Commit
·
87f1578
1
Parent(s):
efcbad2
Update model code
Browse files- inference.py +1 -1
- prithvi_mae.py +146 -116
inference.py
CHANGED
|
@@ -358,7 +358,7 @@ def main(
|
|
| 358 |
|
| 359 |
model.to(device)
|
| 360 |
|
| 361 |
-
state_dict = torch.load(checkpoint, map_location=device)
|
| 362 |
# discard fixed pos_embedding weight
|
| 363 |
for k in list(state_dict.keys()):
|
| 364 |
if 'pos_embed' in k:
|
|
|
|
| 358 |
|
| 359 |
model.to(device)
|
| 360 |
|
| 361 |
+
state_dict = torch.load(checkpoint, map_location=device, weights_only=True)
|
| 362 |
# discard fixed pos_embedding weight
|
| 363 |
for k in list(state_dict.keys()):
|
| 364 |
if 'pos_embed' in k:
|
prithvi_mae.py
CHANGED
|
@@ -17,9 +17,7 @@
|
|
| 17 |
# transformers: https://github.com/huggingface/transformers
|
| 18 |
# --------------------------------------------------------
|
| 19 |
|
| 20 |
-
|
| 21 |
-
from typing import List, Tuple
|
| 22 |
-
|
| 23 |
import logging
|
| 24 |
import numpy as np
|
| 25 |
import torch
|
|
@@ -28,6 +26,8 @@ from einops import rearrange
|
|
| 28 |
from timm.layers import to_2tuple
|
| 29 |
from timm.models.vision_transformer import Block
|
| 30 |
|
|
|
|
|
|
|
| 31 |
|
| 32 |
def get_3d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
|
| 33 |
"""
|
|
@@ -91,11 +91,7 @@ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
|
| 91 |
|
| 92 |
|
| 93 |
def _get_1d_sincos_embed_from_grid_torch(embed_dim: int, pos: torch.Tensor):
|
| 94 |
-
"""
|
| 95 |
-
it was modified to cast omega values to pos.dtype which must be float (and not int as in
|
| 96 |
-
regular positional embeddings). This was required in order to allow for native FSDP mixed
|
| 97 |
-
precision support: modify omega to appropriate dtype (pos carries the correct float dtype),
|
| 98 |
-
instead of manually forcing float32.
|
| 99 |
|
| 100 |
embed_dim: output dimension for each position
|
| 101 |
pos: a list of positions to be encoded: size (M,) - must be float dtype!
|
|
@@ -130,12 +126,56 @@ def _init_weights(module):
|
|
| 130 |
module.weight.data.fill_(1.0)
|
| 131 |
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
class PatchEmbed(nn.Module):
|
| 134 |
"""3D version of timm.models.vision_transformer.PatchEmbed"""
|
| 135 |
def __init__(
|
| 136 |
self,
|
| 137 |
-
input_size:
|
| 138 |
-
patch_size:
|
| 139 |
in_chans: int = 3,
|
| 140 |
embed_dim: int = 768,
|
| 141 |
norm_layer: nn.Module | None = None,
|
|
@@ -146,6 +186,7 @@ class PatchEmbed(nn.Module):
|
|
| 146 |
self.input_size = input_size
|
| 147 |
self.patch_size = patch_size
|
| 148 |
self.grid_size = [s // p for s, p in zip(self.input_size, self.patch_size)]
|
|
|
|
| 149 |
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
|
| 150 |
self.flatten = flatten
|
| 151 |
|
|
@@ -156,8 +197,8 @@ class PatchEmbed(nn.Module):
|
|
| 156 |
B, C, T, H, W = x.shape
|
| 157 |
|
| 158 |
if T / self.patch_size[0] % 1 or H / self.patch_size[1] % 1 or W / self.patch_size[2] % 1:
|
| 159 |
-
|
| 160 |
-
|
| 161 |
|
| 162 |
x = self.proj(x)
|
| 163 |
if self.flatten:
|
|
@@ -232,24 +273,22 @@ class LocationEncoder(nn.Module):
|
|
| 232 |
class PrithviViT(nn.Module):
|
| 233 |
""" Prithvi ViT Encoder"""
|
| 234 |
def __init__(self,
|
| 235 |
-
img_size: int |
|
| 236 |
-
patch_size: int |
|
| 237 |
num_frames: int = 1,
|
| 238 |
in_chans: int = 3,
|
| 239 |
embed_dim: int = 1024,
|
| 240 |
depth: int = 24,
|
| 241 |
num_heads: int = 16,
|
| 242 |
mlp_ratio: float = 4.,
|
| 243 |
-
norm_layer: nn.Module =
|
| 244 |
-
coords_encoding:
|
| 245 |
coords_scale_learn: bool = False,
|
| 246 |
-
|
| 247 |
** kwargs,
|
| 248 |
):
|
| 249 |
super().__init__()
|
| 250 |
|
| 251 |
-
self.feature_info = []
|
| 252 |
-
self.encoder_only = encoder_only
|
| 253 |
self.in_chans = in_chans
|
| 254 |
self.num_frames = num_frames
|
| 255 |
self.embed_dim = embed_dim
|
|
@@ -264,6 +303,7 @@ class PrithviViT(nn.Module):
|
|
| 264 |
in_chans=in_chans,
|
| 265 |
embed_dim=embed_dim,
|
| 266 |
)
|
|
|
|
| 267 |
|
| 268 |
# Optional temporal and location embedding
|
| 269 |
coords_encoding = coords_encoding or []
|
|
@@ -281,10 +321,8 @@ class PrithviViT(nn.Module):
|
|
| 281 |
# Transformer layers
|
| 282 |
self.blocks = []
|
| 283 |
for i in range(depth):
|
| 284 |
-
self.blocks.append(Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer
|
| 285 |
-
|
| 286 |
-
{"num_chs": embed_dim * self.patch_embed.patch_size[0], "reduction": 1, "module": f"blocks.{i}"}
|
| 287 |
-
)
|
| 288 |
self.blocks = nn.ModuleList(self.blocks)
|
| 289 |
|
| 290 |
self.norm = norm_layer(embed_dim)
|
|
@@ -339,45 +377,40 @@ class PrithviViT(nn.Module):
|
|
| 339 |
|
| 340 |
return sequence_unmasked, mask, ids_restore
|
| 341 |
|
| 342 |
-
def
|
| 343 |
-
t, h, w = x.shape[-3:]
|
| 344 |
-
|
| 345 |
-
pos_embed = torch.from_numpy(get_3d_sincos_pos_embed(
|
| 346 |
-
self.embed_dim,
|
| 347 |
-
(
|
| 348 |
-
t // self.patch_embed.patch_size[0],
|
| 349 |
-
h // self.patch_embed.patch_size[1],
|
| 350 |
-
w // self.patch_embed.patch_size[2],
|
| 351 |
-
),
|
| 352 |
-
add_cls_token=True,
|
| 353 |
-
)).float().unsqueeze(0).to(x)
|
| 354 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
return pos_embed
|
| 356 |
|
| 357 |
-
|
| 358 |
def forward(
|
| 359 |
self, x: torch.Tensor,
|
| 360 |
temporal_coords: None | torch.Tensor = None,
|
| 361 |
location_coords: None | torch.Tensor = None,
|
| 362 |
mask_ratio=0.75
|
| 363 |
):
|
| 364 |
-
if x.shape
|
| 365 |
-
#
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
pos_embed = self.pos_embed
|
| 369 |
|
| 370 |
# embed patches
|
| 371 |
x = self.patch_embed(x)
|
| 372 |
|
|
|
|
| 373 |
# add pos embed w/o cls token
|
| 374 |
x = x + pos_embed[:, 1:, :]
|
| 375 |
|
| 376 |
-
if self.temporal_encoding:
|
| 377 |
num_tokens_per_frame = x.shape[1] // self.num_frames
|
| 378 |
temporal_encoding = self.temporal_embed_enc(temporal_coords, num_tokens_per_frame)
|
| 379 |
x = x + temporal_encoding
|
| 380 |
-
if self.location_encoding:
|
| 381 |
location_encoding = self.location_embed_enc(location_coords)
|
| 382 |
x = x + location_encoding
|
| 383 |
|
|
@@ -405,23 +438,20 @@ class PrithviViT(nn.Module):
|
|
| 405 |
if len(x.shape) == 4 and self.patch_embed.input_size[0] == 1:
|
| 406 |
# add time dim
|
| 407 |
x = x.unsqueeze(2)
|
| 408 |
-
|
| 409 |
-
if x.shape[-3:] != self.patch_embed.input_size:
|
| 410 |
-
pos_embed = self._get_pos_embed(x)
|
| 411 |
-
else:
|
| 412 |
-
pos_embed = self.pos_embed
|
| 413 |
|
| 414 |
# embed patches
|
| 415 |
x = self.patch_embed(x)
|
| 416 |
|
|
|
|
| 417 |
# add pos embed w/o cls token
|
| 418 |
x = x + pos_embed[:, 1:, :]
|
| 419 |
|
| 420 |
-
if self.temporal_encoding:
|
| 421 |
-
num_tokens_per_frame = x.shape[1] // self.
|
| 422 |
temporal_encoding = self.temporal_embed_enc(temporal_coords, num_tokens_per_frame)
|
| 423 |
x = x + temporal_encoding
|
| 424 |
-
if self.location_encoding:
|
| 425 |
location_encoding = self.location_embed_enc(location_coords)
|
| 426 |
x = x + location_encoding
|
| 427 |
|
|
@@ -462,8 +492,8 @@ class PrithviViT(nn.Module):
|
|
| 462 |
class MAEDecoder(nn.Module):
|
| 463 |
""" Transformer Decoder used in the Prithvi MAE"""
|
| 464 |
def __init__(self,
|
| 465 |
-
patch_size: int |
|
| 466 |
-
grid_size:
|
| 467 |
in_chans: int = 3,
|
| 468 |
encoder_embed_dim: int = 1024,
|
| 469 |
decoder_embed_dim: int = 512,
|
|
@@ -471,7 +501,7 @@ class MAEDecoder(nn.Module):
|
|
| 471 |
num_heads: int = 16,
|
| 472 |
mlp_ratio: float = 4.,
|
| 473 |
norm_layer: nn.Module = nn.LayerNorm,
|
| 474 |
-
coords_encoding:
|
| 475 |
coords_scale_learn: bool = False,
|
| 476 |
):
|
| 477 |
super().__init__()
|
|
@@ -520,6 +550,18 @@ class MAEDecoder(nn.Module):
|
|
| 520 |
torch.nn.init.normal_(self.mask_token, std=0.02)
|
| 521 |
self.apply(_init_weights)
|
| 522 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 523 |
def forward(
|
| 524 |
self,
|
| 525 |
hidden_states: torch.Tensor,
|
|
@@ -530,44 +572,31 @@ class MAEDecoder(nn.Module):
|
|
| 530 |
):
|
| 531 |
# embed tokens
|
| 532 |
x = self.decoder_embed(hidden_states)
|
| 533 |
-
|
| 534 |
-
t, h, w = input_size[-3:]
|
| 535 |
-
decoder_pos_embed = torch.from_numpy(
|
| 536 |
-
get_3d_sincos_pos_embed(
|
| 537 |
-
self.decoder_embed_dim,
|
| 538 |
-
(
|
| 539 |
-
t // self.patch_size[0],
|
| 540 |
-
h // self.patch_size[1],
|
| 541 |
-
w // self.patch_size[2],
|
| 542 |
-
),
|
| 543 |
-
add_cls_token=True,
|
| 544 |
-
)
|
| 545 |
-
).to(x)
|
| 546 |
|
| 547 |
# append mask tokens to sequence
|
| 548 |
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
|
| 549 |
-
|
| 550 |
# unshuffle
|
| 551 |
-
|
| 552 |
-
x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token
|
| 553 |
-
# add pos embed
|
| 554 |
-
x = x + decoder_pos_embed
|
| 555 |
|
| 556 |
-
#
|
| 557 |
-
|
|
|
|
|
|
|
| 558 |
|
| 559 |
-
if self.temporal_encoding:
|
| 560 |
-
num_tokens_per_frame =
|
| 561 |
temporal_encoding = self.temporal_embed_dec(temporal_coords, num_tokens_per_frame)
|
| 562 |
# Add temporal encoding w/o cls token
|
| 563 |
-
|
| 564 |
-
if self.location_encoding:
|
| 565 |
location_encoding = self.location_embed_dec(location_coords)
|
| 566 |
# Add location encoding w/o cls token
|
| 567 |
-
|
| 568 |
|
| 569 |
# append cls token
|
| 570 |
-
x = torch.cat([
|
| 571 |
|
| 572 |
# apply Transformer layers (blocks)
|
| 573 |
for block in self.decoder_blocks:
|
|
@@ -587,22 +616,23 @@ class PrithviMAE(nn.Module):
|
|
| 587 |
""" Prithvi Masked Autoencoder"""
|
| 588 |
|
| 589 |
def __init__(self,
|
| 590 |
-
img_size: int |
|
| 591 |
-
patch_size: int |
|
| 592 |
-
num_frames: int =
|
| 593 |
-
in_chans: int =
|
| 594 |
-
embed_dim: int =
|
| 595 |
-
depth: int =
|
| 596 |
-
num_heads: int =
|
| 597 |
decoder_embed_dim: int = 512,
|
| 598 |
decoder_depth: int = 8,
|
| 599 |
decoder_num_heads: int = 16,
|
| 600 |
mlp_ratio: float = 4.,
|
| 601 |
-
norm_layer: nn.Module =
|
| 602 |
norm_pix_loss: bool = False,
|
| 603 |
-
coords_encoding:
|
| 604 |
coords_scale_learn: bool = False,
|
| 605 |
-
|
|
|
|
| 606 |
**kwargs,
|
| 607 |
):
|
| 608 |
super().__init__()
|
|
@@ -619,28 +649,26 @@ class PrithviMAE(nn.Module):
|
|
| 619 |
norm_layer=norm_layer,
|
| 620 |
coords_encoding=coords_encoding,
|
| 621 |
coords_scale_learn=coords_scale_learn,
|
|
|
|
| 622 |
)
|
| 623 |
|
| 624 |
-
self.
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
coords_encoding=coords_encoding,
|
| 638 |
-
coords_scale_learn=coords_scale_learn,
|
| 639 |
-
)
|
| 640 |
-
else:
|
| 641 |
-
self.decoder = nn.Identity()
|
| 642 |
|
|
|
|
| 643 |
self.norm_pix_loss = norm_pix_loss
|
|
|
|
| 644 |
|
| 645 |
def patchify(self, pixel_values):
|
| 646 |
"""
|
|
@@ -649,7 +677,8 @@ class PrithviMAE(nn.Module):
|
|
| 649 |
Pixel values.
|
| 650 |
|
| 651 |
Returns:
|
| 652 |
-
torch.FloatTensor of shape
|
|
|
|
| 653 |
Patchified pixel values.
|
| 654 |
"""
|
| 655 |
patch_size_t, patch_size_h, patch_size_w = self.encoder.patch_embed.patch_size
|
|
@@ -659,16 +688,15 @@ class PrithviMAE(nn.Module):
|
|
| 659 |
patchified_pixel_values = rearrange(pixel_values, 'b c (t s) (h p) (w q) -> b (t h w) (s p q c)',
|
| 660 |
c=num_channels, s=patch_size_t, p=patch_size_h, q=patch_size_w)
|
| 661 |
|
| 662 |
-
|
| 663 |
return patchified_pixel_values
|
| 664 |
|
| 665 |
-
def unpatchify(self, patchified_pixel_values, image_size:
|
| 666 |
"""
|
| 667 |
Args:
|
| 668 |
patchified_pixel_values (`torch.FloatTensor` of shape
|
| 669 |
-
`(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
|
| 670 |
Patchified pixel values.
|
| 671 |
-
image_size (`
|
| 672 |
Original image size.
|
| 673 |
|
| 674 |
Returns:
|
|
@@ -692,7 +720,8 @@ class PrithviMAE(nn.Module):
|
|
| 692 |
Args:
|
| 693 |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, time, height, width)`):
|
| 694 |
Pixel values.
|
| 695 |
-
pred (`torch.FloatTensor` of shape
|
|
|
|
| 696 |
Predicted pixel values.
|
| 697 |
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
| 698 |
Tensor indicating which patches are masked (1) and which are not (0).
|
|
@@ -716,12 +745,13 @@ class PrithviMAE(nn.Module):
|
|
| 716 |
pixel_values: torch.Tensor,
|
| 717 |
temporal_coords: None | torch.Tensor = None,
|
| 718 |
location_coords: None | torch.Tensor = None,
|
| 719 |
-
mask_ratio: float =
|
| 720 |
):
|
| 721 |
if len(pixel_values.shape) == 4 and self.encoder.patch_embed.input_size[0] == 1:
|
| 722 |
# add time dim
|
| 723 |
pixel_values = pixel_values.unsqueeze(2)
|
| 724 |
|
|
|
|
| 725 |
latent, mask, ids_restore = self.encoder(pixel_values, temporal_coords, location_coords, mask_ratio)
|
| 726 |
pred = self.decoder(latent, ids_restore, temporal_coords, location_coords, input_size=pixel_values.shape)
|
| 727 |
loss = self.forward_loss(pixel_values, pred, mask)
|
|
@@ -732,5 +762,5 @@ class PrithviMAE(nn.Module):
|
|
| 732 |
x: torch.Tensor,
|
| 733 |
temporal_coords: None | torch.Tensor = None,
|
| 734 |
location_coords: None | torch.Tensor = None,
|
| 735 |
-
) ->
|
| 736 |
return self.encoder.forward_features(x, temporal_coords, location_coords)
|
|
|
|
| 17 |
# transformers: https://github.com/huggingface/transformers
|
| 18 |
# --------------------------------------------------------
|
| 19 |
|
| 20 |
+
import warnings
|
|
|
|
|
|
|
| 21 |
import logging
|
| 22 |
import numpy as np
|
| 23 |
import torch
|
|
|
|
| 26 |
from timm.layers import to_2tuple
|
| 27 |
from timm.models.vision_transformer import Block
|
| 28 |
|
| 29 |
+
logger = logging.getLogger(__name__)
|
| 30 |
+
|
| 31 |
|
| 32 |
def get_3d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
|
| 33 |
"""
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
def _get_1d_sincos_embed_from_grid_torch(embed_dim: int, pos: torch.Tensor):
|
| 94 |
+
""" Modified torch version of *get_1d_sincos_pos_embed_from_grid()*.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
embed_dim: output dimension for each position
|
| 97 |
pos: a list of positions to be encoded: size (M,) - must be float dtype!
|
|
|
|
| 126 |
module.weight.data.fill_(1.0)
|
| 127 |
|
| 128 |
|
| 129 |
+
def _interpolate_pos_encoding(
|
| 130 |
+
pos_embed: torch.Tensor,
|
| 131 |
+
grid_size: tuple[int, int, int] | list[int],
|
| 132 |
+
patch_size: tuple[int, int, int] | list[int],
|
| 133 |
+
shape: tuple[int, int, int],
|
| 134 |
+
embed_dim: int,
|
| 135 |
+
):
|
| 136 |
+
"""
|
| 137 |
+
Adapted from:
|
| 138 |
+
- transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding,
|
| 139 |
+
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194
|
| 140 |
+
"""
|
| 141 |
+
t, h, w = shape
|
| 142 |
+
t_patches = t // patch_size[0]
|
| 143 |
+
h_patches = h // patch_size[1]
|
| 144 |
+
w_patches = w // patch_size[2]
|
| 145 |
+
|
| 146 |
+
if [t_patches, h_patches, w_patches] == grid_size:
|
| 147 |
+
# No interpolation needed
|
| 148 |
+
return pos_embed
|
| 149 |
+
if t_patches != grid_size[0]:
|
| 150 |
+
# Re-compute pos embedding to handle changed num_frames
|
| 151 |
+
new_grid_size = (t_patches, *grid_size[1:])
|
| 152 |
+
new_pos_embed = get_3d_sincos_pos_embed(pos_embed.shape[-1], new_grid_size, add_cls_token=True)
|
| 153 |
+
new_pos_embed = torch.from_numpy(new_pos_embed).float().unsqueeze(0)
|
| 154 |
+
else:
|
| 155 |
+
new_grid_size = grid_size
|
| 156 |
+
new_pos_embed = pos_embed
|
| 157 |
+
|
| 158 |
+
class_pos_embed, patch_pos_embed = new_pos_embed[:, :1], new_pos_embed[:, 1:]
|
| 159 |
+
|
| 160 |
+
patch_pos_embed = patch_pos_embed.reshape(*new_grid_size, embed_dim).permute(0, 3, 1, 2)
|
| 161 |
+
|
| 162 |
+
patch_pos_embed = nn.functional.interpolate(
|
| 163 |
+
patch_pos_embed,
|
| 164 |
+
size=(h_patches, w_patches),
|
| 165 |
+
mode='bicubic',
|
| 166 |
+
align_corners=True,
|
| 167 |
+
)
|
| 168 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, embed_dim)
|
| 169 |
+
|
| 170 |
+
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
class PatchEmbed(nn.Module):
|
| 174 |
"""3D version of timm.models.vision_transformer.PatchEmbed"""
|
| 175 |
def __init__(
|
| 176 |
self,
|
| 177 |
+
input_size: tuple[int, int, int] = (1, 224, 224),
|
| 178 |
+
patch_size: tuple[int, int, int] = (1, 16, 16),
|
| 179 |
in_chans: int = 3,
|
| 180 |
embed_dim: int = 768,
|
| 181 |
norm_layer: nn.Module | None = None,
|
|
|
|
| 186 |
self.input_size = input_size
|
| 187 |
self.patch_size = patch_size
|
| 188 |
self.grid_size = [s // p for s, p in zip(self.input_size, self.patch_size)]
|
| 189 |
+
assert self.grid_size >= [1, 1, 1], "Patch size is bigger than input size."
|
| 190 |
self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
|
| 191 |
self.flatten = flatten
|
| 192 |
|
|
|
|
| 197 |
B, C, T, H, W = x.shape
|
| 198 |
|
| 199 |
if T / self.patch_size[0] % 1 or H / self.patch_size[1] % 1 or W / self.patch_size[2] % 1:
|
| 200 |
+
warnings.warn(f"Input {x.shape[-3:]} is not divisible by patch size {self.patch_size}."
|
| 201 |
+
f"The border will be ignored, add backbone_padding for pixel-wise tasks.")
|
| 202 |
|
| 203 |
x = self.proj(x)
|
| 204 |
if self.flatten:
|
|
|
|
| 273 |
class PrithviViT(nn.Module):
|
| 274 |
""" Prithvi ViT Encoder"""
|
| 275 |
def __init__(self,
|
| 276 |
+
img_size: int | tuple[int, int] = 224,
|
| 277 |
+
patch_size: int | tuple[int, int, int] = (1, 16, 16),
|
| 278 |
num_frames: int = 1,
|
| 279 |
in_chans: int = 3,
|
| 280 |
embed_dim: int = 1024,
|
| 281 |
depth: int = 24,
|
| 282 |
num_heads: int = 16,
|
| 283 |
mlp_ratio: float = 4.,
|
| 284 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
| 285 |
+
coords_encoding: list[str] | None = None,
|
| 286 |
coords_scale_learn: bool = False,
|
| 287 |
+
drop_path: float = 0.,
|
| 288 |
** kwargs,
|
| 289 |
):
|
| 290 |
super().__init__()
|
| 291 |
|
|
|
|
|
|
|
| 292 |
self.in_chans = in_chans
|
| 293 |
self.num_frames = num_frames
|
| 294 |
self.embed_dim = embed_dim
|
|
|
|
| 303 |
in_chans=in_chans,
|
| 304 |
embed_dim=embed_dim,
|
| 305 |
)
|
| 306 |
+
self.out_channels = [embed_dim * self.patch_embed.grid_size[0]] * depth
|
| 307 |
|
| 308 |
# Optional temporal and location embedding
|
| 309 |
coords_encoding = coords_encoding or []
|
|
|
|
| 321 |
# Transformer layers
|
| 322 |
self.blocks = []
|
| 323 |
for i in range(depth):
|
| 324 |
+
self.blocks.append(Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
|
| 325 |
+
drop_path=drop_path,))
|
|
|
|
|
|
|
| 326 |
self.blocks = nn.ModuleList(self.blocks)
|
| 327 |
|
| 328 |
self.norm = norm_layer(embed_dim)
|
|
|
|
| 377 |
|
| 378 |
return sequence_unmasked, mask, ids_restore
|
| 379 |
|
| 380 |
+
def interpolate_pos_encoding(self, sample_shape: tuple[int, int, int]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
|
| 382 |
+
pos_embed = _interpolate_pos_encoding(
|
| 383 |
+
pos_embed=self.pos_embed,
|
| 384 |
+
grid_size=self.patch_embed.grid_size,
|
| 385 |
+
patch_size=self.patch_embed.patch_size,
|
| 386 |
+
shape=sample_shape,
|
| 387 |
+
embed_dim=self.embed_dim,
|
| 388 |
+
)
|
| 389 |
return pos_embed
|
| 390 |
|
|
|
|
| 391 |
def forward(
|
| 392 |
self, x: torch.Tensor,
|
| 393 |
temporal_coords: None | torch.Tensor = None,
|
| 394 |
location_coords: None | torch.Tensor = None,
|
| 395 |
mask_ratio=0.75
|
| 396 |
):
|
| 397 |
+
if len(x.shape) == 4 and self.patch_embed.input_size[0] == 1:
|
| 398 |
+
# add time dim
|
| 399 |
+
x = x.unsqueeze(2)
|
| 400 |
+
sample_shape = x.shape[-3:]
|
|
|
|
| 401 |
|
| 402 |
# embed patches
|
| 403 |
x = self.patch_embed(x)
|
| 404 |
|
| 405 |
+
pos_embed = self.interpolate_pos_encoding(sample_shape)
|
| 406 |
# add pos embed w/o cls token
|
| 407 |
x = x + pos_embed[:, 1:, :]
|
| 408 |
|
| 409 |
+
if self.temporal_encoding and temporal_coords is not None:
|
| 410 |
num_tokens_per_frame = x.shape[1] // self.num_frames
|
| 411 |
temporal_encoding = self.temporal_embed_enc(temporal_coords, num_tokens_per_frame)
|
| 412 |
x = x + temporal_encoding
|
| 413 |
+
if self.location_encoding and location_coords is not None:
|
| 414 |
location_encoding = self.location_embed_enc(location_coords)
|
| 415 |
x = x + location_encoding
|
| 416 |
|
|
|
|
| 438 |
if len(x.shape) == 4 and self.patch_embed.input_size[0] == 1:
|
| 439 |
# add time dim
|
| 440 |
x = x.unsqueeze(2)
|
| 441 |
+
sample_shape = x.shape[-3:]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
|
| 443 |
# embed patches
|
| 444 |
x = self.patch_embed(x)
|
| 445 |
|
| 446 |
+
pos_embed = self.interpolate_pos_encoding(sample_shape)
|
| 447 |
# add pos embed w/o cls token
|
| 448 |
x = x + pos_embed[:, 1:, :]
|
| 449 |
|
| 450 |
+
if self.temporal_encoding and temporal_coords is not None:
|
| 451 |
+
num_tokens_per_frame = x.shape[1] // self.num_frames
|
| 452 |
temporal_encoding = self.temporal_embed_enc(temporal_coords, num_tokens_per_frame)
|
| 453 |
x = x + temporal_encoding
|
| 454 |
+
if self.location_encoding and location_coords is not None:
|
| 455 |
location_encoding = self.location_embed_enc(location_coords)
|
| 456 |
x = x + location_encoding
|
| 457 |
|
|
|
|
| 492 |
class MAEDecoder(nn.Module):
|
| 493 |
""" Transformer Decoder used in the Prithvi MAE"""
|
| 494 |
def __init__(self,
|
| 495 |
+
patch_size: int | tuple[int, int, int] = (1, 16, 16),
|
| 496 |
+
grid_size: list[int] | tuple[int, int, int] = (3, 14, 14),
|
| 497 |
in_chans: int = 3,
|
| 498 |
encoder_embed_dim: int = 1024,
|
| 499 |
decoder_embed_dim: int = 512,
|
|
|
|
| 501 |
num_heads: int = 16,
|
| 502 |
mlp_ratio: float = 4.,
|
| 503 |
norm_layer: nn.Module = nn.LayerNorm,
|
| 504 |
+
coords_encoding: list[str] | None = None,
|
| 505 |
coords_scale_learn: bool = False,
|
| 506 |
):
|
| 507 |
super().__init__()
|
|
|
|
| 550 |
torch.nn.init.normal_(self.mask_token, std=0.02)
|
| 551 |
self.apply(_init_weights)
|
| 552 |
|
| 553 |
+
def interpolate_pos_encoding(self, sample_shape: tuple[int, int, int]):
|
| 554 |
+
|
| 555 |
+
pos_embed = _interpolate_pos_encoding(
|
| 556 |
+
pos_embed=self.decoder_pos_embed,
|
| 557 |
+
grid_size=self.grid_size,
|
| 558 |
+
patch_size=self.patch_size,
|
| 559 |
+
shape=sample_shape,
|
| 560 |
+
embed_dim=self.decoder_embed_dim,
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
return pos_embed
|
| 564 |
+
|
| 565 |
def forward(
|
| 566 |
self,
|
| 567 |
hidden_states: torch.Tensor,
|
|
|
|
| 572 |
):
|
| 573 |
# embed tokens
|
| 574 |
x = self.decoder_embed(hidden_states)
|
| 575 |
+
cls_token = x[:, :1, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 576 |
|
| 577 |
# append mask tokens to sequence
|
| 578 |
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
|
| 579 |
+
x = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token
|
| 580 |
# unshuffle
|
| 581 |
+
x = torch.gather(x, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]).to(x.device))
|
|
|
|
|
|
|
|
|
|
| 582 |
|
| 583 |
+
# add pos embed
|
| 584 |
+
decoder_pos_embed = self.interpolate_pos_encoding(input_size[-3:])
|
| 585 |
+
cls_token = cls_token + decoder_pos_embed[:, :1, :]
|
| 586 |
+
x = x + decoder_pos_embed[:, 1:, :]
|
| 587 |
|
| 588 |
+
if self.temporal_encoding and temporal_coords is not None:
|
| 589 |
+
num_tokens_per_frame = x.shape[1] // self.num_frames
|
| 590 |
temporal_encoding = self.temporal_embed_dec(temporal_coords, num_tokens_per_frame)
|
| 591 |
# Add temporal encoding w/o cls token
|
| 592 |
+
x = x + temporal_encoding
|
| 593 |
+
if self.location_encoding and location_coords is not None:
|
| 594 |
location_encoding = self.location_embed_dec(location_coords)
|
| 595 |
# Add location encoding w/o cls token
|
| 596 |
+
x = x + location_encoding
|
| 597 |
|
| 598 |
# append cls token
|
| 599 |
+
x = torch.cat([cls_token, x], dim=1)
|
| 600 |
|
| 601 |
# apply Transformer layers (blocks)
|
| 602 |
for block in self.decoder_blocks:
|
|
|
|
| 616 |
""" Prithvi Masked Autoencoder"""
|
| 617 |
|
| 618 |
def __init__(self,
|
| 619 |
+
img_size: int | tuple[int, int] = 224,
|
| 620 |
+
patch_size: int | tuple[int, int, int] = (1, 16, 16),
|
| 621 |
+
num_frames: int = 4,
|
| 622 |
+
in_chans: int = 6,
|
| 623 |
+
embed_dim: int = 768,
|
| 624 |
+
depth: int = 12,
|
| 625 |
+
num_heads: int = 12,
|
| 626 |
decoder_embed_dim: int = 512,
|
| 627 |
decoder_depth: int = 8,
|
| 628 |
decoder_num_heads: int = 16,
|
| 629 |
mlp_ratio: float = 4.,
|
| 630 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
| 631 |
norm_pix_loss: bool = False,
|
| 632 |
+
coords_encoding: list[str] | None = None,
|
| 633 |
coords_scale_learn: bool = False,
|
| 634 |
+
drop_path: float = 0.,
|
| 635 |
+
mask_ratio: float = 0.75,
|
| 636 |
**kwargs,
|
| 637 |
):
|
| 638 |
super().__init__()
|
|
|
|
| 649 |
norm_layer=norm_layer,
|
| 650 |
coords_encoding=coords_encoding,
|
| 651 |
coords_scale_learn=coords_scale_learn,
|
| 652 |
+
drop_path=drop_path,
|
| 653 |
)
|
| 654 |
|
| 655 |
+
self.decoder = MAEDecoder(
|
| 656 |
+
patch_size=patch_size,
|
| 657 |
+
grid_size=self.encoder.patch_embed.grid_size,
|
| 658 |
+
in_chans=in_chans,
|
| 659 |
+
encoder_embed_dim=embed_dim,
|
| 660 |
+
decoder_embed_dim=decoder_embed_dim,
|
| 661 |
+
depth=decoder_depth,
|
| 662 |
+
num_heads=decoder_num_heads,
|
| 663 |
+
mlp_ratio=mlp_ratio,
|
| 664 |
+
norm_layer=norm_layer,
|
| 665 |
+
coords_encoding=coords_encoding,
|
| 666 |
+
coords_scale_learn=coords_scale_learn,
|
| 667 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 668 |
|
| 669 |
+
self.mask_ratio = mask_ratio
|
| 670 |
self.norm_pix_loss = norm_pix_loss
|
| 671 |
+
self.out_channels = self.encoder.out_channels
|
| 672 |
|
| 673 |
def patchify(self, pixel_values):
|
| 674 |
"""
|
|
|
|
| 677 |
Pixel values.
|
| 678 |
|
| 679 |
Returns:
|
| 680 |
+
torch.FloatTensor of shape
|
| 681 |
+
`(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
|
| 682 |
Patchified pixel values.
|
| 683 |
"""
|
| 684 |
patch_size_t, patch_size_h, patch_size_w = self.encoder.patch_embed.patch_size
|
|
|
|
| 688 |
patchified_pixel_values = rearrange(pixel_values, 'b c (t s) (h p) (w q) -> b (t h w) (s p q c)',
|
| 689 |
c=num_channels, s=patch_size_t, p=patch_size_h, q=patch_size_w)
|
| 690 |
|
|
|
|
| 691 |
return patchified_pixel_values
|
| 692 |
|
| 693 |
+
def unpatchify(self, patchified_pixel_values, image_size: tuple[int, int] | None = None):
|
| 694 |
"""
|
| 695 |
Args:
|
| 696 |
patchified_pixel_values (`torch.FloatTensor` of shape
|
| 697 |
+
`(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels))`:
|
| 698 |
Patchified pixel values.
|
| 699 |
+
image_size (`tuple[int, int]`, *optional*):
|
| 700 |
Original image size.
|
| 701 |
|
| 702 |
Returns:
|
|
|
|
| 720 |
Args:
|
| 721 |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, time, height, width)`):
|
| 722 |
Pixel values.
|
| 723 |
+
pred (`torch.FloatTensor` of shape
|
| 724 |
+
`(batch_size, num_patches, patch_size[0]*patch_size[1]*patch_size[2] * num_channels)`:
|
| 725 |
Predicted pixel values.
|
| 726 |
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
| 727 |
Tensor indicating which patches are masked (1) and which are not (0).
|
|
|
|
| 745 |
pixel_values: torch.Tensor,
|
| 746 |
temporal_coords: None | torch.Tensor = None,
|
| 747 |
location_coords: None | torch.Tensor = None,
|
| 748 |
+
mask_ratio: float = None,
|
| 749 |
):
|
| 750 |
if len(pixel_values.shape) == 4 and self.encoder.patch_embed.input_size[0] == 1:
|
| 751 |
# add time dim
|
| 752 |
pixel_values = pixel_values.unsqueeze(2)
|
| 753 |
|
| 754 |
+
mask_ratio = mask_ratio or self.mask_ratio
|
| 755 |
latent, mask, ids_restore = self.encoder(pixel_values, temporal_coords, location_coords, mask_ratio)
|
| 756 |
pred = self.decoder(latent, ids_restore, temporal_coords, location_coords, input_size=pixel_values.shape)
|
| 757 |
loss = self.forward_loss(pixel_values, pred, mask)
|
|
|
|
| 762 |
x: torch.Tensor,
|
| 763 |
temporal_coords: None | torch.Tensor = None,
|
| 764 |
location_coords: None | torch.Tensor = None,
|
| 765 |
+
) -> list[torch.Tensor]:
|
| 766 |
return self.encoder.forward_features(x, temporal_coords, location_coords)
|