| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from functools import partial | 
					
					
						
						| 
							 | 
						from typing import Callable, List, Optional, Tuple, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						from torch import nn | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.activations import ACT2FN | 
					
					
						
						| 
							 | 
						from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache | 
					
					
						
						| 
							 | 
						from transformers.generation import GenerationMixin | 
					
					
						
						| 
							 | 
						from transformers.modeling_attn_mask_utils import AttentionMaskConverter | 
					
					
						
						| 
							 | 
						from transformers.modeling_flash_attention_utils import FlashAttentionKwargs | 
					
					
						
						| 
							 | 
						from transformers.modeling_outputs import ( | 
					
					
						
						| 
							 | 
						    BaseModelOutputWithPast, | 
					
					
						
						| 
							 | 
						    CausalLMOutputWithPast, | 
					
					
						
						| 
							 | 
						    MoeCausalLMOutputWithPast, | 
					
					
						
						| 
							 | 
						    MoeModelOutputWithPast, | 
					
					
						
						| 
							 | 
						    QuestionAnsweringModelOutput, | 
					
					
						
						| 
							 | 
						    SequenceClassifierOutputWithPast, | 
					
					
						
						| 
							 | 
						    TokenClassifierOutput, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update | 
					
					
						
						| 
							 | 
						from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel | 
					
					
						
						| 
							 | 
						from transformers.processing_utils import Unpack | 
					
					
						
						| 
							 | 
						from transformers.utils import ( | 
					
					
						
						| 
							 | 
						    LossKwargs, | 
					
					
						
						| 
							 | 
						    add_code_sample_docstrings, | 
					
					
						
						| 
							 | 
						    add_start_docstrings, | 
					
					
						
						| 
							 | 
						    add_start_docstrings_to_model_forward, | 
					
					
						
						| 
							 | 
						    can_return_tuple, | 
					
					
						
						| 
							 | 
						    logging, | 
					
					
						
						| 
							 | 
						    replace_return_docstrings, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.utils.deprecation import deprecate_kwarg | 
					
					
						
						| 
							 | 
						from .configuration_qwen3_moe import Qwen3MoeConfig | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_CHECKPOINT_FOR_DOC = "Qwen/Qwen3-MoE-15B-A2B" | 
					
					
						
						| 
							 | 
						_CONFIG_FOR_DOC = "Qwen3MoeConfig" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def rotate_half(x): | 
					
					
						
						| 
							 | 
						    """Rotates half the hidden dims of the input.""" | 
					
					
						
						| 
							 | 
						    x1 = x[..., : x.shape[-1] // 2] | 
					
					
						
						| 
							 | 
						    x2 = x[..., x.shape[-1] // 2 :] | 
					
					
						
						| 
							 | 
						    return torch.cat((-x2, x1), dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | 
					
					
						
						| 
							 | 
						    """Applies Rotary Position Embedding to the query and key tensors. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        q (`torch.Tensor`): The query tensor. | 
					
					
						
						| 
							 | 
						        k (`torch.Tensor`): The key tensor. | 
					
					
						
						| 
							 | 
						        cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
					
						
						| 
							 | 
						        sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
					
						
						| 
							 | 
						        position_ids (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						            Deprecated and unused. | 
					
					
						
						| 
							 | 
						        unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
					
						
						| 
							 | 
						            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
					
						
						| 
							 | 
						            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
					
						
						| 
							 | 
						            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
					
						
						| 
							 | 
						            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
					
						
						| 
							 | 
						            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    cos = cos.unsqueeze(unsqueeze_dim) | 
					
					
						
						| 
							 | 
						    sin = sin.unsqueeze(unsqueeze_dim) | 
					
					
						
						| 
							 | 
						    q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
					
						
						| 
							 | 
						    k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
					
						
						| 
							 | 
						    return q_embed, k_embed | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
					
						
						| 
							 | 
						    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
					
						
						| 
							 | 
						    if n_rep == 1: | 
					
					
						
						| 
							 | 
						        return hidden_states | 
					
					
						
						| 
							 | 
						    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
					
						
						| 
							 | 
						    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def eager_attention_forward( | 
					
					
						
						| 
							 | 
						    module: nn.Module, | 
					
					
						
						| 
							 | 
						    query: torch.Tensor, | 
					
					
						
						| 
							 | 
						    key: torch.Tensor, | 
					
					
						
						| 
							 | 
						    value: torch.Tensor, | 
					
					
						
						| 
							 | 
						    attention_mask: Optional[torch.Tensor], | 
					
					
						
						| 
							 | 
						    scaling: float, | 
					
					
						
						| 
							 | 
						    dropout: float = 0.0, | 
					
					
						
						| 
							 | 
						    **kwargs, | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    key_states = repeat_kv(key, module.num_key_value_groups) | 
					
					
						
						| 
							 | 
						    value_states = repeat_kv(value, module.num_key_value_groups) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling | 
					
					
						
						| 
							 | 
						    if attention_mask is not None: | 
					
					
						
						| 
							 | 
						        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | 
					
					
						
						| 
							 | 
						        attn_weights = attn_weights + causal_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) | 
					
					
						
						| 
							 | 
						    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) | 
					
					
						
						| 
							 | 
						    attn_output = torch.matmul(attn_weights, value_states) | 
					
					
						
						| 
							 | 
						    attn_output = attn_output.transpose(1, 2).contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return attn_output, attn_weights | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Qwen3MoeAttention(nn.Module): | 
					
					
						
						| 
							 | 
						    """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: Qwen3MoeConfig, layer_idx: int): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.layer_idx = layer_idx | 
					
					
						
						| 
							 | 
						        self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) | 
					
					
						
						| 
							 | 
						        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.scaling = self.head_dim**-0.5 | 
					
					
						
						| 
							 | 
						        self.attention_dropout = config.attention_dropout | 
					
					
						
						| 
							 | 
						        self.is_causal = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.q_proj = nn.Linear( | 
					
					
						
						| 
							 | 
						            config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.k_proj = nn.Linear( | 
					
					
						
						| 
							 | 
						            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.v_proj = nn.Linear( | 
					
					
						
						| 
							 | 
						            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.o_proj = nn.Linear( | 
					
					
						
						| 
							 | 
						            config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.q_norm = Qwen3MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)   | 
					
					
						
						| 
							 | 
						        self.k_norm = Qwen3MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps)   | 
					
					
						
						| 
							 | 
						        self.sliding_window = config.sliding_window | 
					
					
						
						| 
							 | 
						        if not ( | 
					
					
						
						| 
							 | 
						            self.config.use_sliding_window | 
					
					
						
						| 
							 | 
						            and getattr(self.config, "sliding_window", None) is not None | 
					
					
						
						| 
							 | 
						            and self.layer_idx >= self.config.max_window_layers | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            self.sliding_window = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        position_embeddings: Tuple[torch.Tensor, torch.Tensor], | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor], | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        **kwargs: Unpack[FlashAttentionKwargs], | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        input_shape = hidden_states.shape[:-1] | 
					
					
						
						| 
							 | 
						        hidden_shape = (*input_shape, -1, self.head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        cos, sin = position_embeddings | 
					
					
						
						| 
							 | 
						        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | 
					
					
						
						| 
							 | 
						            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attention_interface: Callable = eager_attention_forward | 
					
					
						
						| 
							 | 
						        if self.config._attn_implementation != "eager": | 
					
					
						
						| 
							 | 
						            if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): | 
					
					
						
						| 
							 | 
						                logger.warning_once( | 
					
					
						
						| 
							 | 
						                    "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " | 
					
					
						
						| 
							 | 
						                    'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output, attn_weights = attention_interface( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            query_states, | 
					
					
						
						| 
							 | 
						            key_states, | 
					
					
						
						| 
							 | 
						            value_states, | 
					
					
						
						| 
							 | 
						            attention_mask, | 
					
					
						
						| 
							 | 
						            dropout=0.0 if not self.training else self.attention_dropout, | 
					
					
						
						| 
							 | 
						            scaling=self.scaling, | 
					
					
						
						| 
							 | 
						            sliding_window=self.sliding_window,   | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(*input_shape, -1).contiguous() | 
					
					
						
						| 
							 | 
						        attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Qwen3MoeMLP(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config, intermediate_size=None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size | 
					
					
						
						| 
							 | 
						        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.act_fn = ACT2FN[config.hidden_act] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | 
					
					
						
						| 
							 | 
						        return down_proj | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Qwen3MoeSparseMoeBlock(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.num_experts = config.num_experts | 
					
					
						
						| 
							 | 
						        self.top_k = config.num_experts_per_tok | 
					
					
						
						| 
							 | 
						        self.norm_topk_prob = config.norm_topk_prob | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False) | 
					
					
						
						| 
							 | 
						        self.experts = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [Qwen3MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        """ """ | 
					
					
						
						| 
							 | 
						        batch_size, sequence_length, hidden_dim = hidden_states.shape | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.view(-1, hidden_dim) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        router_logits = self.gate(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) | 
					
					
						
						| 
							 | 
						        routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) | 
					
					
						
						| 
							 | 
						        if self.norm_topk_prob:   | 
					
					
						
						| 
							 | 
						            routing_weights /= routing_weights.sum(dim=-1, keepdim=True) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        routing_weights = routing_weights.to(hidden_states.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        final_hidden_states = torch.zeros( | 
					
					
						
						| 
							 | 
						            (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for expert_idx in range(self.num_experts): | 
					
					
						
						| 
							 | 
						            expert_layer = self.experts[expert_idx] | 
					
					
						
						| 
							 | 
						            idx, top_x = torch.where(expert_mask[expert_idx]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) | 
					
					
						
						| 
							 | 
						            current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) | 
					
					
						
						| 
							 | 
						        final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) | 
					
					
						
						| 
							 | 
						        return final_hidden_states, router_logits | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GroveMoeSparseMoeBlock(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.num_experts = config.num_experts | 
					
					
						
						| 
							 | 
						        self.top_k = config.num_experts_per_tok | 
					
					
						
						| 
							 | 
						        self.norm_topk_prob = config.norm_topk_prob | 
					
					
						
						| 
							 | 
						        self.num_experts_per_group = 2 | 
					
					
						
						| 
							 | 
						        self.parallel_expert_intermediate_size = 128 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False) | 
					
					
						
						| 
							 | 
						        self.register_buffer('expert_bias', torch.zeros(self.num_experts)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.experts = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [Qwen3MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.chunk_experts = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [Qwen3MoeMLP(config, intermediate_size=self.parallel_expert_intermediate_size) for _ in range(self.num_experts // self.num_experts_per_group)] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        """ """ | 
					
					
						
						| 
							 | 
						        batch_size, sequence_length, hidden_dim = hidden_states.shape | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.view(-1, hidden_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        router_logits = self.gate(hidden_states) | 
					
					
						
						| 
							 | 
						        routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float) | 
					
					
						
						| 
							 | 
						        bias_routing_weights = torch.sigmoid(router_logits).to(torch.float) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        _, selected_experts = torch.topk(bias_routing_weights, self.top_k, dim=-1) | 
					
					
						
						| 
							 | 
						        group_selected_experts = selected_experts // self.num_experts_per_group | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        routing_weights = routing_weights.gather(-1, selected_experts) | 
					
					
						
						| 
							 | 
						        routing_weights /= routing_weights.sum(dim=-1, keepdim=True) | 
					
					
						
						| 
							 | 
						        routing_weights = routing_weights.to(hidden_states.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        large_experts_hidden_states = torch.zeros( | 
					
					
						
						| 
							 | 
						            (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for expert_idx in range(self.num_experts): | 
					
					
						
						| 
							 | 
						            expert_layer = self.experts[expert_idx] | 
					
					
						
						| 
							 | 
						            idx, top_x = torch.where(expert_mask[expert_idx]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) | 
					
					
						
						| 
							 | 
						            current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            large_experts_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        small_experts_hidden_states = torch.zeros( | 
					
					
						
						| 
							 | 
						            (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        expert_mask = torch.nn.functional.one_hot(group_selected_experts, num_classes=self.num_experts // self.num_experts_per_group).permute(2, 1, 0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for expert_idx in range(self.num_experts // self.num_experts_per_group): | 
					
					
						
						| 
							 | 
						            expert_layer = self.chunk_experts[expert_idx] | 
					
					
						
						| 
							 | 
						            idx, top_x = torch.where(expert_mask[expert_idx]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) | 
					
					
						
						| 
							 | 
						            current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            small_experts_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        final_hidden_states = 0.05 * small_experts_hidden_states + large_experts_hidden_states | 
					
					
						
						| 
							 | 
						        final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return final_hidden_states, router_logits | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Qwen3MoeRMSNorm(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, hidden_size, eps=1e-6): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Qwen3MoeRMSNorm is equivalent to T5LayerNorm | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
					
						
						| 
							 | 
						        self.variance_epsilon = eps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states): | 
					
					
						
						| 
							 | 
						        input_dtype = hidden_states.dtype | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.to(torch.float32) | 
					
					
						
						| 
							 | 
						        variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
					
						
						| 
							 | 
						        return self.weight * hidden_states.to(input_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def extra_repr(self): | 
					
					
						
						| 
							 | 
						        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Qwen3MoeDecoderLayer(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: Qwen3MoeConfig, layer_idx: int): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.self_attn = Qwen3MoeAttention(config, layer_idx) | 
					
					
						
						| 
							 | 
						        self.mlp = Qwen3MoeMLP(config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.self_attn = Qwen3MoeAttention(config, layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (layer_idx not in config.mlp_only_layers) and ( | 
					
					
						
						| 
							 | 
						            config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0 | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            self.mlp = Qwen3MoeSparseMoeBlock(config) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.mlp = Qwen3MoeMLP(config, intermediate_size=config.intermediate_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.input_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						        self.post_attention_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        output_router_logits: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,   | 
					
					
						
						| 
							 | 
						        **kwargs: Unpack[FlashAttentionKwargs], | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
					
						
						| 
							 | 
						                `(batch, sequence_length)` where padding elements are indicated by 0. | 
					
					
						
						| 
							 | 
						            output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
					
						
						| 
							 | 
						                returned tensors for more detail. | 
					
					
						
						| 
							 | 
						            output_router_logits (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the logits of all the routers. They are useful for computing the router loss, | 
					
					
						
						| 
							 | 
						                and should not be returned during inference. | 
					
					
						
						| 
							 | 
						            use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
					
						
						| 
							 | 
						                (see `past_key_values`). | 
					
					
						
						| 
							 | 
						            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
					
						
						| 
							 | 
						            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						                Indices depicting the position of the input sequence tokens in the sequence. | 
					
					
						
						| 
							 | 
						            position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): | 
					
					
						
						| 
							 | 
						                Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, | 
					
					
						
						| 
							 | 
						                with `head_dim` being the embedding dimension of each attention head. | 
					
					
						
						| 
							 | 
						            kwargs (`dict`, *optional*): | 
					
					
						
						| 
							 | 
						                Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | 
					
					
						
						| 
							 | 
						                into the model | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.input_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states, self_attn_weights = self.self_attn( | 
					
					
						
						| 
							 | 
						            hidden_states=hidden_states, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            cache_position=cache_position, | 
					
					
						
						| 
							 | 
						            position_embeddings=position_embeddings, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						        hidden_states = self.post_attention_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.mlp(hidden_states) | 
					
					
						
						| 
							 | 
						        if isinstance(hidden_states, tuple): | 
					
					
						
						| 
							 | 
						            hidden_states, router_logits = hidden_states | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            router_logits = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        outputs = (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_attentions: | 
					
					
						
						| 
							 | 
						            outputs += (self_attn_weights,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_router_logits: | 
					
					
						
						| 
							 | 
						            outputs += (router_logits,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return outputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GroveMoeDecoderLayer(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: Qwen3MoeConfig, layer_idx: int): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.self_attn = Qwen3MoeAttention(config, layer_idx) | 
					
					
						
						| 
							 | 
						        self.mlp = Qwen3MoeMLP(config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.self_attn = Qwen3MoeAttention(config, layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (layer_idx not in config.mlp_only_layers) and ( | 
					
					
						
						| 
							 | 
						            config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0 | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            self.mlp = GroveMoeSparseMoeBlock(config) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.mlp = Qwen3MoeMLP(config, intermediate_size=config.intermediate_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.input_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						        self.post_attention_layernorm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        output_router_logits: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,   | 
					
					
						
						| 
							 | 
						        **kwargs: Unpack[FlashAttentionKwargs], | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
					
						
						| 
							 | 
						                `(batch, sequence_length)` where padding elements are indicated by 0. | 
					
					
						
						| 
							 | 
						            output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
					
						
						| 
							 | 
						                returned tensors for more detail. | 
					
					
						
						| 
							 | 
						            output_router_logits (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the logits of all the routers. They are useful for computing the router loss, | 
					
					
						
						| 
							 | 
						                and should not be returned during inference. | 
					
					
						
						| 
							 | 
						            use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
					
						
						| 
							 | 
						                (see `past_key_values`). | 
					
					
						
						| 
							 | 
						            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
					
						
						| 
							 | 
						            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						                Indices depicting the position of the input sequence tokens in the sequence. | 
					
					
						
						| 
							 | 
						            position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): | 
					
					
						
						| 
							 | 
						                Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, | 
					
					
						
						| 
							 | 
						                with `head_dim` being the embedding dimension of each attention head. | 
					
					
						
						| 
							 | 
						            kwargs (`dict`, *optional*): | 
					
					
						
						| 
							 | 
						                Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | 
					
					
						
						| 
							 | 
						                into the model | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.input_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states, self_attn_weights = self.self_attn( | 
					
					
						
						| 
							 | 
						            hidden_states=hidden_states, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            cache_position=cache_position, | 
					
					
						
						| 
							 | 
						            position_embeddings=position_embeddings, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						        hidden_states = self.post_attention_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.mlp(hidden_states) | 
					
					
						
						| 
							 | 
						        if isinstance(hidden_states, tuple): | 
					
					
						
						| 
							 | 
						            hidden_states, router_logits = hidden_states | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            router_logits = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        outputs = (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_attentions: | 
					
					
						
						| 
							 | 
						            outputs += (self_attn_weights,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_router_logits: | 
					
					
						
						| 
							 | 
						            outputs += (router_logits,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return outputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Qwen3MoeRotaryEmbedding(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: Qwen3MoeConfig, device=None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if hasattr(config, "rope_scaling") and config.rope_scaling is not None: | 
					
					
						
						| 
							 | 
						            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.rope_type = "default" | 
					
					
						
						| 
							 | 
						        self.max_seq_len_cached = config.max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.original_max_seq_len = config.max_position_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) | 
					
					
						
						| 
							 | 
						        self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
					
						
						| 
							 | 
						        self.original_inv_freq = self.inv_freq | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    @dynamic_rope_update   | 
					
					
						
						| 
							 | 
						    def forward(self, x, position_ids): | 
					
					
						
						| 
							 | 
						        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) | 
					
					
						
						| 
							 | 
						        position_ids_expanded = position_ids[:, None, :].float() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" | 
					
					
						
						| 
							 | 
						        with torch.autocast(device_type=device_type, enabled=False):   | 
					
					
						
						| 
							 | 
						            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
					
						
						| 
							 | 
						            emb = torch.cat((freqs, freqs), dim=-1) | 
					
					
						
						| 
							 | 
						            cos = emb.cos() * self.attention_scaling | 
					
					
						
						| 
							 | 
						            sin = emb.sin() * self.attention_scaling | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						QWEN3_MOE_START_DOCSTRING = r""" | 
					
					
						
						| 
							 | 
						    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
					
						
						| 
							 | 
						    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
					
						
						| 
							 | 
						    etc.) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
					
						
						| 
							 | 
						    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
					
						
						| 
							 | 
						    and behavior. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Parameters: | 
					
					
						
						| 
							 | 
						        config ([`Qwen3MoeConfig`]): | 
					
					
						
						| 
							 | 
						            Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
					
						
						| 
							 | 
						            load the weights associated with the model, only the configuration. Check out the | 
					
					
						
						| 
							 | 
						            [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare Qwen3Moe Model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    QWEN3_MOE_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class Qwen3MoePreTrainedModel(PreTrainedModel): | 
					
					
						
						| 
							 | 
						    config_class = Qwen3MoeConfig | 
					
					
						
						| 
							 | 
						    base_model_prefix = "model" | 
					
					
						
						| 
							 | 
						    supports_gradient_checkpointing = True | 
					
					
						
						| 
							 | 
						    _no_split_modules = ["Qwen3MoeDecoderLayer"] | 
					
					
						
						| 
							 | 
						    _skip_keys_device_placement = ["past_key_values"] | 
					
					
						
						| 
							 | 
						    _supports_flash_attn_2 = True | 
					
					
						
						| 
							 | 
						    _supports_sdpa = True | 
					
					
						
						| 
							 | 
						    _supports_flex_attn = True | 
					
					
						
						| 
							 | 
						    _supports_cache_class = True | 
					
					
						
						| 
							 | 
						    _supports_quantized_cache = True | 
					
					
						
						| 
							 | 
						    _supports_static_cache = False   | 
					
					
						
						| 
							 | 
						    _supports_attention_backend = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _init_weights(self, module): | 
					
					
						
						| 
							 | 
						        std = self.config.initializer_range | 
					
					
						
						| 
							 | 
						        if isinstance(module, nn.Linear): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.bias is not None: | 
					
					
						
						| 
							 | 
						                module.bias.data.zero_() | 
					
					
						
						| 
							 | 
						        elif isinstance(module, nn.Embedding): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.padding_idx is not None: | 
					
					
						
						| 
							 | 
						                module.weight.data[module.padding_idx].zero_() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare Qwen3Moe Model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    QWEN3_MOE_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class GroveMoePreTrainedModel(PreTrainedModel): | 
					
					
						
						| 
							 | 
						    config_class = Qwen3MoeConfig | 
					
					
						
						| 
							 | 
						    base_model_prefix = "model" | 
					
					
						
						| 
							 | 
						    supports_gradient_checkpointing = True | 
					
					
						
						| 
							 | 
						    _no_split_modules = ["GroveMoeDecoderLayer"] | 
					
					
						
						| 
							 | 
						    _skip_keys_device_placement = ["past_key_values"] | 
					
					
						
						| 
							 | 
						    _supports_flash_attn_2 = True | 
					
					
						
						| 
							 | 
						    _supports_sdpa = True | 
					
					
						
						| 
							 | 
						    _supports_flex_attn = True | 
					
					
						
						| 
							 | 
						    _supports_cache_class = True | 
					
					
						
						| 
							 | 
						    _supports_quantized_cache = True | 
					
					
						
						| 
							 | 
						    _supports_static_cache = False   | 
					
					
						
						| 
							 | 
						    _supports_attention_backend = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _init_weights(self, module): | 
					
					
						
						| 
							 | 
						        std = self.config.initializer_range | 
					
					
						
						| 
							 | 
						        if isinstance(module, nn.Linear): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.bias is not None: | 
					
					
						
						| 
							 | 
						                module.bias.data.zero_() | 
					
					
						
						| 
							 | 
						        elif isinstance(module, nn.Embedding): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.padding_idx is not None: | 
					
					
						
						| 
							 | 
						                module.weight.data[module.padding_idx].zero_() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						QWEN3_MOE_INPUTS_DOCSTRING = r""" | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
					
						
						| 
							 | 
						            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
					
						
						| 
							 | 
						            it. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						            [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are input IDs?](../glossary#input-ids) | 
					
					
						
						| 
							 | 
						        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - 1 for tokens that are **not masked**, | 
					
					
						
						| 
							 | 
						            - 0 for tokens that are **masked**. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are attention masks?](../glossary#attention-mask) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						            [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
					
						
						| 
							 | 
						            `past_key_values`). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
					
						
						| 
							 | 
						            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
					
						
						| 
							 | 
						            information on the default strategy. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - 1 indicates the head is **not masked**, | 
					
					
						
						| 
							 | 
						            - 0 indicates the head is **masked**. | 
					
					
						
						| 
							 | 
						        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
					
						
						| 
							 | 
						            config.n_positions - 1]`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are position IDs?](../glossary#position-ids) | 
					
					
						
						| 
							 | 
						        past_key_values (`Cache`, *optional*): | 
					
					
						
						| 
							 | 
						            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
					
						
						| 
							 | 
						            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
					
						
						| 
							 | 
						            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
					
						
						| 
							 | 
						            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
					
						
						| 
							 | 
						            of shape `(batch_size, sequence_length)`. | 
					
					
						
						| 
							 | 
						        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
					
						
						| 
							 | 
						            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
					
						
						| 
							 | 
						            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
					
						
						| 
							 | 
						            model's internal embedding lookup matrix. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
					
						
						| 
							 | 
						            `past_key_values`). | 
					
					
						
						| 
							 | 
						        output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
					
						
						| 
							 | 
						            tensors for more detail. | 
					
					
						
						| 
							 | 
						        output_hidden_states (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
					
						
						| 
							 | 
						            more detail. | 
					
					
						
						| 
							 | 
						        return_dict (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
					
						
						| 
							 | 
						        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, | 
					
					
						
						| 
							 | 
						            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer | 
					
					
						
						| 
							 | 
						            the complete sequence length. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare Qwen3Moe Model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    QWEN3_MOE_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class Qwen3MoeModel(Qwen3MoePreTrainedModel): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen3MoeDecoderLayer`] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        config: Qwen3MoeConfig | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: Qwen3MoeConfig): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.padding_idx = config.pad_token_id | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
					
						
						| 
							 | 
						        self.layers = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [Qwen3MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.norm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						        self.rotary_emb = Qwen3MoeRotaryEmbedding(config=config) | 
					
					
						
						| 
							 | 
						        self.gradient_checkpointing = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @can_return_tuple | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_router_logits: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        **flash_attn_kwargs: Unpack[FlashAttentionKwargs], | 
					
					
						
						| 
							 | 
						    ) -> MoeModelOutputWithPast: | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_router_logits = ( | 
					
					
						
						| 
							 | 
						            output_router_logits if output_router_logits is not None else self.config.output_router_logits | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (input_ids is None) ^ (inputs_embeds is not None): | 
					
					
						
						| 
							 | 
						            raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                logger.warning_once( | 
					
					
						
						| 
							 | 
						                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                use_cache = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if use_cache and past_key_values is None: | 
					
					
						
						| 
							 | 
						            past_key_values = DynamicCache() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if inputs_embeds is None: | 
					
					
						
						| 
							 | 
						            inputs_embeds = self.embed_tokens(input_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if cache_position is None: | 
					
					
						
						| 
							 | 
						            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
					
						
						| 
							 | 
						            cache_position = torch.arange( | 
					
					
						
						| 
							 | 
						                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        if position_ids is None: | 
					
					
						
						| 
							 | 
						            position_ids = cache_position.unsqueeze(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        causal_mask = self._update_causal_mask( | 
					
					
						
						| 
							 | 
						            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = inputs_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        position_embeddings = self.rotary_emb(hidden_states, position_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        all_hidden_states = () if output_hidden_states else None | 
					
					
						
						| 
							 | 
						        all_self_attns = () if output_attentions else None | 
					
					
						
						| 
							 | 
						        all_router_logits = () if output_router_logits else None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for decoder_layer in self.layers: | 
					
					
						
						| 
							 | 
						            if output_hidden_states: | 
					
					
						
						| 
							 | 
						                all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						                layer_outputs = self._gradient_checkpointing_func( | 
					
					
						
						| 
							 | 
						                    partial(decoder_layer.__call__, **flash_attn_kwargs), | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    causal_mask, | 
					
					
						
						| 
							 | 
						                    position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_values, | 
					
					
						
						| 
							 | 
						                    output_attentions, | 
					
					
						
						| 
							 | 
						                    output_router_logits, | 
					
					
						
						| 
							 | 
						                    use_cache, | 
					
					
						
						| 
							 | 
						                    cache_position, | 
					
					
						
						| 
							 | 
						                    position_embeddings, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                layer_outputs = decoder_layer( | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    attention_mask=causal_mask, | 
					
					
						
						| 
							 | 
						                    position_ids=position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_value=past_key_values, | 
					
					
						
						| 
							 | 
						                    output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						                    output_router_logits=output_router_logits, | 
					
					
						
						| 
							 | 
						                    use_cache=use_cache, | 
					
					
						
						| 
							 | 
						                    cache_position=cache_position, | 
					
					
						
						| 
							 | 
						                    position_embeddings=position_embeddings, | 
					
					
						
						| 
							 | 
						                    **flash_attn_kwargs, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            hidden_states = layer_outputs[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if output_attentions: | 
					
					
						
						| 
							 | 
						                all_self_attns += (layer_outputs[1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if output_router_logits: | 
					
					
						
						| 
							 | 
						                all_router_logits += (layer_outputs[-1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.norm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if output_hidden_states: | 
					
					
						
						| 
							 | 
						            all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return MoeModelOutputWithPast( | 
					
					
						
						| 
							 | 
						            last_hidden_state=hidden_states, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=all_hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=all_self_attns, | 
					
					
						
						| 
							 | 
						            router_logits=all_router_logits, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _update_causal_mask( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        attention_mask: torch.Tensor, | 
					
					
						
						| 
							 | 
						        input_tensor: torch.Tensor, | 
					
					
						
						| 
							 | 
						        cache_position: torch.Tensor, | 
					
					
						
						| 
							 | 
						        past_key_values: Cache, | 
					
					
						
						| 
							 | 
						        output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if self.config._attn_implementation == "flash_attention_2": | 
					
					
						
						| 
							 | 
						            if attention_mask is not None and past_key_values is not None: | 
					
					
						
						| 
							 | 
						                is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] | 
					
					
						
						| 
							 | 
						                if is_padding_right: | 
					
					
						
						| 
							 | 
						                    raise ValueError( | 
					
					
						
						| 
							 | 
						                        "You are attempting to perform batched generation with padding_side='right'" | 
					
					
						
						| 
							 | 
						                        " this may lead to unexpected behaviour for Flash Attention version of Qwen3Moe. Make sure to " | 
					
					
						
						| 
							 | 
						                        " call `tokenizer.padding_side  = 'left'` before tokenizing the input. " | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						            if attention_mask is not None and 0.0 in attention_mask: | 
					
					
						
						| 
							 | 
						                return attention_mask | 
					
					
						
						| 
							 | 
						            return None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
					
						
						| 
							 | 
						        using_static_cache = isinstance(past_key_values, StaticCache) | 
					
					
						
						| 
							 | 
						        using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            self.config._attn_implementation == "sdpa" | 
					
					
						
						| 
							 | 
						            and not (using_static_cache or using_sliding_window_cache) | 
					
					
						
						| 
							 | 
						            and not output_attentions | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            if AttentionMaskConverter._ignore_causal_mask_sdpa( | 
					
					
						
						| 
							 | 
						                attention_mask, | 
					
					
						
						| 
							 | 
						                inputs_embeds=input_tensor, | 
					
					
						
						| 
							 | 
						                past_key_values_length=past_seen_tokens, | 
					
					
						
						| 
							 | 
						                sliding_window=self.config.sliding_window, | 
					
					
						
						| 
							 | 
						                is_training=self.training, | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                return None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        dtype, device = input_tensor.dtype, input_tensor.device | 
					
					
						
						| 
							 | 
						        min_dtype = torch.finfo(dtype).min | 
					
					
						
						| 
							 | 
						        sequence_length = input_tensor.shape[1] | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if using_sliding_window_cache or using_static_cache: | 
					
					
						
						| 
							 | 
						            target_length = past_key_values.get_max_cache_shape() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            target_length = ( | 
					
					
						
						| 
							 | 
						                attention_mask.shape[-1] | 
					
					
						
						| 
							 | 
						                if isinstance(attention_mask, torch.Tensor) | 
					
					
						
						| 
							 | 
						                else past_seen_tokens + sequence_length + 1 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( | 
					
					
						
						| 
							 | 
						            attention_mask, | 
					
					
						
						| 
							 | 
						            sequence_length=sequence_length, | 
					
					
						
						| 
							 | 
						            target_length=target_length, | 
					
					
						
						| 
							 | 
						            dtype=dtype, | 
					
					
						
						| 
							 | 
						            device=device, | 
					
					
						
						| 
							 | 
						            cache_position=cache_position, | 
					
					
						
						| 
							 | 
						            batch_size=input_tensor.shape[0], | 
					
					
						
						| 
							 | 
						            config=self.config, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            self.config._attn_implementation == "sdpa" | 
					
					
						
						| 
							 | 
						            and attention_mask is not None | 
					
					
						
						| 
							 | 
						            and attention_mask.device.type in ["cuda", "xpu"] | 
					
					
						
						| 
							 | 
						            and not output_attentions | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return causal_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def _prepare_4d_causal_attention_mask_with_cache_position( | 
					
					
						
						| 
							 | 
						        attention_mask: torch.Tensor, | 
					
					
						
						| 
							 | 
						        sequence_length: int, | 
					
					
						
						| 
							 | 
						        target_length: int, | 
					
					
						
						| 
							 | 
						        dtype: torch.dtype, | 
					
					
						
						| 
							 | 
						        device: torch.device, | 
					
					
						
						| 
							 | 
						        cache_position: torch.Tensor, | 
					
					
						
						| 
							 | 
						        batch_size: int, | 
					
					
						
						| 
							 | 
						        config: Qwen3MoeConfig, | 
					
					
						
						| 
							 | 
						        past_key_values: Cache, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | 
					
					
						
						| 
							 | 
						        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | 
					
					
						
						| 
							 | 
						            sequence_length (`int`): | 
					
					
						
						| 
							 | 
						                The sequence length being processed. | 
					
					
						
						| 
							 | 
						            target_length (`int`): | 
					
					
						
						| 
							 | 
						                The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | 
					
					
						
						| 
							 | 
						            dtype (`torch.dtype`): | 
					
					
						
						| 
							 | 
						                The dtype to use for the 4D attention mask. | 
					
					
						
						| 
							 | 
						            device (`torch.device`): | 
					
					
						
						| 
							 | 
						                The device to place the 4D attention mask on. | 
					
					
						
						| 
							 | 
						            cache_position (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Indices depicting the position of the input sequence tokens in the sequence. | 
					
					
						
						| 
							 | 
						            batch_size (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Batch size. | 
					
					
						
						| 
							 | 
						            config (`Qwen3MoeConfig`): | 
					
					
						
						| 
							 | 
						                The model's configuration class | 
					
					
						
						| 
							 | 
						            past_key_values (`Cache`): | 
					
					
						
						| 
							 | 
						                The cache class that is being used currently to generate | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        if attention_mask is not None and attention_mask.dim() == 4: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            causal_mask = attention_mask | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            min_dtype = torch.finfo(dtype).min | 
					
					
						
						| 
							 | 
						            causal_mask = torch.full( | 
					
					
						
						| 
							 | 
						                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | 
					
					
						
						| 
							 | 
						            if config.sliding_window is not None: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: | 
					
					
						
						| 
							 | 
						                    sliding_attend_mask = torch.arange(target_length, device=device) <= ( | 
					
					
						
						| 
							 | 
						                        cache_position.reshape(-1, 1) - config.sliding_window | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                    diagonal_attend_mask.bitwise_or_(sliding_attend_mask) | 
					
					
						
						| 
							 | 
						            causal_mask *= diagonal_attend_mask | 
					
					
						
						| 
							 | 
						            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | 
					
					
						
						| 
							 | 
						            if attention_mask is not None: | 
					
					
						
						| 
							 | 
						                causal_mask = causal_mask.clone()   | 
					
					
						
						| 
							 | 
						                if attention_mask.shape[-1] > target_length: | 
					
					
						
						| 
							 | 
						                    attention_mask = attention_mask[:, :target_length] | 
					
					
						
						| 
							 | 
						                mask_length = attention_mask.shape[-1] | 
					
					
						
						| 
							 | 
						                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( | 
					
					
						
						| 
							 | 
						                    causal_mask.device | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                padding_mask = padding_mask == 0 | 
					
					
						
						| 
							 | 
						                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | 
					
					
						
						| 
							 | 
						                    padding_mask, min_dtype | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						        return causal_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare Qwen3Moe Model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    QWEN3_MOE_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class GroveMoeModel(GroveMoePreTrainedModel): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen3MoeDecoderLayer`] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        config: Qwen3MoeConfig | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: Qwen3MoeConfig): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.padding_idx = config.pad_token_id | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
					
						
						| 
							 | 
						        self.layers = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [GroveMoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.norm = Qwen3MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						        self.rotary_emb = Qwen3MoeRotaryEmbedding(config=config) | 
					
					
						
						| 
							 | 
						        self.gradient_checkpointing = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @can_return_tuple | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_router_logits: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        **flash_attn_kwargs: Unpack[FlashAttentionKwargs], | 
					
					
						
						| 
							 | 
						    ) -> MoeModelOutputWithPast: | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_router_logits = ( | 
					
					
						
						| 
							 | 
						            output_router_logits if output_router_logits is not None else self.config.output_router_logits | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (input_ids is None) ^ (inputs_embeds is not None): | 
					
					
						
						| 
							 | 
						            raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                logger.warning_once( | 
					
					
						
						| 
							 | 
						                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                use_cache = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if use_cache and past_key_values is None: | 
					
					
						
						| 
							 | 
						            past_key_values = DynamicCache() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if inputs_embeds is None: | 
					
					
						
						| 
							 | 
						            inputs_embeds = self.embed_tokens(input_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if cache_position is None: | 
					
					
						
						| 
							 | 
						            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
					
						
						| 
							 | 
						            cache_position = torch.arange( | 
					
					
						
						| 
							 | 
						                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        if position_ids is None: | 
					
					
						
						| 
							 | 
						            position_ids = cache_position.unsqueeze(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        causal_mask = self._update_causal_mask( | 
					
					
						
						| 
							 | 
						            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = inputs_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        position_embeddings = self.rotary_emb(hidden_states, position_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        all_hidden_states = () if output_hidden_states else None | 
					
					
						
						| 
							 | 
						        all_self_attns = () if output_attentions else None | 
					
					
						
						| 
							 | 
						        all_router_logits = () if output_router_logits else None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for decoder_layer in self.layers: | 
					
					
						
						| 
							 | 
						            if output_hidden_states: | 
					
					
						
						| 
							 | 
						                all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						                layer_outputs = self._gradient_checkpointing_func( | 
					
					
						
						| 
							 | 
						                    partial(decoder_layer.__call__, **flash_attn_kwargs), | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    causal_mask, | 
					
					
						
						| 
							 | 
						                    position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_values, | 
					
					
						
						| 
							 | 
						                    output_attentions, | 
					
					
						
						| 
							 | 
						                    output_router_logits, | 
					
					
						
						| 
							 | 
						                    use_cache, | 
					
					
						
						| 
							 | 
						                    cache_position, | 
					
					
						
						| 
							 | 
						                    position_embeddings, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                layer_outputs = decoder_layer( | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    attention_mask=causal_mask, | 
					
					
						
						| 
							 | 
						                    position_ids=position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_value=past_key_values, | 
					
					
						
						| 
							 | 
						                    output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						                    output_router_logits=output_router_logits, | 
					
					
						
						| 
							 | 
						                    use_cache=use_cache, | 
					
					
						
						| 
							 | 
						                    cache_position=cache_position, | 
					
					
						
						| 
							 | 
						                    position_embeddings=position_embeddings, | 
					
					
						
						| 
							 | 
						                    **flash_attn_kwargs, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            hidden_states = layer_outputs[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if output_attentions: | 
					
					
						
						| 
							 | 
						                all_self_attns += (layer_outputs[1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if output_router_logits: | 
					
					
						
						| 
							 | 
						                all_router_logits += (layer_outputs[-1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.norm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if output_hidden_states: | 
					
					
						
						| 
							 | 
						            all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return MoeModelOutputWithPast( | 
					
					
						
						| 
							 | 
						            last_hidden_state=hidden_states, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=all_hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=all_self_attns, | 
					
					
						
						| 
							 | 
						            router_logits=all_router_logits, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _update_causal_mask( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        attention_mask: torch.Tensor, | 
					
					
						
						| 
							 | 
						        input_tensor: torch.Tensor, | 
					
					
						
						| 
							 | 
						        cache_position: torch.Tensor, | 
					
					
						
						| 
							 | 
						        past_key_values: Cache, | 
					
					
						
						| 
							 | 
						        output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if self.config._attn_implementation == "flash_attention_2": | 
					
					
						
						| 
							 | 
						            if attention_mask is not None and past_key_values is not None: | 
					
					
						
						| 
							 | 
						                is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] | 
					
					
						
						| 
							 | 
						                if is_padding_right: | 
					
					
						
						| 
							 | 
						                    raise ValueError( | 
					
					
						
						| 
							 | 
						                        "You are attempting to perform batched generation with padding_side='right'" | 
					
					
						
						| 
							 | 
						                        " this may lead to unexpected behaviour for Flash Attention version of Qwen3Moe. Make sure to " | 
					
					
						
						| 
							 | 
						                        " call `tokenizer.padding_side  = 'left'` before tokenizing the input. " | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						            if attention_mask is not None and 0.0 in attention_mask: | 
					
					
						
						| 
							 | 
						                return attention_mask | 
					
					
						
						| 
							 | 
						            return None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
					
						
						| 
							 | 
						        using_static_cache = isinstance(past_key_values, StaticCache) | 
					
					
						
						| 
							 | 
						        using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            self.config._attn_implementation == "sdpa" | 
					
					
						
						| 
							 | 
						            and not (using_static_cache or using_sliding_window_cache) | 
					
					
						
						| 
							 | 
						            and not output_attentions | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            if AttentionMaskConverter._ignore_causal_mask_sdpa( | 
					
					
						
						| 
							 | 
						                attention_mask, | 
					
					
						
						| 
							 | 
						                inputs_embeds=input_tensor, | 
					
					
						
						| 
							 | 
						                past_key_values_length=past_seen_tokens, | 
					
					
						
						| 
							 | 
						                sliding_window=self.config.sliding_window, | 
					
					
						
						| 
							 | 
						                is_training=self.training, | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                return None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        dtype, device = input_tensor.dtype, input_tensor.device | 
					
					
						
						| 
							 | 
						        min_dtype = torch.finfo(dtype).min | 
					
					
						
						| 
							 | 
						        sequence_length = input_tensor.shape[1] | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if using_sliding_window_cache or using_static_cache: | 
					
					
						
						| 
							 | 
						            target_length = past_key_values.get_max_cache_shape() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            target_length = ( | 
					
					
						
						| 
							 | 
						                attention_mask.shape[-1] | 
					
					
						
						| 
							 | 
						                if isinstance(attention_mask, torch.Tensor) | 
					
					
						
						| 
							 | 
						                else past_seen_tokens + sequence_length + 1 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( | 
					
					
						
						| 
							 | 
						            attention_mask, | 
					
					
						
						| 
							 | 
						            sequence_length=sequence_length, | 
					
					
						
						| 
							 | 
						            target_length=target_length, | 
					
					
						
						| 
							 | 
						            dtype=dtype, | 
					
					
						
						| 
							 | 
						            device=device, | 
					
					
						
						| 
							 | 
						            cache_position=cache_position, | 
					
					
						
						| 
							 | 
						            batch_size=input_tensor.shape[0], | 
					
					
						
						| 
							 | 
						            config=self.config, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            self.config._attn_implementation == "sdpa" | 
					
					
						
						| 
							 | 
						            and attention_mask is not None | 
					
					
						
						| 
							 | 
						            and attention_mask.device.type in ["cuda", "xpu"] | 
					
					
						
						| 
							 | 
						            and not output_attentions | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return causal_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def _prepare_4d_causal_attention_mask_with_cache_position( | 
					
					
						
						| 
							 | 
						        attention_mask: torch.Tensor, | 
					
					
						
						| 
							 | 
						        sequence_length: int, | 
					
					
						
						| 
							 | 
						        target_length: int, | 
					
					
						
						| 
							 | 
						        dtype: torch.dtype, | 
					
					
						
						| 
							 | 
						        device: torch.device, | 
					
					
						
						| 
							 | 
						        cache_position: torch.Tensor, | 
					
					
						
						| 
							 | 
						        batch_size: int, | 
					
					
						
						| 
							 | 
						        config: Qwen3MoeConfig, | 
					
					
						
						| 
							 | 
						        past_key_values: Cache, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | 
					
					
						
						| 
							 | 
						        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | 
					
					
						
						| 
							 | 
						            sequence_length (`int`): | 
					
					
						
						| 
							 | 
						                The sequence length being processed. | 
					
					
						
						| 
							 | 
						            target_length (`int`): | 
					
					
						
						| 
							 | 
						                The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | 
					
					
						
						| 
							 | 
						            dtype (`torch.dtype`): | 
					
					
						
						| 
							 | 
						                The dtype to use for the 4D attention mask. | 
					
					
						
						| 
							 | 
						            device (`torch.device`): | 
					
					
						
						| 
							 | 
						                The device to place the 4D attention mask on. | 
					
					
						
						| 
							 | 
						            cache_position (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Indices depicting the position of the input sequence tokens in the sequence. | 
					
					
						
						| 
							 | 
						            batch_size (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Batch size. | 
					
					
						
						| 
							 | 
						            config (`Qwen3MoeConfig`): | 
					
					
						
						| 
							 | 
						                The model's configuration class | 
					
					
						
						| 
							 | 
						            past_key_values (`Cache`): | 
					
					
						
						| 
							 | 
						                The cache class that is being used currently to generate | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        if attention_mask is not None and attention_mask.dim() == 4: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            causal_mask = attention_mask | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            min_dtype = torch.finfo(dtype).min | 
					
					
						
						| 
							 | 
						            causal_mask = torch.full( | 
					
					
						
						| 
							 | 
						                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | 
					
					
						
						| 
							 | 
						            if config.sliding_window is not None: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: | 
					
					
						
						| 
							 | 
						                    sliding_attend_mask = torch.arange(target_length, device=device) <= ( | 
					
					
						
						| 
							 | 
						                        cache_position.reshape(-1, 1) - config.sliding_window | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                    diagonal_attend_mask.bitwise_or_(sliding_attend_mask) | 
					
					
						
						| 
							 | 
						            causal_mask *= diagonal_attend_mask | 
					
					
						
						| 
							 | 
						            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | 
					
					
						
						| 
							 | 
						            if attention_mask is not None: | 
					
					
						
						| 
							 | 
						                causal_mask = causal_mask.clone()   | 
					
					
						
						| 
							 | 
						                if attention_mask.shape[-1] > target_length: | 
					
					
						
						| 
							 | 
						                    attention_mask = attention_mask[:, :target_length] | 
					
					
						
						| 
							 | 
						                mask_length = attention_mask.shape[-1] | 
					
					
						
						| 
							 | 
						                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( | 
					
					
						
						| 
							 | 
						                    causal_mask.device | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                padding_mask = padding_mask == 0 | 
					
					
						
						| 
							 | 
						                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | 
					
					
						
						| 
							 | 
						                    padding_mask, min_dtype | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						        return causal_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def load_balancing_loss_func( | 
					
					
						
						| 
							 | 
						    gate_logits: Union[torch.Tensor, Tuple[torch.Tensor], None], | 
					
					
						
						| 
							 | 
						    num_experts: Optional[int] = None, | 
					
					
						
						| 
							 | 
						    top_k=2, | 
					
					
						
						| 
							 | 
						    attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						) -> Union[torch.Tensor, int]: | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss | 
					
					
						
						| 
							 | 
						    function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between | 
					
					
						
						| 
							 | 
						    experts is too unbalanced. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        gate_logits: | 
					
					
						
						| 
							 | 
						            Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of | 
					
					
						
						| 
							 | 
						            shape [batch_size X sequence_length, num_experts]. | 
					
					
						
						| 
							 | 
						        num_experts: | 
					
					
						
						| 
							 | 
						            Number of experts | 
					
					
						
						| 
							 | 
						        top_k: | 
					
					
						
						| 
							 | 
						            The number of experts to route per-token, can be also interpreted as the `top-k` routing | 
					
					
						
						| 
							 | 
						            parameter. | 
					
					
						
						| 
							 | 
						        attention_mask (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						            The attention_mask used in forward function | 
					
					
						
						| 
							 | 
						            shape [batch_size X sequence_length] if not None. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        The auxiliary loss. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    if gate_logits is None or not isinstance(gate_logits, tuple): | 
					
					
						
						| 
							 | 
						        return 0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if isinstance(gate_logits, tuple): | 
					
					
						
						| 
							 | 
						        compute_device = gate_logits[0].device | 
					
					
						
						| 
							 | 
						        concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if attention_mask is None: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        tokens_per_expert = torch.mean(expert_mask.float(), dim=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        router_prob_per_expert = torch.mean(routing_weights, dim=0) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        batch_size, sequence_length = attention_mask.shape | 
					
					
						
						| 
							 | 
						        num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        expert_attention_mask = ( | 
					
					
						
						| 
							 | 
						            attention_mask[None, :, :, None, None] | 
					
					
						
						| 
							 | 
						            .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) | 
					
					
						
						| 
							 | 
						            .reshape(-1, top_k, num_experts) | 
					
					
						
						| 
							 | 
						            .to(compute_device) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( | 
					
					
						
						| 
							 | 
						            expert_attention_mask, dim=0 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        router_per_expert_attention_mask = ( | 
					
					
						
						| 
							 | 
						            attention_mask[None, :, :, None] | 
					
					
						
						| 
							 | 
						            .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) | 
					
					
						
						| 
							 | 
						            .reshape(-1, num_experts) | 
					
					
						
						| 
							 | 
						            .to(compute_device) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( | 
					
					
						
						| 
							 | 
						            router_per_expert_attention_mask, dim=0 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) | 
					
					
						
						| 
							 | 
						    return overall_loss * num_experts | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Qwen3MoeForCausalLM(Qwen3MoePreTrainedModel, GenerationMixin): | 
					
					
						
						| 
							 | 
						    _tied_weights_keys = ["lm_head.weight"] | 
					
					
						
						| 
							 | 
						    _tp_plan = {"lm_head": "colwise_rep"} | 
					
					
						
						| 
							 | 
						    _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.model = Qwen3MoeModel(config) | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.router_aux_loss_coef = config.router_aux_loss_coef | 
					
					
						
						| 
							 | 
						        self.num_experts = config.num_experts | 
					
					
						
						| 
							 | 
						        self.num_experts_per_tok = config.num_experts_per_tok | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_output_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.lm_head | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_output_embeddings(self, new_embeddings): | 
					
					
						
						| 
							 | 
						        self.lm_head = new_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_decoder(self, decoder): | 
					
					
						
						| 
							 | 
						        self.model = decoder | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_decoder(self): | 
					
					
						
						| 
							 | 
						        return self.model | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @can_return_tuple | 
					
					
						
						| 
							 | 
						    @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_router_logits: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        logits_to_keep: Union[int, torch.Tensor] = 0, | 
					
					
						
						| 
							 | 
						        **kwargs: Unpack[KwargsForCausalLM], | 
					
					
						
						| 
							 | 
						    ) -> MoeCausalLMOutputWithPast: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						                Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
					
						
						| 
							 | 
						                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
					
						
						| 
							 | 
						                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            logits_to_keep (`int` or `torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all | 
					
					
						
						| 
							 | 
						                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that | 
					
					
						
						| 
							 | 
						                token can save memory, which becomes pretty significant for long sequences or large vocabulary size. | 
					
					
						
						| 
							 | 
						                If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. | 
					
					
						
						| 
							 | 
						                This is useful when using packed tensor format (single dimension for batch and sequence length). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Example: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        ```python | 
					
					
						
						| 
							 | 
						        >>> from transformers import AutoTokenizer, Qwen3MoeForCausalLM | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-MoE-15B-A2B") | 
					
					
						
						| 
							 | 
						        >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-MoE-15B-A2B") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> prompt = "Hey, are you conscious? Can you talk to me?" | 
					
					
						
						| 
							 | 
						        >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> # Generate | 
					
					
						
						| 
							 | 
						        >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
					
						
						| 
							 | 
						        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
					
						
						| 
							 | 
						        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | 
					
					
						
						| 
							 | 
						        ```""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_router_logits = ( | 
					
					
						
						| 
							 | 
						            output_router_logits if output_router_logits is not None else self.config.output_router_logits | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        outputs: MoeModelOutputWithPast = self.model( | 
					
					
						
						| 
							 | 
						            input_ids=input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            output_router_logits=output_router_logits, | 
					
					
						
						| 
							 | 
						            cache_position=cache_position, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = outputs.last_hidden_state | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep | 
					
					
						
						| 
							 | 
						        logits = self.lm_head(hidden_states[:, slice_indices, :]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						            loss = self.loss_function(logits, labels, self.vocab_size, **kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        aux_loss = None | 
					
					
						
						| 
							 | 
						        if output_router_logits: | 
					
					
						
						| 
							 | 
						            aux_loss = load_balancing_loss_func( | 
					
					
						
						| 
							 | 
						                outputs.router_logits, | 
					
					
						
						| 
							 | 
						                self.num_experts, | 
					
					
						
						| 
							 | 
						                self.num_experts_per_tok, | 
					
					
						
						| 
							 | 
						                attention_mask, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            if labels is not None: | 
					
					
						
						| 
							 | 
						                loss += self.router_aux_loss_coef * aux_loss.to(loss.device)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return MoeCausalLMOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            aux_loss=aux_loss, | 
					
					
						
						| 
							 | 
						            logits=logits, | 
					
					
						
						| 
							 | 
						            past_key_values=outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=outputs.attentions, | 
					
					
						
						| 
							 | 
						            router_logits=outputs.router_logits, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GroveMoeForCausalLM(GroveMoePreTrainedModel, GenerationMixin): | 
					
					
						
						| 
							 | 
						    _tied_weights_keys = ["lm_head.weight"] | 
					
					
						
						| 
							 | 
						    _tp_plan = {"lm_head": "colwise_rep"} | 
					
					
						
						| 
							 | 
						    _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.model = GroveMoeModel(config) | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.router_aux_loss_coef = config.router_aux_loss_coef | 
					
					
						
						| 
							 | 
						        self.num_experts = config.num_experts | 
					
					
						
						| 
							 | 
						        self.num_experts_per_tok = config.num_experts_per_tok | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_output_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.lm_head | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_output_embeddings(self, new_embeddings): | 
					
					
						
						| 
							 | 
						        self.lm_head = new_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_decoder(self, decoder): | 
					
					
						
						| 
							 | 
						        self.model = decoder | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_decoder(self): | 
					
					
						
						| 
							 | 
						        return self.model | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @can_return_tuple | 
					
					
						
						| 
							 | 
						    @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_router_logits: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        logits_to_keep: Union[int, torch.Tensor] = 0, | 
					
					
						
						| 
							 | 
						        **kwargs: Unpack[KwargsForCausalLM], | 
					
					
						
						| 
							 | 
						    ) -> MoeCausalLMOutputWithPast: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						                Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
					
						
						| 
							 | 
						                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
					
						
						| 
							 | 
						                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            logits_to_keep (`int` or `torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all | 
					
					
						
						| 
							 | 
						                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that | 
					
					
						
						| 
							 | 
						                token can save memory, which becomes pretty significant for long sequences or large vocabulary size. | 
					
					
						
						| 
							 | 
						                If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. | 
					
					
						
						| 
							 | 
						                This is useful when using packed tensor format (single dimension for batch and sequence length). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Example: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        ```python | 
					
					
						
						| 
							 | 
						        >>> from transformers import AutoTokenizer, Qwen3MoeForCausalLM | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-MoE-15B-A2B") | 
					
					
						
						| 
							 | 
						        >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-MoE-15B-A2B") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> prompt = "Hey, are you conscious? Can you talk to me?" | 
					
					
						
						| 
							 | 
						        >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> # Generate | 
					
					
						
						| 
							 | 
						        >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
					
						
						| 
							 | 
						        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
					
						
						| 
							 | 
						        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | 
					
					
						
						| 
							 | 
						        ```""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_router_logits = ( | 
					
					
						
						| 
							 | 
						            output_router_logits if output_router_logits is not None else self.config.output_router_logits | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        outputs: MoeModelOutputWithPast = self.model( | 
					
					
						
						| 
							 | 
						            input_ids=input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            output_router_logits=output_router_logits, | 
					
					
						
						| 
							 | 
						            cache_position=cache_position, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = outputs.last_hidden_state | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep | 
					
					
						
						| 
							 | 
						        logits = self.lm_head(hidden_states[:, slice_indices, :]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						            loss = self.loss_function(logits, labels, self.vocab_size, **kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        aux_loss = None | 
					
					
						
						| 
							 | 
						        if output_router_logits: | 
					
					
						
						| 
							 | 
						            aux_loss = load_balancing_loss_func( | 
					
					
						
						| 
							 | 
						                outputs.router_logits, | 
					
					
						
						| 
							 | 
						                self.num_experts, | 
					
					
						
						| 
							 | 
						                self.num_experts_per_tok, | 
					
					
						
						| 
							 | 
						                attention_mask, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            if labels is not None: | 
					
					
						
						| 
							 | 
						                loss += self.router_aux_loss_coef * aux_loss.to(loss.device)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return MoeCausalLMOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            aux_loss=aux_loss, | 
					
					
						
						| 
							 | 
						            logits=logits, | 
					
					
						
						| 
							 | 
						            past_key_values=outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=outputs.attentions, | 
					
					
						
						| 
							 | 
						            router_logits=outputs.router_logits, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    The Qwen3Moe Model transformer with a sequence classification head on top (linear layer). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    [`Qwen3MoeForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
					
						
						| 
							 | 
						    (e.g. GPT-2) do. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
					
						
						| 
							 | 
						    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
					
						
						| 
							 | 
						    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
					
						
						| 
							 | 
						    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
					
						
						| 
							 | 
						    each row of the batch). | 
					
					
						
						| 
							 | 
						    """, | 
					
					
						
						| 
							 | 
						    QWEN3_MOE_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class Qwen3MoeForSequenceClassification(Qwen3MoePreTrainedModel): | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.num_labels = config.num_labels | 
					
					
						
						| 
							 | 
						        self.model = Qwen3MoeModel(config) | 
					
					
						
						| 
							 | 
						        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @can_return_tuple | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> SequenceClassifierOutputWithPast: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
					
						
						| 
							 | 
						            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
					
						
						| 
							 | 
						            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
					
						
						| 
							 | 
						            `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        transformer_outputs: BaseModelOutputWithPast = self.model( | 
					
					
						
						| 
							 | 
						            input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = transformer_outputs.last_hidden_state | 
					
					
						
						| 
							 | 
						        logits = self.score(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if input_ids is not None: | 
					
					
						
						| 
							 | 
						            batch_size = input_ids.shape[0] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = inputs_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.config.pad_token_id is None and batch_size != 1: | 
					
					
						
						| 
							 | 
						            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | 
					
					
						
						| 
							 | 
						        if self.config.pad_token_id is None: | 
					
					
						
						| 
							 | 
						            last_non_pad_token = -1 | 
					
					
						
						| 
							 | 
						        elif input_ids is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) | 
					
					
						
						| 
							 | 
						            token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) | 
					
					
						
						| 
							 | 
						            last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            last_non_pad_token = -1 | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | 
					
					
						
						| 
							 | 
						                "unexpected if using padding tokens in conjunction with `inputs_embeds.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						            loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return SequenceClassifierOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            logits=pooled_logits, | 
					
					
						
						| 
							 | 
						            past_key_values=transformer_outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=transformer_outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=transformer_outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    The Qwen3Moe Model transformer with a token classification head on top (a linear layer on top of the hidden-states | 
					
					
						
						| 
							 | 
						    output) e.g. for Named-Entity-Recognition (NER) tasks. | 
					
					
						
						| 
							 | 
						    """, | 
					
					
						
						| 
							 | 
						    QWEN3_MOE_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class Qwen3MoeForTokenClassification(Qwen3MoePreTrainedModel): | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.num_labels = config.num_labels | 
					
					
						
						| 
							 | 
						        self.model = Qwen3MoeModel(config) | 
					
					
						
						| 
							 | 
						        if getattr(config, "classifier_dropout", None) is not None: | 
					
					
						
						| 
							 | 
						            classifier_dropout = config.classifier_dropout | 
					
					
						
						| 
							 | 
						        elif getattr(config, "hidden_dropout", None) is not None: | 
					
					
						
						| 
							 | 
						            classifier_dropout = config.hidden_dropout | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            classifier_dropout = 0.1 | 
					
					
						
						| 
							 | 
						        self.dropout = nn.Dropout(classifier_dropout) | 
					
					
						
						| 
							 | 
						        self.score = nn.Linear(config.hidden_size, config.num_labels) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @can_return_tuple | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    @add_code_sample_docstrings( | 
					
					
						
						| 
							 | 
						        checkpoint=_CHECKPOINT_FOR_DOC, | 
					
					
						
						| 
							 | 
						        output_type=TokenClassifierOutput, | 
					
					
						
						| 
							 | 
						        config_class=_CONFIG_FOR_DOC, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> TokenClassifierOutput: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
					
						
						| 
							 | 
						            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
					
						
						| 
							 | 
						            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
					
						
						| 
							 | 
						            `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        outputs: BaseModelOutputWithPast = self.model( | 
					
					
						
						| 
							 | 
						            input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        sequence_output = outputs.last_hidden_state | 
					
					
						
						| 
							 | 
						        sequence_output = self.dropout(sequence_output) | 
					
					
						
						| 
							 | 
						        logits = self.score(sequence_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						            loss = self.loss_function(logits, labels, self.config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return TokenClassifierOutput( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            logits=logits, | 
					
					
						
						| 
							 | 
						            hidden_states=outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						The Qwen3Moe Model transformer with a span classification head on top for extractive question-answering tasks like | 
					
					
						
						| 
							 | 
						SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). | 
					
					
						
						| 
							 | 
						    """, | 
					
					
						
						| 
							 | 
						    QWEN3_MOE_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class Qwen3MoeForQuestionAnswering(Qwen3MoePreTrainedModel): | 
					
					
						
						| 
							 | 
						    base_model_prefix = "transformer" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.transformer = Qwen3MoeModel(config) | 
					
					
						
						| 
							 | 
						        self.qa_outputs = nn.Linear(config.hidden_size, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.transformer.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.transformer.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @can_return_tuple | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(QWEN3_MOE_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        start_positions: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        end_positions: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> QuestionAnsweringModelOutput: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
					
						
						| 
							 | 
						            Labels for position (index) of the start of the labelled span for computing the token classification loss. | 
					
					
						
						| 
							 | 
						            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
					
						
						| 
							 | 
						            are not taken into account for computing the loss. | 
					
					
						
						| 
							 | 
						        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
					
						
						| 
							 | 
						            Labels for position (index) of the end of the labelled span for computing the token classification loss. | 
					
					
						
						| 
							 | 
						            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
					
						
						| 
							 | 
						            are not taken into account for computing the loss. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        outputs: BaseModelOutputWithPast = self.transformer( | 
					
					
						
						| 
							 | 
						            input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        sequence_output = outputs.last_hidden_state | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        logits = self.qa_outputs(sequence_output) | 
					
					
						
						| 
							 | 
						        start_logits, end_logits = logits.split(1, dim=-1) | 
					
					
						
						| 
							 | 
						        start_logits = start_logits.squeeze(-1).contiguous() | 
					
					
						
						| 
							 | 
						        end_logits = end_logits.squeeze(-1).contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if start_positions is not None and end_positions is not None: | 
					
					
						
						| 
							 | 
						            loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return QuestionAnsweringModelOutput( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            start_logits=start_logits, | 
					
					
						
						| 
							 | 
						            end_logits=end_logits, | 
					
					
						
						| 
							 | 
						            hidden_states=outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						__all__ = [ | 
					
					
						
						| 
							 | 
						    "GroveMoeForCausalLM", | 
					
					
						
						| 
							 | 
						    "Qwen3MoeForCausalLM", | 
					
					
						
						| 
							 | 
						    "Qwen3MoeForQuestionAnswering", | 
					
					
						
						| 
							 | 
						    "GroveMoeModel", | 
					
					
						
						| 
							 | 
						    "Qwen3MoeModel", | 
					
					
						
						| 
							 | 
						    "Qwen3MoePreTrainedModel", | 
					
					
						
						| 
							 | 
						    "Qwen3MoeForSequenceClassification", | 
					
					
						
						| 
							 | 
						    "Qwen3MoeForTokenClassification", | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						
 |