache or no cache
|
975 |
+
else:
|
976 |
+
target_length = (
|
977 |
+
attention_mask.shape[-1]
|
978 |
+
if isinstance(attention_mask, torch.Tensor)
|
979 |
+
else past_seen_tokens + sequence_length + 1
|
980 |
+
)
|
981 |
+
|
982 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
983 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
984 |
+
attention_mask,
|
985 |
+
sequence_length=sequence_length,
|
986 |
+
target_length=target_length,
|
987 |
+
dtype=dtype,
|
988 |
+
device=device,
|
989 |
+
cache_position=cache_position,
|
990 |
+
batch_size=input_tensor.shape[0],
|
991 |
+
config=self.config,
|
992 |
+
past_key_values=past_key_values,
|
993 |
+
)
|
994 |
+
|
995 |
+
if (
|
996 |
+
self.config._attn_implementation == "sdpa"
|
997 |
+
and attention_mask is not None
|
998 |
+
and attention_mask.device.type in ["cuda", "xpu"]
|
999 |
+
and not output_attentions
|
1000 |
+
):
|
1001 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1002 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1003 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1004 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1005 |
+
|
1006 |
+
return causal_mask
|
1007 |
+
|
1008 |
+
@staticmethod
|
1009 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
1010 |
+
attention_mask: torch.Tensor,
|
1011 |
+
sequence_length: int,
|
1012 |
+
target_length: int,
|
1013 |
+
dtype: torch.dtype,
|
1014 |
+
device: torch.device,
|
1015 |
+
cache_position: torch.Tensor,
|
1016 |
+
batch_size: int,
|
1017 |
+
config: Qwen3MoeConfig,
|
1018 |
+
past_key_values: Cache,
|
1019 |
+
):
|
1020 |
+
"""
|
1021 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
1022 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
1023 |
+
|
1024 |
+
Args:
|
1025 |
+
attention_mask (`torch.Tensor`):
|
1026 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
1027 |
+
sequence_length (`int`):
|
1028 |
+
The sequence length being processed.
|
1029 |
+
target_length (`int`):
|
1030 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
1031 |
+
dtype (`torch.dtype`):
|
1032 |
+
The dtype to use for the 4D attention mask.
|
1033 |
+
device (`torch.device`):
|
1034 |
+
The device to place the 4D attention mask on.
|
1035 |
+
cache_position (`torch.Tensor`):
|
1036 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1037 |
+
batch_size (`torch.Tensor`):
|
1038 |
+
Batch size.
|
1039 |
+
config (`Qwen3MoeConfig`):
|
1040 |
+
The model's configuration class
|
1041 |
+
past_key_values (`Cache`):
|
1042 |
+
The cache class that is being used currently to generate
|
1043 |
+
"""
|
1044 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1045 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
1046 |
+
causal_mask = attention_mask
|
1047 |
+
else:
|
1048 |
+
min_dtype = torch.finfo(dtype).min
|
1049 |
+
causal_mask = torch.full(
|
1050 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
1051 |
+
)
|
1052 |
+
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1053 |
+
if config.sliding_window is not None:
|
1054 |
+
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
1055 |
+
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
1056 |
+
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
|
1057 |
+
sliding_attend_mask = torch.arange(target_length, device=device) <= (
|
1058 |
+
cache_position.reshape(-1, 1) - config.sliding_window
|
1059 |
+
)
|
1060 |
+
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
|
1061 |
+
causal_mask *= diagonal_attend_mask
|
1062 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
1063 |
+
if attention_mask is not None:
|
1064 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1065 |
+
if attention_mask.shape[-1] > target_length:
|
1066 |
+
attention_mask = attention_mask[:, :target_length]
|
1067 |
+
mask_length = attention_mask.shape[-1]
|
1068 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
1069 |
+
causal_mask.device
|
1070 |
+
)
|
1071 |
+
padding_mask = padding_mask == 0
|
1072 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1073 |
+
padding_mask, min_dtype
|
1074 |
+
)
|
1075 |
+
return causal_mask
|
1076 |
+
|
1077 |
+
|
1078 |
+
|
1079 |
+
@add_start_docstrings(
|
1080 |
+
"The bare Qwen3Moe Model outputting raw hidden-states without any specific head on top.",
|
1081 |
+
QWEN3_MOE_START_DOCSTRING,
|
1082 |
+
)
|
1083 |
+
class GroveMoeModel(GroveMoePreTrainedModel):
|
1084 |
+
"""
|
1085 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen3MoeDecoderLayer`]
|
1086 |
+
|
1087 |
+
Args:
|
1088 |
+
config: Qwen3MoeConfig
|
1089 |
+
"""
|
1090 |
+
|
1091 |
+
def __init__(self, config: Qwen3MoeConfig):
|
1092 |
+
super().__init__(config)
|
1093 |
+
self.padding_idx = config.pad_token_id
|
1094 |
+
self.vocab_size = config.vocab_size
|
1095 |
+
|
1096 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1097 |
+
self.layers = nn.ModuleList(
|
1098 |
+
[GroveMoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1099 |
+
)
|
1100 |
+
self.norm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1101 |
+
self.rotary_emb = Qwen3MoeRotaryEmbedding(config=config)
|
1102 |
+
self.gradient_checkpointing = False
|
1103 |
+
|
1104 |
+
# Initialize weights and apply final processing
|
1105 |
+
self.post_init()
|
1106 |
+
|
1107 |
+
def get_input_embeddings(self):
|
1108 |
+
return self.embed_tokens
|
1109 |
+
|
1110 |
+
def set_input_embeddings(self, value):
|
1111 |
+
self.embed_tokens = value
|
1112 |
+
|
1113 |
+
@can_return_tuple
|
1114 |
+
@add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING)
|
1115 |
+
def forward(
|
1116 |
+
self,
|
1117 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1118 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1119 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1120 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1121 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1122 |
+
use_cache: Optional[bool] = None,
|
1123 |
+
output_attentions: Optional[bool] = None,
|
1124 |
+
output_hidden_states: Optional[bool] = None,
|
1125 |
+
output_router_logits: Optional[bool] = None,
|
1126 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1127 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
1128 |
+
) -> MoeModelOutputWithPast:
|
1129 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1130 |
+
output_router_logits = (
|
1131 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1132 |
+
)
|
1133 |
+
output_hidden_states = (
|
1134 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1135 |
+
)
|
1136 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1137 |
+
|
1138 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1139 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
1140 |
+
|
1141 |
+
if self.gradient_checkpointing and self.training:
|
1142 |
+
if use_cache:
|
1143 |
+
logger.warning_once(
|
1144 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1145 |
+
)
|
1146 |
+
use_cache = False
|
1147 |
+
|
1148 |
+
if use_cache and past_key_values is None:
|
1149 |
+
past_key_values = DynamicCache()
|
1150 |
+
|
1151 |
+
if inputs_embeds is None:
|
1152 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1153 |
+
|
1154 |
+
if cache_position is None:
|
1155 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1156 |
+
cache_position = torch.arange(
|
1157 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
1158 |
+
)
|
1159 |
+
if position_ids is None:
|
1160 |
+
position_ids = cache_position.unsqueeze(0)
|
1161 |
+
|
1162 |
+
causal_mask = self._update_causal_mask(
|
1163 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
1164 |
+
)
|
1165 |
+
|
1166 |
+
hidden_states = inputs_embeds
|
1167 |
+
|
1168 |
+
# create position embeddings to be shared across the decoder layers
|
1169 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
1170 |
+
|
1171 |
+
# decoder layers
|
1172 |
+
all_hidden_states = () if output_hidden_states else None
|
1173 |
+
all_self_attns = () if output_attentions else None
|
1174 |
+
all_router_logits = () if output_router_logits else None
|
1175 |
+
|
1176 |
+
for decoder_layer in self.layers:
|
1177 |
+
if output_hidden_states:
|
1178 |
+
all_hidden_states += (hidden_states,)
|
1179 |
+
|
1180 |
+
if self.gradient_checkpointing and self.training:
|
1181 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1182 |
+
partial(decoder_layer.__call__, **flash_attn_kwargs),
|
1183 |
+
hidden_states,
|
1184 |
+
causal_mask,
|
1185 |
+
position_ids,
|
1186 |
+
past_key_values,
|
1187 |
+
output_attentions,
|
1188 |
+
output_router_logits,
|
1189 |
+
use_cache,
|
1190 |
+
cache_position,
|
1191 |
+
position_embeddings,
|
1192 |
+
)
|
1193 |
+
else:
|
1194 |
+
layer_outputs = decoder_layer(
|
1195 |
+
hidden_states,
|
1196 |
+
attention_mask=causal_mask,
|
1197 |
+
position_ids=position_ids,
|
1198 |
+
past_key_value=past_key_values,
|
1199 |
+
output_attentions=output_attentions,
|
1200 |
+
output_router_logits=output_router_logits,
|
1201 |
+
use_cache=use_cache,
|
1202 |
+
cache_position=cache_position,
|
1203 |
+
position_embeddings=position_embeddings,
|
1204 |
+
**flash_attn_kwargs,
|
1205 |
+
)
|
1206 |
+
|
1207 |
+
hidden_states = layer_outputs[0]
|
1208 |
+
|
1209 |
+
if output_attentions:
|
1210 |
+
all_self_attns += (layer_outputs[1],)
|
1211 |
+
|
1212 |
+
if output_router_logits:
|
1213 |
+
all_router_logits += (layer_outputs[-1],)
|
1214 |
+
|
1215 |
+
hidden_states = self.norm(hidden_states)
|
1216 |
+
|
1217 |
+
# add hidden states from the last decoder layer
|
1218 |
+
if output_hidden_states:
|
1219 |
+
all_hidden_states += (hidden_states,)
|
1220 |
+
|
1221 |
+
return MoeModelOutputWithPast(
|
1222 |
+
last_hidden_state=hidden_states,
|
1223 |
+
past_key_values=past_key_values,
|
1224 |
+
hidden_states=all_hidden_states,
|
1225 |
+
attentions=all_self_attns,
|
1226 |
+
router_logits=all_router_logits,
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
def _update_causal_mask(
|
1230 |
+
self,
|
1231 |
+
attention_mask: torch.Tensor,
|
1232 |
+
input_tensor: torch.Tensor,
|
1233 |
+
cache_position: torch.Tensor,
|
1234 |
+
past_key_values: Cache,
|
1235 |
+
output_attentions: bool = False,
|
1236 |
+
):
|
1237 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1238 |
+
if attention_mask is not None and past_key_values is not None:
|
1239 |
+
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
1240 |
+
if is_padding_right:
|
1241 |
+
raise ValueError(
|
1242 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1243 |
+
" this may lead to unexpected behaviour for Flash Attention version of Qwen3Moe. Make sure to "
|
1244 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1245 |
+
)
|
1246 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1247 |
+
return attention_mask
|
1248 |
+
return None
|
1249 |
+
|
1250 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1251 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1252 |
+
# to infer the attention mask.
|
1253 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1254 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1255 |
+
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
1256 |
+
|
1257 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1258 |
+
if (
|
1259 |
+
self.config._attn_implementation == "sdpa"
|
1260 |
+
and not (using_static_cache or using_sliding_window_cache)
|
1261 |
+
and not output_attentions
|
1262 |
+
):
|
1263 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1264 |
+
attention_mask,
|
1265 |
+
inputs_embeds=input_tensor,
|
1266 |
+
past_key_values_length=past_seen_tokens,
|
1267 |
+
sliding_window=self.config.sliding_window,
|
1268 |
+
is_training=self.training,
|
1269 |
+
):
|
1270 |
+
return None
|
1271 |
+
|
1272 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1273 |
+
min_dtype = torch.finfo(dtype).min
|
1274 |
+
sequence_length = input_tensor.shape[1]
|
1275 |
+
# SlidingWindowCache or StaticCache
|
1276 |
+
if using_sliding_window_cache or using_static_cache:
|
1277 |
+
target_length = past_key_values.get_max_cache_shape()
|
1278 |
+
# DynamicCache or no cache
|
1279 |
+
else:
|
1280 |
+
target_length = (
|
1281 |
+
attention_mask.shape[-1]
|
1282 |
+
if isinstance(attention_mask, torch.Tensor)
|
1283 |
+
else past_seen_tokens + sequence_length + 1
|
1284 |
+
)
|
1285 |
+
|
1286 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
1287 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
1288 |
+
attention_mask,
|
1289 |
+
sequence_length=sequence_length,
|
1290 |
+
target_length=target_length,
|
1291 |
+
dtype=dtype,
|
1292 |
+
device=device,
|
1293 |
+
cache_position=cache_position,
|
1294 |
+
batch_size=input_tensor.shape[0],
|
1295 |
+
config=self.config,
|
1296 |
+
past_key_values=past_key_values,
|
1297 |
+
)
|
1298 |
+
|
1299 |
+
if (
|
1300 |
+
self.config._attn_implementation == "sdpa"
|
1301 |
+
and attention_mask is not None
|
1302 |
+
and attention_mask.device.type in ["cuda", "xpu"]
|
1303 |
+
and not output_attentions
|
1304 |
+
):
|
1305 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1306 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1307 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1308 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1309 |
+
|
1310 |
+
return causal_mask
|
1311 |
+
|
1312 |
+
@staticmethod
|
1313 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
1314 |
+
attention_mask: torch.Tensor,
|
1315 |
+
sequence_length: int,
|
1316 |
+
target_length: int,
|
1317 |
+
dtype: torch.dtype,
|
1318 |
+
device: torch.device,
|
1319 |
+
cache_position: torch.Tensor,
|
1320 |
+
batch_size: int,
|
1321 |
+
config: Qwen3MoeConfig,
|
1322 |
+
past_key_values: Cache,
|
1323 |
+
):
|
1324 |
+
"""
|
1325 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
1326 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
1327 |
+
|
1328 |
+
Args:
|
1329 |
+
attention_mask (`torch.Tensor`):
|
1330 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
1331 |
+
sequence_length (`int`):
|
1332 |
+
The sequence length being processed.
|
1333 |
+
target_length (`int`):
|
1334 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
1335 |
+
dtype (`torch.dtype`):
|
1336 |
+
The dtype to use for the 4D attention mask.
|
1337 |
+
device (`torch.device`):
|
1338 |
+
The device to place the 4D attention mask on.
|
1339 |
+
cache_position (`torch.Tensor`):
|
1340 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1341 |
+
batch_size (`torch.Tensor`):
|
1342 |
+
Batch size.
|
1343 |
+
config (`Qwen3MoeConfig`):
|
1344 |
+
The model's configuration class
|
1345 |
+
past_key_values (`Cache`):
|
1346 |
+
The cache class that is being used currently to generate
|
1347 |
+
"""
|
1348 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1349 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
1350 |
+
causal_mask = attention_mask
|
1351 |
+
else:
|
1352 |
+
min_dtype = torch.finfo(dtype).min
|
1353 |
+
causal_mask = torch.full(
|
1354 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
1355 |
+
)
|
1356 |
+
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1357 |
+
if config.sliding_window is not None:
|
1358 |
+
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
1359 |
+
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
1360 |
+
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
|
1361 |
+
sliding_attend_mask = torch.arange(target_length, device=device) <= (
|
1362 |
+
cache_position.reshape(-1, 1) - config.sliding_window
|
1363 |
+
)
|
1364 |
+
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
|
1365 |
+
causal_mask *= diagonal_attend_mask
|
1366 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
1367 |
+
if attention_mask is not None:
|
1368 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1369 |
+
if attention_mask.shape[-1] > target_length:
|
1370 |
+
attention_mask = attention_mask[:, :target_length]
|
1371 |
+
mask_length = attention_mask.shape[-1]
|
1372 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
1373 |
+
causal_mask.device
|
1374 |
+
)
|
1375 |
+
padding_mask = padding_mask == 0
|
1376 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1377 |
+
padding_mask, min_dtype
|
1378 |
+
)
|
1379 |
+
return causal_mask
|
1380 |
+
|
1381 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
1382 |
+
|
1383 |
+
|
1384 |
+
def load_balancing_loss_func(
|
1385 |
+
gate_logits: Union[torch.Tensor, Tuple[torch.Tensor], None],
|
1386 |
+
num_experts: Optional[int] = None,
|
1387 |
+
top_k=2,
|
1388 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1389 |
+
) -> Union[torch.Tensor, int]:
|
1390 |
+
r"""
|
1391 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
1392 |
+
|
1393 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
1394 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
1395 |
+
experts is too unbalanced.
|
1396 |
+
|
1397 |
+
Args:
|
1398 |
+
gate_logits:
|
1399 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
1400 |
+
shape [batch_size X sequence_length, num_experts].
|
1401 |
+
num_experts:
|
1402 |
+
Number of experts
|
1403 |
+
top_k:
|
1404 |
+
The number of experts to route per-token, can be also interpreted as the `top-k` routing
|
1405 |
+
parameter.
|
1406 |
+
attention_mask (`torch.Tensor`, *optional*):
|
1407 |
+
The attention_mask used in forward function
|
1408 |
+
shape [batch_size X sequence_length] if not None.
|
1409 |
+
|
1410 |
+
Returns:
|
1411 |
+
The auxiliary loss.
|
1412 |
+
"""
|
1413 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
1414 |
+
return 0
|
1415 |
+
|
1416 |
+
if isinstance(gate_logits, tuple):
|
1417 |
+
compute_device = gate_logits[0].device
|
1418 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
1419 |
+
|
1420 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
1421 |
+
|
1422 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
1423 |
+
|
1424 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
1425 |
+
|
1426 |
+
if attention_mask is None:
|
1427 |
+
# Compute the percentage of tokens routed to each experts
|
1428 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
1429 |
+
|
1430 |
+
# Compute the average probability of routing to these experts
|
1431 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
1432 |
+
else:
|
1433 |
+
batch_size, sequence_length = attention_mask.shape
|
1434 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
1435 |
+
|
1436 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
1437 |
+
expert_attention_mask = (
|
1438 |
+
attention_mask[None, :, :, None, None]
|
1439 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
1440 |
+
.reshape(-1, top_k, num_experts)
|
1441 |
+
.to(compute_device)
|
1442 |
+
)
|
1443 |
+
|
1444 |
+
# Compute the percentage of tokens routed to each experts
|
1445 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
1446 |
+
expert_attention_mask, dim=0
|
1447 |
+
)
|
1448 |
+
|
1449 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
1450 |
+
router_per_expert_attention_mask = (
|
1451 |
+
attention_mask[None, :, :, None]
|
1452 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
1453 |
+
.reshape(-1, num_experts)
|
1454 |
+
.to(compute_device)
|
1455 |
+
)
|
1456 |
+
|
1457 |
+
# Compute the average probability of routing to these experts
|
1458 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
1459 |
+
router_per_expert_attention_mask, dim=0
|
1460 |
+
)
|
1461 |
+
|
1462 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
1463 |
+
return overall_loss * num_experts
|
1464 |
+
|
1465 |
+
|
1466 |
+
class Qwen3MoeForCausalLM(Qwen3MoePreTrainedModel, GenerationMixin):
|
1467 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1468 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
1469 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
1470 |
+
|
1471 |
+
def __init__(self, config):
|
1472 |
+
super().__init__(config)
|
1473 |
+
self.model = Qwen3MoeModel(config)
|
1474 |
+
self.vocab_size = config.vocab_size
|
1475 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1476 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
1477 |
+
self.num_experts = config.num_experts
|
1478 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
1479 |
+
|
1480 |
+
# Initialize weights and apply final processing
|
1481 |
+
self.post_init()
|
1482 |
+
|
1483 |
+
def get_input_embeddings(self):
|
1484 |
+
return self.model.embed_tokens
|
1485 |
+
|
1486 |
+
def set_input_embeddings(self, value):
|
1487 |
+
self.model.embed_tokens = value
|
1488 |
+
|
1489 |
+
def get_output_embeddings(self):
|
1490 |
+
return self.lm_head
|
1491 |
+
|
1492 |
+
def set_output_embeddings(self, new_embeddings):
|
1493 |
+
self.lm_head = new_embeddings
|
1494 |
+
|
1495 |
+
def set_decoder(self, decoder):
|
1496 |
+
self.model = decoder
|
1497 |
+
|
1498 |
+
def get_decoder(self):
|
1499 |
+
return self.model
|
1500 |
+
|
1501 |
+
@can_return_tuple
|
1502 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
1503 |
+
@add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING)
|
1504 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1505 |
+
def forward(
|
1506 |
+
self,
|
1507 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1508 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1509 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1510 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1511 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1512 |
+
labels: Optional[torch.LongTensor] = None,
|
1513 |
+
use_cache: Optional[bool] = None,
|
1514 |
+
output_attentions: Optional[bool] = None,
|
1515 |
+
output_hidden_states: Optional[bool] = None,
|
1516 |
+
output_router_logits: Optional[bool] = None,
|
1517 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1518 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
1519 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
1520 |
+
) -> MoeCausalLMOutputWithPast:
|
1521 |
+
r"""
|
1522 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1523 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1524 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1525 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1526 |
+
|
1527 |
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
1528 |
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
1529 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
1530 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
1531 |
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
1532 |
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
1533 |
+
|
1534 |
+
Returns:
|
1535 |
+
|
1536 |
+
Example:
|
1537 |
+
|
1538 |
+
```python
|
1539 |
+
>>> from transformers import AutoTokenizer, Qwen3MoeForCausalLM
|
1540 |
+
|
1541 |
+
>>> model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
|
1542 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
|
1543 |
+
|
1544 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1545 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1546 |
+
|
1547 |
+
>>> # Generate
|
1548 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1549 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1550 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1551 |
+
```"""
|
1552 |
+
|
1553 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1554 |
+
output_router_logits = (
|
1555 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1556 |
+
)
|
1557 |
+
|
1558 |
+
output_hidden_states = (
|
1559 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1560 |
+
)
|
1561 |
+
|
1562 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1563 |
+
outputs: MoeModelOutputWithPast = self.model(
|
1564 |
+
input_ids=input_ids,
|
1565 |
+
attention_mask=attention_mask,
|
1566 |
+
position_ids=position_ids,
|
1567 |
+
past_key_values=past_key_values,
|
1568 |
+
inputs_embeds=inputs_embeds,
|
1569 |
+
use_cache=use_cache,
|
1570 |
+
output_attentions=output_attentions,
|
1571 |
+
output_hidden_states=output_hidden_states,
|
1572 |
+
output_router_logits=output_router_logits,
|
1573 |
+
cache_position=cache_position,
|
1574 |
+
**kwargs,
|
1575 |
+
)
|
1576 |
+
|
1577 |
+
hidden_states = outputs.last_hidden_state
|
1578 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
1579 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
1580 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
1581 |
+
|
1582 |
+
loss = None
|
1583 |
+
if labels is not None:
|
1584 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
|
1585 |
+
|
1586 |
+
aux_loss = None
|
1587 |
+
if output_router_logits:
|
1588 |
+
aux_loss = load_balancing_loss_func(
|
1589 |
+
outputs.router_logits,
|
1590 |
+
self.num_experts,
|
1591 |
+
self.num_experts_per_tok,
|
1592 |
+
attention_mask,
|
1593 |
+
)
|
1594 |
+
if labels is not None:
|
1595 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
1596 |
+
|
1597 |
+
return MoeCausalLMOutputWithPast(
|
1598 |
+
loss=loss,
|
1599 |
+
aux_loss=aux_loss,
|
1600 |
+
logits=logits,
|
1601 |
+
past_key_values=outputs.past_key_values,
|
1602 |
+
hidden_states=outputs.hidden_states,
|
1603 |
+
attentions=outputs.attentions,
|
1604 |
+
router_logits=outputs.router_logits,
|
1605 |
+
)
|
1606 |
+
|
1607 |
+
|
1608 |
+
|
1609 |
+
class GroveMoeForCausalLM(GroveMoePreTrainedModel, GenerationMixin):
|
1610 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1611 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
1612 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
1613 |
+
|
1614 |
+
def __init__(self, config):
|
1615 |
+
super().__init__(config)
|
1616 |
+
self.model = Qwen3MoeModel(config)
|
1617 |
+
self.vocab_size = config.vocab_size
|
1618 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1619 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
1620 |
+
self.num_experts = config.num_experts
|
1621 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
1622 |
+
|
1623 |
+
# Initialize weights and apply final processing
|
1624 |
+
self.post_init()
|
1625 |
+
|
1626 |
+
def get_input_embeddings(self):
|
1627 |
+
return self.model.embed_tokens
|
1628 |
+
|
1629 |
+
def set_input_embeddings(self, value):
|
1630 |
+
self.model.embed_tokens = value
|
1631 |
+
|
1632 |
+
def get_output_embeddings(self):
|
1633 |
+
return self.lm_head
|
1634 |
+
|
1635 |
+
def set_output_embeddings(self, new_embeddings):
|
1636 |
+
self.lm_head = new_embeddings
|
1637 |
+
|
1638 |
+
def set_decoder(self, decoder):
|
1639 |
+
self.model = decoder
|
1640 |
+
|
1641 |
+
def get_decoder(self):
|
1642 |
+
return self.model
|
1643 |
+
|
1644 |
+
@can_return_tuple
|
1645 |
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
1646 |
+
@add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING)
|
1647 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1648 |
+
def forward(
|
1649 |
+
self,
|
1650 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1651 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1652 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1653 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1654 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1655 |
+
labels: Optional[torch.LongTensor] = None,
|
1656 |
+
use_cache: Optional[bool] = None,
|
1657 |
+
output_attentions: Optional[bool] = None,
|
1658 |
+
output_hidden_states: Optional[bool] = None,
|
1659 |
+
output_router_logits: Optional[bool] = None,
|
1660 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1661 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
1662 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
1663 |
+
) -> MoeCausalLMOutputWithPast:
|
1664 |
+
r"""
|
1665 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1666 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1667 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1668 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1669 |
+
|
1670 |
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
1671 |
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
1672 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
1673 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
1674 |
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
1675 |
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
1676 |
+
|
1677 |
+
Returns:
|
1678 |
+
|
1679 |
+
Example:
|
1680 |
+
|
1681 |
+
```python
|
1682 |
+
>>> from transformers import AutoTokenizer, Qwen3MoeForCausalLM
|
1683 |
+
|
1684 |
+
>>> model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
|
1685 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
|
1686 |
+
|
1687 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1688 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1689 |
+
|
1690 |
+
>>> # Generate
|
1691 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1692 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1693 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1694 |
+
```"""
|
1695 |
+
|
1696 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1697 |
+
output_router_logits = (
|
1698 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1699 |
+
)
|
1700 |
+
|
1701 |
+
output_hidden_states = (
|
1702 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1703 |
+
)
|
1704 |
+
|
1705 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1706 |
+
outputs: MoeModelOutputWithPast = self.model(
|
1707 |
+
input_ids=input_ids,
|
1708 |
+
attention_mask=attention_mask,
|
1709 |
+
position_ids=position_ids,
|
1710 |
+
past_key_values=past_key_values,
|
1711 |
+
inputs_embeds=inputs_embeds,
|
1712 |
+
use_cache=use_cache,
|
1713 |
+
output_attentions=output_attentions,
|
1714 |
+
output_hidden_states=output_hidden_states,
|
1715 |
+
output_router_logits=output_router_logits,
|
1716 |
+
cache_position=cache_position,
|
1717 |
+
**kwargs,
|
1718 |
+
)
|
1719 |
+
|
1720 |
+
hidden_states = outputs.last_hidden_state
|
1721 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
1722 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
1723 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
1724 |
+
|
1725 |
+
loss = None
|
1726 |
+
if labels is not None:
|
1727 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
|
1728 |
+
|
1729 |
+
aux_loss = None
|
1730 |
+
if output_router_logits:
|
1731 |
+
aux_loss = load_balancing_loss_func(
|
1732 |
+
outputs.router_logits,
|
1733 |
+
self.num_experts,
|
1734 |
+
self.num_experts_per_tok,
|
1735 |
+
attention_mask,
|
1736 |
+
)
|
1737 |
+
if labels is not None:
|
1738 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
1739 |
+
|
1740 |
+
return MoeCausalLMOutputWithPast(
|
1741 |
+
loss=loss,
|
1742 |
+
aux_loss=aux_loss,
|
1743 |
+
logits=logits,
|
1744 |
+
past_key_values=outputs.past_key_values,
|
1745 |
+
hidden_states=outputs.hidden_states,
|
1746 |
+
attentions=outputs.attentions,
|
1747 |
+
router_logits=outputs.router_logits,
|
1748 |
+
)
|
1749 |
+
|
1750 |
+
|
1751 |
+
@add_start_docstrings(
|
1752 |
+
"""
|
1753 |
+
The Qwen3Moe Model transformer with a sequence classification head on top (linear layer).
|
1754 |
+
|
1755 |
+
[`Qwen3MoeForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1756 |
+
(e.g. GPT-2) do.
|
1757 |
+
|
1758 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1759 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1760 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1761 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1762 |
+
each row of the batch).
|
1763 |
+
""",
|
1764 |
+
QWEN3_MOE_START_DOCSTRING,
|
1765 |
+
)
|
1766 |
+
class Qwen3MoeForSequenceClassification(Qwen3MoePreTrainedModel):
|
1767 |
+
def __init__(self, config):
|
1768 |
+
super().__init__(config)
|
1769 |
+
self.num_labels = config.num_labels
|
1770 |
+
self.model = Qwen3MoeModel(config)
|
1771 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1772 |
+
|
1773 |
+
# Initialize weights and apply final processing
|
1774 |
+
self.post_init()
|
1775 |
+
|
1776 |
+
def get_input_embeddings(self):
|
1777 |
+
return self.model.embed_tokens
|
1778 |
+
|
1779 |
+
def set_input_embeddings(self, value):
|
1780 |
+
self.model.embed_tokens = value
|
1781 |
+
|
1782 |
+
@can_return_tuple
|
1783 |
+
@add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING)
|
1784 |
+
def forward(
|
1785 |
+
self,
|
1786 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1787 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1788 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1789 |
+
past_key_values: Optional[Cache] = None,
|
1790 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1791 |
+
labels: Optional[torch.LongTensor] = None,
|
1792 |
+
use_cache: Optional[bool] = None,
|
1793 |
+
output_attentions: Optional[bool] = None,
|
1794 |
+
output_hidden_states: Optional[bool] = None,
|
1795 |
+
) -> SequenceClassifierOutputWithPast:
|
1796 |
+
r"""
|
1797 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1798 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1799 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1800 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1801 |
+
"""
|
1802 |
+
|
1803 |
+
transformer_outputs: BaseModelOutputWithPast = self.model(
|
1804 |
+
input_ids,
|
1805 |
+
attention_mask=attention_mask,
|
1806 |
+
position_ids=position_ids,
|
1807 |
+
past_key_values=past_key_values,
|
1808 |
+
inputs_embeds=inputs_embeds,
|
1809 |
+
use_cache=use_cache,
|
1810 |
+
output_attentions=output_attentions,
|
1811 |
+
output_hidden_states=output_hidden_states,
|
1812 |
+
)
|
1813 |
+
hidden_states = transformer_outputs.last_hidden_state
|
1814 |
+
logits = self.score(hidden_states)
|
1815 |
+
|
1816 |
+
if input_ids is not None:
|
1817 |
+
batch_size = input_ids.shape[0]
|
1818 |
+
else:
|
1819 |
+
batch_size = inputs_embeds.shape[0]
|
1820 |
+
|
1821 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1822 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1823 |
+
if self.config.pad_token_id is None:
|
1824 |
+
last_non_pad_token = -1
|
1825 |
+
elif input_ids is not None:
|
1826 |
+
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
|
1827 |
+
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
|
1828 |
+
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
|
1829 |
+
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
|
1830 |
+
else:
|
1831 |
+
last_non_pad_token = -1
|
1832 |
+
logger.warning_once(
|
1833 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1834 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1835 |
+
)
|
1836 |
+
|
1837 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
|
1838 |
+
|
1839 |
+
loss = None
|
1840 |
+
if labels is not None:
|
1841 |
+
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
1842 |
+
|
1843 |
+
return SequenceClassifierOutputWithPast(
|
1844 |
+
loss=loss,
|
1845 |
+
logits=pooled_logits,
|
1846 |
+
past_key_values=transformer_outputs.past_key_values,
|
1847 |
+
hidden_states=transformer_outputs.hidden_states,
|
1848 |
+
attentions=transformer_outputs.attentions,
|
1849 |
+
)
|
1850 |
+
|
1851 |
+
|
1852 |
+
@add_start_docstrings(
|
1853 |
+
"""
|
1854 |
+
The Qwen3Moe Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1855 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1856 |
+
""",
|
1857 |
+
QWEN3_MOE_START_DOCSTRING,
|
1858 |
+
)
|
1859 |
+
class Qwen3MoeForTokenClassification(Qwen3MoePreTrainedModel):
|
1860 |
+
def __init__(self, config):
|
1861 |
+
super().__init__(config)
|
1862 |
+
self.num_labels = config.num_labels
|
1863 |
+
self.model = Qwen3MoeModel(config)
|
1864 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1865 |
+
classifier_dropout = config.classifier_dropout
|
1866 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1867 |
+
classifier_dropout = config.hidden_dropout
|
1868 |
+
else:
|
1869 |
+
classifier_dropout = 0.1
|
1870 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1871 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1872 |
+
|
1873 |
+
# Initialize weights and apply final processing
|
1874 |
+
self.post_init()
|
1875 |
+
|
1876 |
+
def get_input_embeddings(self):
|
1877 |
+
return self.model.embed_tokens
|
1878 |
+
|
1879 |
+
def set_input_embeddings(self, value):
|
1880 |
+
self.model.embed_tokens = value
|
1881 |
+
|
1882 |
+
@can_return_tuple
|
1883 |
+
@add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING)
|
1884 |
+
@add_code_sample_docstrings(
|
1885 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1886 |
+
output_type=TokenClassifierOutput,
|
1887 |
+
config_class=_CONFIG_FOR_DOC,
|
1888 |
+
)
|
1889 |
+
def forward(
|
1890 |
+
self,
|
1891 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1892 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1893 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1894 |
+
past_key_values: Optional[Cache] = None,
|
1895 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1896 |
+
labels: Optional[torch.LongTensor] = None,
|
1897 |
+
use_cache: Optional[bool] = None,
|
1898 |
+
output_attentions: Optional[bool] = None,
|
1899 |
+
output_hidden_states: Optional[bool] = None,
|
1900 |
+
) -> TokenClassifierOutput:
|
1901 |
+
r"""
|
1902 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1903 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1904 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1905 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1906 |
+
"""
|
1907 |
+
|
1908 |
+
outputs: BaseModelOutputWithPast = self.model(
|
1909 |
+
input_ids,
|
1910 |
+
attention_mask=attention_mask,
|
1911 |
+
position_ids=position_ids,
|
1912 |
+
past_key_values=past_key_values,
|
1913 |
+
inputs_embeds=inputs_embeds,
|
1914 |
+
use_cache=use_cache,
|
1915 |
+
output_attentions=output_attentions,
|
1916 |
+
output_hidden_states=output_hidden_states,
|
1917 |
+
)
|
1918 |
+
sequence_output = outputs.last_hidden_state
|
1919 |
+
sequence_output = self.dropout(sequence_output)
|
1920 |
+
logits = self.score(sequence_output)
|
1921 |
+
|
1922 |
+
loss = None
|
1923 |
+
if labels is not None:
|
1924 |
+
loss = self.loss_function(logits, labels, self.config)
|
1925 |
+
|
1926 |
+
return TokenClassifierOutput(
|
1927 |
+
loss=loss,
|
1928 |
+
logits=logits,
|
1929 |
+
hidden_states=outputs.hidden_states,
|
1930 |
+
attentions=outputs.attentions,
|
1931 |
+
)
|
1932 |
+
|
1933 |
+
|
1934 |
+
@add_start_docstrings(
|
1935 |
+
"""
|
1936 |
+
The Qwen3Moe Model transformer with a span classification head on top for extractive question-answering tasks like
|
1937 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1938 |
+
""",
|
1939 |
+
QWEN3_MOE_START_DOCSTRING,
|
1940 |
+
)
|
1941 |
+
class Qwen3MoeForQuestionAnswering(Qwen3MoePreTrainedModel):
|
1942 |
+
base_model_prefix = "transformer"
|
1943 |
+
|
1944 |
+
def __init__(self, config):
|
1945 |
+
super().__init__(config)
|
1946 |
+
self.transformer = Qwen3MoeModel(config)
|
1947 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1948 |
+
|
1949 |
+
# Initialize weights and apply final processing
|
1950 |
+
self.post_init()
|
1951 |
+
|
1952 |
+
def get_input_embeddings(self):
|
1953 |
+
return self.transformer.embed_tokens
|
1954 |
+
|
1955 |
+
def set_input_embeddings(self, value):
|
1956 |
+
self.transformer.embed_tokens = value
|
1957 |
+
|
1958 |
+
@can_return_tuple
|
1959 |
+
@add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING)
|
1960 |
+
def forward(
|
1961 |
+
self,
|
1962 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1963 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1964 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1965 |
+
past_key_values: Optional[Cache] = None,
|
1966 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1967 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1968 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1969 |
+
output_attentions: Optional[bool] = None,
|
1970 |
+
output_hidden_states: Optional[bool] = None,
|
1971 |
+
**kwargs,
|
1972 |
+
) -> QuestionAnsweringModelOutput:
|
1973 |
+
r"""
|
1974 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1975 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1976 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1977 |
+
are not taken into account for computing the loss.
|
1978 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1979 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1980 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1981 |
+
are not taken into account for computing the loss.
|
1982 |
+
"""
|
1983 |
+
|
1984 |
+
outputs: BaseModelOutputWithPast = self.transformer(
|
1985 |
+
input_ids,
|
1986 |
+
attention_mask=attention_mask,
|
1987 |
+
position_ids=position_ids,
|
1988 |
+
past_key_values=past_key_values,
|
1989 |
+
inputs_embeds=inputs_embeds,
|
1990 |
+
output_attentions=output_attentions,
|
1991 |
+
output_hidden_states=output_hidden_states,
|
1992 |
+
)
|
1993 |
+
|
1994 |
+
sequence_output = outputs.last_hidden_state
|
1995 |
+
|
1996 |
+
logits = self.qa_outputs(sequence_output)
|
1997 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1998 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1999 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
2000 |
+
|
2001 |
+
loss = None
|
2002 |
+
if start_positions is not None and end_positions is not None:
|
2003 |
+
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
|
2004 |
+
|
2005 |
+
return QuestionAnsweringModelOutput(
|
2006 |
+
loss=loss,
|
2007 |
+
start_logits=start_logits,
|
2008 |
+
end_logits=end_logits,
|
2009 |
+
hidden_states=outputs.hidden_states,
|
2010 |
+
attentions=outputs.attentions,
|
2011 |
+
)
|
2012 |
+
|
2013 |
+
|
2014 |
+
__all__ = [
|
2015 |
+
"GroveMoeForCausalLM",
|
2016 |
+
"Qwen3MoeForCausalLM",
|
2017 |
+
"Qwen3MoeForQuestionAnswering",
|
2018 |
+
"GroveMoeModel",
|
2019 |
+
"Qwen3MoeModel",
|
2020 |
+
"Qwen3MoePreTrainedModel",
|
2021 |
+
"Qwen3MoeForSequenceClassification",
|
2022 |
+
"Qwen3MoeForTokenClassification",
|
2023 |
+
]
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
tokenizer_config.json
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|object_ref_start|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|object_ref_end|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|box_start|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|box_end|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|quad_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|quad_end|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|vision_start|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|vision_end|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|vision_pad|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|image_pad|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|video_pad|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"151657": {
|
117 |
+
"content": "<tool_call>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": false
|
123 |
+
},
|
124 |
+
"151658": {
|
125 |
+
"content": "</tool_call>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": false
|
131 |
+
},
|
132 |
+
"151659": {
|
133 |
+
"content": "<|fim_prefix|>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": false
|
139 |
+
},
|
140 |
+
"151660": {
|
141 |
+
"content": "<|fim_middle|>",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": false
|
147 |
+
},
|
148 |
+
"151661": {
|
149 |
+
"content": "<|fim_suffix|>",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": false
|
155 |
+
},
|
156 |
+
"151662": {
|
157 |
+
"content": "<|fim_pad|>",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": false
|
163 |
+
},
|
164 |
+
"151663": {
|
165 |
+
"content": "<|repo_name|>",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": false
|
171 |
+
},
|
172 |
+
"151664": {
|
173 |
+
"content": "<|file_sep|>",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": false
|
179 |
+
},
|
180 |
+
"151665": {
|
181 |
+
"content": "<tool_response>",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": false,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": false
|
187 |
+
},
|
188 |
+
"151666": {
|
189 |
+
"content": "</tool_response>",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": false,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": false
|
195 |
+
},
|
196 |
+
"151667": {
|
197 |
+
"content": "<think>",
|
198 |
+
"lstrip": false,
|
199 |
+
"normalized": false,
|
200 |
+
"rstrip": false,
|
201 |
+
"single_word": false,
|
202 |
+
"special": false
|
203 |
+
},
|
204 |
+
"151668": {
|
205 |
+
"content": "</think>",
|
206 |
+
"lstrip": false,
|
207 |
+
"normalized": false,
|
208 |
+
"rstrip": false,
|
209 |
+
"single_word": false,
|
210 |
+
"special": false
|
211 |
+
}
|
212 |
+
},
|
213 |
+
"additional_special_tokens": [
|
214 |
+
"<|im_start|>",
|
215 |
+
"<|im_end|>",
|
216 |
+
"<|object_ref_start|>",
|
217 |
+
"<|object_ref_end|>",
|
218 |
+
"<|box_start|>",
|
219 |
+
"<|box_end|>",
|
220 |
+
"<|quad_start|>",
|
221 |
+
"<|quad_end|>",
|
222 |
+
"<|vision_start|>",
|
223 |
+
"<|vision_end|>",
|
224 |
+
"<|vision_pad|>",
|
225 |
+
"<|image_pad|>",
|
226 |
+
"<|video_pad|>"
|
227 |
+
],
|
228 |
+
"bos_token": null,
|
229 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}",
|
230 |
+
"clean_up_tokenization_spaces": false,
|
231 |
+
"eos_token": "<|im_end|>",
|
232 |
+
"errors": "replace",
|
233 |
+
"model_max_length": 1010000,
|
234 |
+
"pad_token": "<|endoftext|>",
|
235 |
+
"split_special_tokens": false,
|
236 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
237 |
+
"unk_token": null,
|
238 |
+
"add_bos_token": false
|
239 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|