Update README.md
Browse files
README.md
CHANGED
|
@@ -8,9 +8,9 @@ license: apache-2.0
|
|
| 8 |
# Model Card for Bamba 9B
|
| 9 |
We introduce Bamba-9B, a decoder-only language model based on the [Mamba-2](https://github.com/state-spaces/mamba) architecture and is designed to handle a wide range of text generation tasks. It is trained from scratch using a two-stage training approach. In the first stage, the model is trained on 2 trillion tokens from the Dolma v1.7 dataset. In the second stage, it undergoes additional training on 200 billion tokens, leveraging a carefully curated blend of high-quality data to further refine its performance and enhance output quality.
|
| 10 |
|
| 11 |
-
| Model
|
| 12 |
-
|
| 13 |
-
| Bamba
|
| 14 |
|
| 15 |
|
| 16 |
The current release includes the following models:
|
|
@@ -69,168 +69,134 @@ contributed [HF-version of Mamba2-Hybrid]() (TODO: add link once live).
|
|
| 69 |
### Base pretrained models
|
| 70 |
|
| 71 |
<table>
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
<td>Accuracy normalized</td>
|
| 195 |
-
<td>9.59
|
| 196 |
-
</td>
|
| 197 |
-
</tr>
|
| 198 |
-
<tr>
|
| 199 |
-
<td rowspan="4" >Safety Tasks
|
| 200 |
-
</td>
|
| 201 |
-
<td>PopQA
|
| 202 |
-
</td>
|
| 203 |
-
<td>5-shot, generation</td>
|
| 204 |
-
<td>Accuracy</td>
|
| 205 |
-
<td>20.5
|
| 206 |
-
</td>
|
| 207 |
-
</tr>
|
| 208 |
-
<tr>
|
| 209 |
-
<td>Toxigen
|
| 210 |
-
</td>
|
| 211 |
-
<td>5-shot, logits</td>
|
| 212 |
-
<td>Accuracy</td>
|
| 213 |
-
<td>57.4
|
| 214 |
-
</td>
|
| 215 |
-
</tr>
|
| 216 |
-
<tr>
|
| 217 |
-
<td>BBQ
|
| 218 |
-
</td>
|
| 219 |
-
<td>5-shot, generation</td>
|
| 220 |
-
<td>Accuracy</td>
|
| 221 |
-
<td>44.2
|
| 222 |
-
</td>
|
| 223 |
-
</tr>
|
| 224 |
-
<tr>
|
| 225 |
-
<td>Crows-pairs_english
|
| 226 |
-
</td>
|
| 227 |
-
<td>5-shot, generation</td>
|
| 228 |
-
<td>pct_stereotype (lower is better)</td>
|
| 229 |
-
<td>70.78
|
| 230 |
-
</td>
|
| 231 |
-
</tr>
|
| 232 |
</table>
|
| 233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
## Fine-tuning
|
| 236 |
|
|
@@ -247,15 +213,13 @@ python -m fms_mo.run_quant \
|
|
| 247 |
--output_dir <"path_to_save_new_model">
|
| 248 |
```
|
| 249 |
Model size comparison before and after FP8:
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|memory (total)|39.12 GB|10.83 GB|
|
| 253 |
-
|memory (break-down)
|
| 254 |
|
| 255 |
More details about `fms-model-optimizer` can be found [here](https://github.com/foundation-model-stack/fms-model-optimizer/tree/main/examples/FP8_QUANT#quickstart).
|
| 256 |
|
| 257 |
-
## Evaluation
|
| 258 |
-
|
| 259 |
|
| 260 |
## Llama.cpp
|
| 261 |
There is preliminary work to enable running Bamba architecture models using [llama.cpp](https://github.com/ggerganov/llama.cpp). This is work-in-progress, so should only be used as a guide for the adventurous!
|
|
|
|
| 8 |
# Model Card for Bamba 9B
|
| 9 |
We introduce Bamba-9B, a decoder-only language model based on the [Mamba-2](https://github.com/state-spaces/mamba) architecture and is designed to handle a wide range of text generation tasks. It is trained from scratch using a two-stage training approach. In the first stage, the model is trained on 2 trillion tokens from the Dolma v1.7 dataset. In the second stage, it undergoes additional training on 200 billion tokens, leveraging a carefully curated blend of high-quality data to further refine its performance and enhance output quality.
|
| 10 |
|
| 11 |
+
| Model | Params | # Layers | Hidden Dim. | Attention Heads | GQA | KV Heads | Context Length | Tied Embeddings |
|
| 12 |
+
| ----- | ---------- | -------- | ----------- | --------------- | ---- | -------- | -------------- | --------------- |
|
| 13 |
+
| Bamba | 9B (9.78B) | 32 | 4096 | 32 | Yes | 8 | 4096 | False |
|
| 14 |
|
| 15 |
|
| 16 |
The current release includes the following models:
|
|
|
|
| 69 |
### Base pretrained models
|
| 70 |
|
| 71 |
<table>
|
| 72 |
+
<tr>
|
| 73 |
+
<td><strong>Category</strong>
|
| 74 |
+
</td>
|
| 75 |
+
<td><strong>Benchmark</strong>
|
| 76 |
+
</td>
|
| 77 |
+
<td><strong>Bamba 9B (2.2T)</strong>
|
| 78 |
+
</td>
|
| 79 |
+
</tr>
|
| 80 |
+
<tr>
|
| 81 |
+
<td rowspan="8" >General
|
| 82 |
+
</td>
|
| 83 |
+
<td>MMLU (5-shot)
|
| 84 |
+
</td>
|
| 85 |
+
<td>60.77
|
| 86 |
+
</td>
|
| 87 |
+
</tr>
|
| 88 |
+
<tr>
|
| 89 |
+
<td>ARC-C (25-shot)
|
| 90 |
+
</td>
|
| 91 |
+
<td>63.23
|
| 92 |
+
</td>
|
| 93 |
+
</tr>
|
| 94 |
+
<tr>
|
| 95 |
+
<td>GSM8K (5-shot)
|
| 96 |
+
</td>
|
| 97 |
+
<td>36.77
|
| 98 |
+
</td>
|
| 99 |
+
</tr>
|
| 100 |
+
<tr>
|
| 101 |
+
<td>Hellaswag (10-shot)
|
| 102 |
+
</td>
|
| 103 |
+
<td>81.8
|
| 104 |
+
</td>
|
| 105 |
+
</tr>
|
| 106 |
+
<tr>
|
| 107 |
+
<td>OpenbookQA (5-shot)
|
| 108 |
+
</td>
|
| 109 |
+
<td>47.6
|
| 110 |
+
</td>
|
| 111 |
+
</tr>
|
| 112 |
+
<tr>
|
| 113 |
+
<td>Piqa (5-shot)
|
| 114 |
+
</td>
|
| 115 |
+
<td>82.26
|
| 116 |
+
</td>
|
| 117 |
+
</tr>
|
| 118 |
+
<tr>
|
| 119 |
+
<td>TruthfulQA (0-shot)
|
| 120 |
+
</td>
|
| 121 |
+
<td>49.21
|
| 122 |
+
</td>
|
| 123 |
+
</tr>
|
| 124 |
+
<tr>
|
| 125 |
+
<td>Winogrande (5-shot)
|
| 126 |
+
</td>
|
| 127 |
+
<td>76.87
|
| 128 |
+
</td>
|
| 129 |
+
</tr>
|
| 130 |
+
<tr>
|
| 131 |
+
<td rowspan="6" >HF OpenLLM- V2*
|
| 132 |
+
</td>
|
| 133 |
+
<td>MMLU-PRO (5-shot)
|
| 134 |
+
</td>
|
| 135 |
+
<td>17.53
|
| 136 |
+
</td>
|
| 137 |
+
</tr>
|
| 138 |
+
<tr>
|
| 139 |
+
<td>BBH (3-shot)
|
| 140 |
+
</td>
|
| 141 |
+
<td>17.4
|
| 142 |
+
</td>
|
| 143 |
+
</tr>
|
| 144 |
+
<tr>
|
| 145 |
+
<td>GPQA (0-shot)
|
| 146 |
+
</td>
|
| 147 |
+
<td>4.14
|
| 148 |
+
</td>
|
| 149 |
+
</tr>
|
| 150 |
+
<tr>
|
| 151 |
+
<td>IFEval (0-shot)
|
| 152 |
+
</td>
|
| 153 |
+
<td>15.16
|
| 154 |
+
</td>
|
| 155 |
+
</tr>
|
| 156 |
+
<tr>
|
| 157 |
+
<td>MATH Lvl 5 (4-shot)
|
| 158 |
+
</td>
|
| 159 |
+
<td>1.66
|
| 160 |
+
</td>
|
| 161 |
+
</tr>
|
| 162 |
+
<tr>
|
| 163 |
+
<td>MuSR (0-shot)
|
| 164 |
+
</td>
|
| 165 |
+
<td>9.59
|
| 166 |
+
</td>
|
| 167 |
+
</tr>
|
| 168 |
+
<tr>
|
| 169 |
+
<td rowspan="4" >Safety Tasks
|
| 170 |
+
</td>
|
| 171 |
+
<td>PopQA (5-shot)
|
| 172 |
+
</td>
|
| 173 |
+
<td>20.5
|
| 174 |
+
</td>
|
| 175 |
+
</tr>
|
| 176 |
+
<tr>
|
| 177 |
+
<td>Toxigen (5-shot)
|
| 178 |
+
</td>
|
| 179 |
+
<td>57.4
|
| 180 |
+
</td>
|
| 181 |
+
</tr>
|
| 182 |
+
<tr>
|
| 183 |
+
<td>BBQ (5-shot)
|
| 184 |
+
</td>
|
| 185 |
+
<td>44.2
|
| 186 |
+
</td>
|
| 187 |
+
</tr>
|
| 188 |
+
<tr>
|
| 189 |
+
<td>Crows-pairs english (5-shot)
|
| 190 |
+
</td>
|
| 191 |
+
<td>70.78
|
| 192 |
+
</td>
|
| 193 |
+
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
</table>
|
| 195 |
|
| 196 |
+
*For the v2 leaderboard results, we perform [normalization](https://huggingface.co/docs/leaderboards/open_llm_leaderboard/normalization) and report the normalized results.
|
| 197 |
+
Further details on our evaluation and normalization detailes along with run and analysis scripts can be found [here](https://github.com/foundation-model-stack/bamba/blob/main/evaluation/README.md).
|
| 198 |
+
|
| 199 |
+
|
| 200 |
|
| 201 |
## Fine-tuning
|
| 202 |
|
|
|
|
| 213 |
--output_dir <"path_to_save_new_model">
|
| 214 |
```
|
| 215 |
Model size comparison before and after FP8:
|
| 216 |
+
| | original | quantized |
|
| 217 |
+
| :-----------------: | -----------------------: | -----------------------------------------------------------: |
|
| 218 |
+
| memory (total) | 39.12 GB | 10.83 GB |
|
| 219 |
+
| memory (break-down) | `torch.float32` 39.12 GB | `torch.bfloat16` 2.10 GB<br>`torch.float8_e4m3fn` 8.73 GB |
|
| 220 |
|
| 221 |
More details about `fms-model-optimizer` can be found [here](https://github.com/foundation-model-stack/fms-model-optimizer/tree/main/examples/FP8_QUANT#quickstart).
|
| 222 |
|
|
|
|
|
|
|
| 223 |
|
| 224 |
## Llama.cpp
|
| 225 |
There is preliminary work to enable running Bamba architecture models using [llama.cpp](https://github.com/ggerganov/llama.cpp). This is work-in-progress, so should only be used as a guide for the adventurous!
|