imperiusrex commited on
Commit
69cd385
·
verified ·
1 Parent(s): ce36459

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +114 -0
app.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+
3
+ import gradio as gr
4
+ import tensorflow as tf
5
+ import numpy as np
6
+ from PIL import Image
7
+ import json
8
+ import os
9
+
10
+ # --- 1. Define int_to_char mapping and decode_prediction function ---
11
+ # This part is crucial and should accurately reflect what your model was trained on.
12
+ # We'll load int_to_char from the JSON file that was pushed to the repo.
13
+
14
+ # Get the directory where app.py is located.
15
+ # When deployed on Hugging Face Spaces, your model files will typically be in the
16
+ # same root directory as app.py if it's cloned from a model repo.
17
+ CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
18
+
19
+ # Define paths to model and mapping relative to CURRENT_DIR
20
+ MODEL_PATH = os.path.join(CURRENT_DIR, "captcha_recognition_model_char.keras")
21
+ INT_TO_CHAR_PATH = os.path.join(CURRENT_DIR, "int_to_char.json")
22
+
23
+ try:
24
+ # Load the int_to_char mapping from the JSON file
25
+ with open(INT_TO_CHAR_PATH, "r") as f:
26
+ str_int_to_char_mapping = json.load(f)
27
+ # Convert keys back to integers as expected by decode_prediction
28
+ int_to_char = {int(k): v for k, v in str_int_to_char_mapping.items()}
29
+ print(f"int_to_char mapping loaded successfully from {INT_TO_CHAR_PATH}")
30
+ except Exception as e:
31
+ print(f"Error loading int_to_char.json: {e}")
32
+ # Fallback to a default or raise an error if the mapping is critical
33
+ # For robust deployment, ensure int_to_char.json is always present and valid.
34
+ int_to_char = {i: chr(i + ord('A')) for i in range(26)} # Example placeholder
35
+ int_to_char.update({26 + i: str(i) for i in range(10)})
36
+ int_to_char.update({36 + i: chr(i + ord('a')) for i in range(26)})
37
+ int_to_char[0] = '<pad>' # Assuming 0 is pad
38
+ print("Using a default placeholder for int_to_char due to error. Please verify original mapping.")
39
+
40
+ # Assuming fixed_solution_length is known from your model design.
41
+ # You might need to retrieve this from your model's config if it's not truly fixed,
42
+ # but for most captcha models, it's a fixed value.
43
+ fixed_solution_length = 5 # <--- IMPORTANT: Adjust this if your actual fixed_solution_length is different!
44
+
45
+ def decode_prediction(prediction_output, int_to_char_mapping):
46
+ """Decodes the integer-encoded prediction back to a string."""
47
+ # The prediction output from a Keras model is a NumPy array.
48
+ # It usually has shape (batch_size, fixed_solution_length, num_classes)
49
+ predicted_indices = np.argmax(prediction_output, axis=-1)[0] # Get indices for the first image in batch
50
+
51
+ # Convert indices back to characters using the mapping
52
+ predicted_chars = [int_to_char_mapping.get(idx, '') for idx in predicted_indices]
53
+
54
+ # Join the characters to form the solution string, excluding padding
55
+ solution = "".join([char for char in predicted_chars if char != '<pad>'])
56
+
57
+ return solution
58
+
59
+ # --- 2. Load the pre-trained Keras model ---
60
+ # This function will run once when the Gradio app starts.
61
+ def load_model():
62
+ try:
63
+ model = tf.keras.models.load_model(MODEL_PATH)
64
+ print(f"Model loaded successfully from {MODEL_PATH}")
65
+ return model
66
+ except Exception as e:
67
+ print(f"Error loading the model from {MODEL_PATH}: {e}")
68
+ # For deployment, this should ideally not fail.
69
+ # Ensure your model is correctly pushed as SavedModel.
70
+ return None
71
+
72
+ model = load_model()
73
+
74
+ # --- 3. Define the prediction function for Gradio ---
75
+ def predict_captcha(image: Image.Image) -> str:
76
+ if model is None:
77
+ return "Error: Model not loaded. Please check logs."
78
+
79
+ # Preprocess the input image to match model's expected input
80
+ # Ensure this matches the preprocessing done during training!
81
+ img = image.resize((200, 50)) # Model input width, height (from previous discussion)
82
+ img_array = np.array(img).astype(np.float32)
83
+ img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
84
+
85
+ # Uncomment and adjust if you applied normalization during training
86
+ # img_array = img_array / 255.0
87
+
88
+ # Make prediction
89
+ prediction = model.predict(img_array, verbose=0)
90
+
91
+ # Decode the prediction
92
+ decoded_solution = decode_prediction(prediction, int_to_char)
93
+
94
+ return decoded_solution
95
+
96
+ # --- 4. Create the Gradio Interface ---
97
+ iface = gr.Interface(
98
+ fn=predict_captcha,
99
+ inputs=gr.Image(type="pil", label="Upload Captcha Image"),
100
+ outputs=gr.Textbox(label="Predicted Captcha"),
101
+ title="Captcha Recognition",
102
+ description="Upload a captcha image (200x50 pixels expected) to get the predicted text.",
103
+ examples=[
104
+ # You can add example image paths here for the Gradio demo.
105
+ # These images should be present in your Hugging Face Space repository.
106
+ # e.g., "./example_captcha_1.png", "./example_captcha_2.png"
107
+ ],
108
+ allow_flagging="never", # Optional: Disable flagging data
109
+ live=False # Set to True for real-time inference as you draw/upload
110
+ )
111
+
112
+ # Launch the Gradio app
113
+ if __name__ == "__main__":
114
+ iface.launch()