Commit
·
7e908f7
1
Parent(s):
aa3e7f3
Upload model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,696 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import torchvision.models as models
|
| 5 |
+
from torch.jit import script
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class WSConv2d(nn.Conv2d):
|
| 9 |
+
def __init___(self, in_channels, out_channels, kernel_size, stride=1,
|
| 10 |
+
padding=0, dilation=1, groups=1, bias=True):
|
| 11 |
+
super(WSConv2d, self).__init__(in_channels, out_channels, kernel_size, stride,
|
| 12 |
+
padding, dilation, groups, bias)
|
| 13 |
+
|
| 14 |
+
def forward(self, x):
|
| 15 |
+
weight = self.weight
|
| 16 |
+
weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
|
| 17 |
+
weight = weight - weight_mean
|
| 18 |
+
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
|
| 19 |
+
# std = torch.sqrt(torch.var(weight.view(weight.size(0),-1),dim=1)+1e-12).view(-1,1,1,1)+1e-5
|
| 20 |
+
weight = weight / std.expand_as(weight)
|
| 21 |
+
return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def conv_ws(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
|
| 25 |
+
return WSConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation,
|
| 26 |
+
groups=groups, bias=bias)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
'''
|
| 30 |
+
class Mish(nn.Module):
|
| 31 |
+
def __init__(self):
|
| 32 |
+
super(Mish, self).__init__()
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
return x*torch.tanh(F.softplus(x))
|
| 35 |
+
'''
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
@script
|
| 39 |
+
def _mish_jit_fwd(x): return x.mul(torch.tanh(F.softplus(x)))
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@script
|
| 43 |
+
def _mish_jit_bwd(x, grad_output):
|
| 44 |
+
x_sigmoid = torch.sigmoid(x)
|
| 45 |
+
x_tanh_sp = F.softplus(x).tanh()
|
| 46 |
+
return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp))
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class MishJitAutoFn(torch.autograd.Function):
|
| 50 |
+
@staticmethod
|
| 51 |
+
def forward(ctx, x):
|
| 52 |
+
ctx.save_for_backward(x)
|
| 53 |
+
return _mish_jit_fwd(x)
|
| 54 |
+
|
| 55 |
+
@staticmethod
|
| 56 |
+
def backward(ctx, grad_output):
|
| 57 |
+
x = ctx.saved_variables[0]
|
| 58 |
+
return _mish_jit_bwd(x, grad_output)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# Cell
|
| 62 |
+
def mish(x): return MishJitAutoFn.apply(x)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Mish(nn.Module):
|
| 66 |
+
def __init__(self, inplace: bool = False):
|
| 67 |
+
super(Mish, self).__init__()
|
| 68 |
+
|
| 69 |
+
def forward(self, x):
|
| 70 |
+
return MishJitAutoFn.apply(x)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
######################################################################################################################
|
| 74 |
+
######################################################################################################################
|
| 75 |
+
|
| 76 |
+
# pre-activation based upsampling conv block
|
| 77 |
+
class upConvLayer(nn.Module):
|
| 78 |
+
def __init__(self, in_channels, out_channels, scale_factor, norm, act, num_groups):
|
| 79 |
+
super(upConvLayer, self).__init__()
|
| 80 |
+
conv = conv_ws
|
| 81 |
+
if act == 'ELU':
|
| 82 |
+
act = nn.ELU()
|
| 83 |
+
elif act == 'Mish':
|
| 84 |
+
act = Mish()
|
| 85 |
+
else:
|
| 86 |
+
act = nn.ReLU(True)
|
| 87 |
+
self.conv = conv(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1,
|
| 88 |
+
bias=False)
|
| 89 |
+
if norm == 'GN':
|
| 90 |
+
self.norm = nn.GroupNorm(num_groups=num_groups, num_channels=in_channels)
|
| 91 |
+
else:
|
| 92 |
+
self.norm = nn.BatchNorm2d(in_channels, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
|
| 93 |
+
self.act = act
|
| 94 |
+
self.scale_factor = scale_factor
|
| 95 |
+
|
| 96 |
+
def forward(self, x):
|
| 97 |
+
x = self.norm(x)
|
| 98 |
+
x = self.act(x) # pre-activation
|
| 99 |
+
x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear')
|
| 100 |
+
x = self.conv(x)
|
| 101 |
+
return x
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# pre-activation based conv block
|
| 105 |
+
class myConv(nn.Module):
|
| 106 |
+
def __init__(self, in_ch, out_ch, kSize, stride=1,
|
| 107 |
+
padding=0, dilation=1, bias=True, norm='GN', act='ELU', num_groups=32):
|
| 108 |
+
super(myConv, self).__init__()
|
| 109 |
+
conv = conv_ws
|
| 110 |
+
if act == 'ELU':
|
| 111 |
+
act = nn.ELU()
|
| 112 |
+
elif act == 'Mish':
|
| 113 |
+
act = Mish()
|
| 114 |
+
else:
|
| 115 |
+
act = nn.ReLU(True)
|
| 116 |
+
module = []
|
| 117 |
+
if norm == 'GN':
|
| 118 |
+
module.append(nn.GroupNorm(num_groups=num_groups, num_channels=in_ch))
|
| 119 |
+
else:
|
| 120 |
+
module.append(nn.BatchNorm2d(in_ch, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))
|
| 121 |
+
module.append(act)
|
| 122 |
+
module.append(conv(in_ch, out_ch, kernel_size=kSize, stride=stride,
|
| 123 |
+
padding=padding, dilation=dilation, groups=1, bias=bias))
|
| 124 |
+
self.module = nn.Sequential(*module)
|
| 125 |
+
|
| 126 |
+
def forward(self, x):
|
| 127 |
+
out = self.module(x)
|
| 128 |
+
return out
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# Deep Feature Fxtractor
|
| 132 |
+
class deepFeatureExtractor_ResNext101(nn.Module):
|
| 133 |
+
def __init__(self, args, lv6=False):
|
| 134 |
+
super(deepFeatureExtractor_ResNext101, self).__init__()
|
| 135 |
+
self.args = args
|
| 136 |
+
# after passing ReLU : H/2 x W/2
|
| 137 |
+
# after passing Layer1 : H/4 x W/4
|
| 138 |
+
# after passing Layer2 : H/8 x W/8
|
| 139 |
+
# after passing Layer3 : H/16 x W/16
|
| 140 |
+
self.encoder = models.resnext101_32x8d(weights=models.ResNeXt101_32X8D_Weights.DEFAULT)
|
| 141 |
+
self.fixList = ['layer1.0', 'layer1.1', '.bn']
|
| 142 |
+
self.lv6 = lv6
|
| 143 |
+
|
| 144 |
+
if lv6 is True:
|
| 145 |
+
self.layerList = ['relu', 'layer1', 'layer2', 'layer3', 'layer4']
|
| 146 |
+
self.dimList = [64, 256, 512, 1024, 2048]
|
| 147 |
+
else:
|
| 148 |
+
del self.encoder.layer4
|
| 149 |
+
del self.encoder.fc
|
| 150 |
+
self.layerList = ['relu', 'layer1', 'layer2', 'layer3']
|
| 151 |
+
self.dimList = [64, 256, 512, 1024]
|
| 152 |
+
|
| 153 |
+
for name, parameters in self.encoder.named_parameters():
|
| 154 |
+
if name == 'conv1.weight':
|
| 155 |
+
parameters.requires_grad = False
|
| 156 |
+
if any(x in name for x in self.fixList):
|
| 157 |
+
parameters.requires_grad = False
|
| 158 |
+
|
| 159 |
+
def forward(self, x):
|
| 160 |
+
out_featList = []
|
| 161 |
+
feature = x
|
| 162 |
+
for k, v in self.encoder._modules.items():
|
| 163 |
+
if k == 'avgpool':
|
| 164 |
+
break
|
| 165 |
+
feature = v(feature)
|
| 166 |
+
# feature = v(features[-1])
|
| 167 |
+
# features.append(feature)
|
| 168 |
+
if any(x in k for x in self.layerList):
|
| 169 |
+
out_featList.append(feature)
|
| 170 |
+
return out_featList
|
| 171 |
+
|
| 172 |
+
def freeze_bn(self, enable=False):
|
| 173 |
+
""" Adapted from https://discuss.pytorch.org/t/how-to-train-with-frozen-batchnorm/12106/8 """
|
| 174 |
+
for module in self.modules():
|
| 175 |
+
if isinstance(module, nn.BatchNorm2d):
|
| 176 |
+
module.train() if enable else module.eval()
|
| 177 |
+
|
| 178 |
+
module.weight.requires_grad = enable
|
| 179 |
+
module.bias.requires_grad = enable
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# ASPP Module
|
| 183 |
+
class Dilated_bottleNeck(nn.Module):
|
| 184 |
+
def __init__(self, norm, act, in_feat):
|
| 185 |
+
super(Dilated_bottleNeck, self).__init__()
|
| 186 |
+
conv = conv_ws
|
| 187 |
+
# in feat = 1024 in ResNext101 and ResNet101
|
| 188 |
+
self.reduction1 = conv(in_feat, in_feat // 2, kernel_size=1, stride=1, bias=False, padding=0)
|
| 189 |
+
self.aspp_d3 = nn.Sequential(
|
| 190 |
+
myConv(in_feat // 2, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False, norm=norm, act=act,
|
| 191 |
+
num_groups=(in_feat // 2) // 16),
|
| 192 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=3, dilation=3, bias=False, norm=norm, act=act,
|
| 193 |
+
num_groups=(in_feat // 4) // 16))
|
| 194 |
+
self.aspp_d6 = nn.Sequential(
|
| 195 |
+
myConv(in_feat // 2 + in_feat // 4, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
| 196 |
+
norm=norm, act=act, num_groups=(in_feat // 2 + in_feat // 4) // 16),
|
| 197 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=6, dilation=6, bias=False, norm=norm, act=act,
|
| 198 |
+
num_groups=(in_feat // 4) // 16))
|
| 199 |
+
self.aspp_d12 = nn.Sequential(
|
| 200 |
+
myConv(in_feat, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False, norm=norm, act=act,
|
| 201 |
+
num_groups=(in_feat) // 16),
|
| 202 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=12, dilation=12, bias=False, norm=norm,
|
| 203 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
| 204 |
+
self.aspp_d18 = nn.Sequential(
|
| 205 |
+
myConv(in_feat + in_feat // 4, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
| 206 |
+
norm=norm, act=act, num_groups=(in_feat + in_feat // 4) // 16),
|
| 207 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=18, dilation=18, bias=False, norm=norm,
|
| 208 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
| 209 |
+
self.reduction2 = myConv(((in_feat // 4) * 4) + (in_feat // 2), in_feat // 2, kSize=3, stride=1, padding=1,
|
| 210 |
+
bias=False, norm=norm, act=act, num_groups=((in_feat // 4) * 4 + (in_feat // 2)) // 16)
|
| 211 |
+
|
| 212 |
+
def forward(self, x):
|
| 213 |
+
x = self.reduction1(x)
|
| 214 |
+
d3 = self.aspp_d3(x)
|
| 215 |
+
cat1 = torch.cat([x, d3], dim=1)
|
| 216 |
+
d6 = self.aspp_d6(cat1)
|
| 217 |
+
cat2 = torch.cat([cat1, d6], dim=1)
|
| 218 |
+
d12 = self.aspp_d12(cat2)
|
| 219 |
+
cat3 = torch.cat([cat2, d12], dim=1)
|
| 220 |
+
d18 = self.aspp_d18(cat3)
|
| 221 |
+
out = self.reduction2(torch.cat([x, d3, d6, d12, d18], dim=1))
|
| 222 |
+
return out # 512 x H/16 x W/16
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
class Dilated_bottleNeck2(nn.Module):
|
| 226 |
+
def __init__(self, norm, act, in_feat):
|
| 227 |
+
super(Dilated_bottleNeck2, self).__init__()
|
| 228 |
+
conv = conv_ws
|
| 229 |
+
# in feat = 1024 in ResNext101 and ResNet101
|
| 230 |
+
# self.reduction1 = conv(in_feat, in_feat//2, kernel_size=1, stride = 1, bias=False, padding=0)
|
| 231 |
+
self.reduction1 = conv(in_feat, in_feat // 2, kernel_size=3, stride=1, padding=1, bias=False)
|
| 232 |
+
self.aspp_d3 = nn.Sequential(
|
| 233 |
+
myConv(in_feat // 2, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False, norm=norm, act=act,
|
| 234 |
+
num_groups=(in_feat // 2) // 16),
|
| 235 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=3, dilation=3, bias=False, norm=norm, act=act,
|
| 236 |
+
num_groups=(in_feat // 4) // 16))
|
| 237 |
+
self.aspp_d6 = nn.Sequential(
|
| 238 |
+
myConv(in_feat // 2 + in_feat // 4, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
| 239 |
+
norm=norm, act=act, num_groups=(in_feat // 2 + in_feat // 4) // 16),
|
| 240 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=6, dilation=6, bias=False, norm=norm, act=act,
|
| 241 |
+
num_groups=(in_feat // 4) // 16))
|
| 242 |
+
self.aspp_d12 = nn.Sequential(
|
| 243 |
+
myConv(in_feat, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False, norm=norm, act=act,
|
| 244 |
+
num_groups=(in_feat) // 16),
|
| 245 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=12, dilation=12, bias=False, norm=norm,
|
| 246 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
| 247 |
+
self.aspp_d18 = nn.Sequential(
|
| 248 |
+
myConv(in_feat + in_feat // 4, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
| 249 |
+
norm=norm, act=act, num_groups=(in_feat + in_feat // 4) // 16),
|
| 250 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=18, dilation=18, bias=False, norm=norm,
|
| 251 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
| 252 |
+
self.aspp_d24 = nn.Sequential(
|
| 253 |
+
myConv(in_feat + in_feat // 2, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
| 254 |
+
norm=norm, act=act, num_groups=(in_feat + in_feat // 2) // 16),
|
| 255 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=24, dilation=24, bias=False, norm=norm,
|
| 256 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
| 257 |
+
self.reduction2 = myConv(((in_feat // 4) * 5) + (in_feat // 2), in_feat // 2, kSize=3, stride=1, padding=1,
|
| 258 |
+
bias=False, norm=norm, act=act, num_groups=((in_feat // 4) * 5 + (in_feat // 2)) // 16)
|
| 259 |
+
|
| 260 |
+
def forward(self, x):
|
| 261 |
+
x = self.reduction1(x)
|
| 262 |
+
d3 = self.aspp_d3(x)
|
| 263 |
+
cat1 = torch.cat([x, d3], dim=1)
|
| 264 |
+
d6 = self.aspp_d6(cat1)
|
| 265 |
+
cat2 = torch.cat([cat1, d6], dim=1)
|
| 266 |
+
d12 = self.aspp_d12(cat2)
|
| 267 |
+
cat3 = torch.cat([cat2, d12], dim=1)
|
| 268 |
+
d18 = self.aspp_d18(cat3)
|
| 269 |
+
cat4 = torch.cat([cat3, d18], dim=1)
|
| 270 |
+
d24 = self.aspp_d24(cat4)
|
| 271 |
+
out = self.reduction2(torch.cat([x, d3, d6, d12, d18, d24], dim=1))
|
| 272 |
+
return out # 512 x H/16 x W/16
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
class Dilated_bottleNeck_lv6(nn.Module):
|
| 276 |
+
def __init__(self, norm, act, in_feat):
|
| 277 |
+
super(Dilated_bottleNeck_lv6, self).__init__()
|
| 278 |
+
conv = conv_ws
|
| 279 |
+
in_feat = in_feat // 2
|
| 280 |
+
self.reduction1 = myConv(in_feat * 2, in_feat // 2, kSize=3, stride=1, padding=1, bias=False, norm=norm,
|
| 281 |
+
act=act, num_groups=(in_feat) // 16)
|
| 282 |
+
self.aspp_d3 = nn.Sequential(
|
| 283 |
+
myConv(in_feat // 2, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False, norm=norm, act=act,
|
| 284 |
+
num_groups=(in_feat // 2) // 16),
|
| 285 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=3, dilation=3, bias=False, norm=norm, act=act,
|
| 286 |
+
num_groups=(in_feat // 4) // 16))
|
| 287 |
+
self.aspp_d6 = nn.Sequential(
|
| 288 |
+
myConv(in_feat // 2 + in_feat // 4, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
| 289 |
+
norm=norm, act=act, num_groups=(in_feat // 2 + in_feat // 4) // 16),
|
| 290 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=6, dilation=6, bias=False, norm=norm, act=act,
|
| 291 |
+
num_groups=(in_feat // 4) // 16))
|
| 292 |
+
self.aspp_d12 = nn.Sequential(
|
| 293 |
+
myConv(in_feat, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False, norm=norm, act=act,
|
| 294 |
+
num_groups=(in_feat) // 16),
|
| 295 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=12, dilation=12, bias=False, norm=norm,
|
| 296 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
| 297 |
+
self.aspp_d18 = nn.Sequential(
|
| 298 |
+
myConv(in_feat + in_feat // 4, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
| 299 |
+
norm=norm, act=act, num_groups=(in_feat + in_feat // 4) // 16),
|
| 300 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=18, dilation=18, bias=False, norm=norm,
|
| 301 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
| 302 |
+
self.reduction2 = myConv(((in_feat // 4) * 4) + (in_feat // 2), in_feat, kSize=3, stride=1, padding=1,
|
| 303 |
+
bias=False, norm=norm, act=act, num_groups=((in_feat // 4) * 4 + (in_feat // 2)) // 16)
|
| 304 |
+
|
| 305 |
+
def forward(self, x):
|
| 306 |
+
x = self.reduction1(x)
|
| 307 |
+
d3 = self.aspp_d3(x)
|
| 308 |
+
cat1 = torch.cat([x, d3], dim=1)
|
| 309 |
+
d6 = self.aspp_d6(cat1)
|
| 310 |
+
cat2 = torch.cat([cat1, d6], dim=1)
|
| 311 |
+
d12 = self.aspp_d12(cat2)
|
| 312 |
+
cat3 = torch.cat([cat2, d12], dim=1)
|
| 313 |
+
d18 = self.aspp_d18(cat3)
|
| 314 |
+
out = self.reduction2(torch.cat([x, d3, d6, d12, d18], dim=1))
|
| 315 |
+
return out # 512 x H/16 x W/16
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
# Laplacian Decoder Network
|
| 319 |
+
class Lap_decoder_lv5(nn.Module):
|
| 320 |
+
def __init__(self, args, dimList):
|
| 321 |
+
super(Lap_decoder_lv5, self).__init__()
|
| 322 |
+
norm = args.norm
|
| 323 |
+
conv = conv_ws
|
| 324 |
+
if norm == 'GN':
|
| 325 |
+
if args.rank == 0:
|
| 326 |
+
print("==> Norm: GN")
|
| 327 |
+
else:
|
| 328 |
+
if args.rank == 0:
|
| 329 |
+
print("==> Norm: BN")
|
| 330 |
+
|
| 331 |
+
if args.act == 'ELU':
|
| 332 |
+
act = 'ELU'
|
| 333 |
+
elif args.act == 'Mish':
|
| 334 |
+
act = 'Mish'
|
| 335 |
+
else:
|
| 336 |
+
act = 'ReLU'
|
| 337 |
+
kSize = 3
|
| 338 |
+
self.max_depth = args.max_depth
|
| 339 |
+
self.ASPP = Dilated_bottleNeck(norm, act, dimList[3])
|
| 340 |
+
self.dimList = dimList
|
| 341 |
+
############################################ Pyramid Level 5 ###################################################
|
| 342 |
+
# decoder1 out : 1 x H/16 x W/16 (Level 5)
|
| 343 |
+
self.decoder1 = nn.Sequential(
|
| 344 |
+
myConv(dimList[3] // 2, dimList[3] // 4, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 345 |
+
norm=norm, act=act, num_groups=(dimList[3] // 2) // 16),
|
| 346 |
+
myConv(dimList[3] // 4, dimList[3] // 8, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 347 |
+
norm=norm, act=act, num_groups=(dimList[3] // 4) // 16),
|
| 348 |
+
myConv(dimList[3] // 8, dimList[3] // 16, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 349 |
+
norm=norm, act=act, num_groups=(dimList[3] // 8) // 16),
|
| 350 |
+
myConv(dimList[3] // 16, dimList[3] // 32, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 351 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16),
|
| 352 |
+
myConv(dimList[3] // 32, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 353 |
+
norm=norm, act=act, num_groups=(dimList[3] // 32) // 16)
|
| 354 |
+
)
|
| 355 |
+
########################################################################################################################
|
| 356 |
+
|
| 357 |
+
############################################ Pyramid Level 4 ###################################################
|
| 358 |
+
# decoder2 out : 1 x H/8 x W/8 (Level 4)
|
| 359 |
+
# decoder2_up : (H/16,W/16)->(H/8,W/8)
|
| 360 |
+
self.decoder2_up1 = upConvLayer(dimList[3] // 2, dimList[3] // 4, 2, norm, act, (dimList[3] // 2) // 16)
|
| 361 |
+
self.decoder2_reduc1 = myConv(dimList[3] // 4 + dimList[2], dimList[3] // 4 - 4, kSize=1, stride=1, padding=0,
|
| 362 |
+
bias=False,
|
| 363 |
+
norm=norm, act=act, num_groups=(dimList[3] // 4 + dimList[2]) // 16)
|
| 364 |
+
self.decoder2_1 = myConv(dimList[3] // 4, dimList[3] // 4, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 365 |
+
norm=norm, act=act, num_groups=(dimList[3] // 4) // 16)
|
| 366 |
+
|
| 367 |
+
self.decoder2_2 = myConv(dimList[3] // 4, dimList[3] // 8, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 368 |
+
norm=norm, act=act, num_groups=(dimList[3] // 4) // 16)
|
| 369 |
+
self.decoder2_3 = myConv(dimList[3] // 8, dimList[3] // 16, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 370 |
+
norm=norm, act=act, num_groups=(dimList[3] // 8) // 16)
|
| 371 |
+
|
| 372 |
+
self.decoder2_4 = myConv(dimList[3] // 16, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 373 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16)
|
| 374 |
+
########################################################################################################################
|
| 375 |
+
|
| 376 |
+
############################################ Pyramid Level 3 ###################################################
|
| 377 |
+
# decoder2 out2 : 1 x H/4 x W/4 (Level 3)
|
| 378 |
+
# decoder2_1_up2 : (H/8,W/8)->(H/4,W/4)
|
| 379 |
+
self.decoder2_1_up2 = upConvLayer(dimList[3] // 4, dimList[3] // 8, 2, norm, act, (dimList[3] // 4) // 16)
|
| 380 |
+
self.decoder2_1_reduc2 = myConv(dimList[3] // 8 + dimList[1], dimList[3] // 8 - 4, kSize=1, stride=1, padding=0,
|
| 381 |
+
bias=False,
|
| 382 |
+
norm=norm, act=act, num_groups=(dimList[3] // 8 + dimList[1]) // 16)
|
| 383 |
+
self.decoder2_1_1 = myConv(dimList[3] // 8, dimList[3] // 8, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 384 |
+
norm=norm, act=act, num_groups=(dimList[3] // 8) // 16)
|
| 385 |
+
|
| 386 |
+
self.decoder2_1_2 = myConv(dimList[3] // 8, dimList[3] // 16, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 387 |
+
norm=norm, act=act, num_groups=(dimList[3] // 8) // 16)
|
| 388 |
+
|
| 389 |
+
self.decoder2_1_3 = myConv(dimList[3] // 16, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 390 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16)
|
| 391 |
+
########################################################################################################################
|
| 392 |
+
|
| 393 |
+
############################################ Pyramid Level 2 ###################################################
|
| 394 |
+
# decoder2 out3 : 1 x H/2 x W/2 (Level 2)
|
| 395 |
+
# decoder2_1_1_up3 : (H/4,W/4)->(H/2,W/2)
|
| 396 |
+
self.decoder2_1_1_up3 = upConvLayer(dimList[3] // 8, dimList[3] // 16, 2, norm, act, (dimList[3] // 8) // 16)
|
| 397 |
+
self.decoder2_1_1_reduc3 = myConv(dimList[3] // 16 + dimList[0], dimList[3] // 16 - 4, kSize=1, stride=1,
|
| 398 |
+
padding=0, bias=False,
|
| 399 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16 + dimList[0]) // 16)
|
| 400 |
+
self.decoder2_1_1_1 = myConv(dimList[3] // 16, dimList[3] // 16, kSize, stride=1, padding=kSize // 2,
|
| 401 |
+
bias=False,
|
| 402 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16)
|
| 403 |
+
|
| 404 |
+
self.decoder2_1_1_2 = myConv(dimList[3] // 16, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 405 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16)
|
| 406 |
+
########################################################################################################################
|
| 407 |
+
|
| 408 |
+
############################################ Pyramid Level 1 ###################################################
|
| 409 |
+
# decoder5 out : 1 x H x W (Level 1)
|
| 410 |
+
# decoder2_1_1_1_up4 : (H/2,W/2)->(H,W)
|
| 411 |
+
self.decoder2_1_1_1_up4 = upConvLayer(dimList[3] // 16, dimList[3] // 16 - 4, 2, norm, act,
|
| 412 |
+
(dimList[3] // 16) // 16)
|
| 413 |
+
self.decoder2_1_1_1_1 = myConv(dimList[3] // 16, dimList[3] // 16, kSize, stride=1, padding=kSize // 2,
|
| 414 |
+
bias=False,
|
| 415 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16)
|
| 416 |
+
|
| 417 |
+
self.decoder2_1_1_1_2 = myConv(dimList[3] // 16, dimList[3] // 32, kSize, stride=1, padding=kSize // 2,
|
| 418 |
+
bias=False,
|
| 419 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16)
|
| 420 |
+
self.decoder2_1_1_1_3 = myConv(dimList[3] // 32, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 421 |
+
norm=norm, act=act, num_groups=(dimList[3] // 32) // 16)
|
| 422 |
+
########################################################################################################################
|
| 423 |
+
self.upscale = F.interpolate
|
| 424 |
+
|
| 425 |
+
def forward(self, x, rgb):
|
| 426 |
+
cat1, cat2, cat3, dense_feat = x[0], x[1], x[2], x[3]
|
| 427 |
+
rgb_lv6, rgb_lv5, rgb_lv4, rgb_lv3, rgb_lv2, rgb_lv1 = rgb[0], rgb[1], rgb[2], rgb[3], rgb[4], rgb[5]
|
| 428 |
+
dense_feat = self.ASPP(dense_feat) # Dense feature for lev 5
|
| 429 |
+
# decoder 1 - Pyramid level 5
|
| 430 |
+
lap_lv5 = torch.sigmoid(self.decoder1(dense_feat))
|
| 431 |
+
lap_lv5_up = self.upscale(lap_lv5, scale_factor=2, mode='bilinear')
|
| 432 |
+
|
| 433 |
+
# decoder 2 - Pyramid level 4
|
| 434 |
+
dec2 = self.decoder2_up1(dense_feat)
|
| 435 |
+
dec2 = self.decoder2_reduc1(torch.cat([dec2, cat3], dim=1))
|
| 436 |
+
dec2_up = self.decoder2_1(torch.cat([dec2, lap_lv5_up, rgb_lv4], dim=1))
|
| 437 |
+
dec2 = self.decoder2_2(dec2_up)
|
| 438 |
+
dec2 = self.decoder2_3(dec2)
|
| 439 |
+
lap_lv4 = torch.tanh(self.decoder2_4(dec2) + (0.1 * rgb_lv4.mean(dim=1, keepdim=True)))
|
| 440 |
+
# if depth range is (0,1), laplacian of image range is (-1,1)
|
| 441 |
+
lap_lv4_up = self.upscale(lap_lv4, scale_factor=2, mode='bilinear')
|
| 442 |
+
# decoder 2 - Pyramid level 3
|
| 443 |
+
dec3 = self.decoder2_1_up2(dec2_up)
|
| 444 |
+
dec3 = self.decoder2_1_reduc2(torch.cat([dec3, cat2], dim=1))
|
| 445 |
+
dec3_up = self.decoder2_1_1(torch.cat([dec3, lap_lv4_up, rgb_lv3], dim=1))
|
| 446 |
+
dec3 = self.decoder2_1_2(dec3_up)
|
| 447 |
+
lap_lv3 = torch.tanh(self.decoder2_1_3(dec3) + (0.1 * rgb_lv3.mean(dim=1, keepdim=True)))
|
| 448 |
+
# if depth range is (0,1), laplacian of image range is (-1,1)
|
| 449 |
+
lap_lv3_up = self.upscale(lap_lv3, scale_factor=2, mode='bilinear')
|
| 450 |
+
# decoder 2 - Pyramid level 2
|
| 451 |
+
dec4 = self.decoder2_1_1_up3(dec3_up)
|
| 452 |
+
dec4 = self.decoder2_1_1_reduc3(torch.cat([dec4, cat1], dim=1))
|
| 453 |
+
dec4_up = self.decoder2_1_1_1(torch.cat([dec4, lap_lv3_up, rgb_lv2], dim=1))
|
| 454 |
+
|
| 455 |
+
lap_lv2 = torch.tanh(self.decoder2_1_1_2(dec4_up) + (0.1 * rgb_lv2.mean(dim=1, keepdim=True)))
|
| 456 |
+
# if depth range is (0,1), laplacian of image range is (-1,1)
|
| 457 |
+
lap_lv2_up = self.upscale(lap_lv2, scale_factor=2, mode='bilinear')
|
| 458 |
+
# decoder 2 - Pyramid level 1
|
| 459 |
+
dec5 = self.decoder2_1_1_1_up4(dec4_up)
|
| 460 |
+
dec5 = self.decoder2_1_1_1_1(torch.cat([dec5, lap_lv2_up, rgb_lv1], dim=1))
|
| 461 |
+
dec5 = self.decoder2_1_1_1_2(dec5)
|
| 462 |
+
lap_lv1 = torch.tanh(self.decoder2_1_1_1_3(dec5) + (0.1 * rgb_lv1.mean(dim=1, keepdim=True)))
|
| 463 |
+
# if depth range is (0,1), laplacian of image range is (-1,1)
|
| 464 |
+
|
| 465 |
+
# Laplacian restoration
|
| 466 |
+
lap_lv4_img = lap_lv4 + lap_lv5_up
|
| 467 |
+
lap_lv3_img = lap_lv3 + self.upscale(lap_lv4_img, scale_factor=2, mode='bilinear')
|
| 468 |
+
lap_lv2_img = lap_lv2 + self.upscale(lap_lv3_img, scale_factor=2, mode='bilinear')
|
| 469 |
+
final_depth = lap_lv1 + self.upscale(lap_lv2_img, scale_factor=2, mode='bilinear')
|
| 470 |
+
final_depth = torch.sigmoid(final_depth)
|
| 471 |
+
return [(lap_lv5) * self.max_depth, (lap_lv4) * self.max_depth, (lap_lv3) * self.max_depth,
|
| 472 |
+
(lap_lv2) * self.max_depth, (lap_lv1) * self.max_depth], final_depth * self.max_depth
|
| 473 |
+
# fit laplacian image range (-80,80), depth image range(0,80)
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
class Lap_decoder_lv6(nn.Module):
|
| 477 |
+
def __init__(self, args, dimList):
|
| 478 |
+
super(Lap_decoder_lv6, self).__init__()
|
| 479 |
+
norm = args.norm
|
| 480 |
+
conv = conv_ws
|
| 481 |
+
if norm == 'GN':
|
| 482 |
+
if args.rank == 0:
|
| 483 |
+
print("==> Norm: GN")
|
| 484 |
+
else:
|
| 485 |
+
if args.rank == 0:
|
| 486 |
+
print("==> Norm: BN")
|
| 487 |
+
|
| 488 |
+
if args.act == 'ELU':
|
| 489 |
+
act = 'ELU'
|
| 490 |
+
elif args.act == 'Mish':
|
| 491 |
+
act = 'Mish'
|
| 492 |
+
else:
|
| 493 |
+
act = 'ReLU'
|
| 494 |
+
kSize = 3
|
| 495 |
+
self.max_depth = args.max_depth
|
| 496 |
+
self.ASPP = Dilated_bottleNeck_lv6(norm, act, dimList[4])
|
| 497 |
+
dimList[4] = dimList[4] // 2
|
| 498 |
+
self.dimList = dimList
|
| 499 |
+
############################################ Pyramid Level 6 ###################################################
|
| 500 |
+
# decoder1 out : 1 x H/32 x W/32 (Level 6)
|
| 501 |
+
self.decoder1 = nn.Sequential(
|
| 502 |
+
myConv(dimList[4] // 2, dimList[4] // 4, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 503 |
+
norm=norm, act=act, num_groups=(dimList[4] // 2) // 16),
|
| 504 |
+
myConv(dimList[4] // 4, dimList[4] // 8, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 505 |
+
norm=norm, act=act, num_groups=(dimList[4] // 4) // 16),
|
| 506 |
+
myConv(dimList[4] // 8, dimList[4] // 16, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 507 |
+
norm=norm, act=act, num_groups=(dimList[4] // 8) // 16),
|
| 508 |
+
myConv(dimList[4] // 16, dimList[4] // 32, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 509 |
+
norm=norm, act=act, num_groups=(dimList[4] // 16) // 16),
|
| 510 |
+
myConv(dimList[4] // 32, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 511 |
+
norm=norm, act=act, num_groups=(dimList[4] // 32) // 8)
|
| 512 |
+
)
|
| 513 |
+
########################################################################################################################
|
| 514 |
+
|
| 515 |
+
############################################ Pyramid Level 5 ###################################################
|
| 516 |
+
# decoder2 out : 1 x H/16 x W/16 (Level 5)
|
| 517 |
+
# decoder2_up : (H/32,W/32)->(H/16,W/16)
|
| 518 |
+
self.decoder2_up1 = upConvLayer(dimList[4] // 2, dimList[4] // 4, 2, norm, act, (dimList[4] // 2) // 16)
|
| 519 |
+
self.decoder2_reduc1 = myConv(dimList[4] // 4 + dimList[3], dimList[4] // 4 - 4, kSize=1, stride=1, padding=0,
|
| 520 |
+
bias=False,
|
| 521 |
+
norm=norm, act=act, num_groups=(dimList[4] // 4 + dimList[3]) // 16)
|
| 522 |
+
self.decoder2_1 = myConv(dimList[4] // 4, dimList[4] // 4, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 523 |
+
norm=norm, act=act, num_groups=(dimList[4] // 4) // 16)
|
| 524 |
+
|
| 525 |
+
self.decoder2_2 = myConv(dimList[4] // 4, dimList[4] // 8, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 526 |
+
norm=norm, act=act, num_groups=(dimList[4] // 4) // 16)
|
| 527 |
+
self.decoder2_3 = myConv(dimList[4] // 8, dimList[4] // 16, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 528 |
+
norm=norm, act=act, num_groups=(dimList[4] // 8) // 16)
|
| 529 |
+
|
| 530 |
+
self.decoder2_4 = myConv(dimList[4] // 16, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 531 |
+
norm=norm, act=act, num_groups=(dimList[4] // 16) // 16)
|
| 532 |
+
########################################################################################################################
|
| 533 |
+
|
| 534 |
+
############################################ Pyramid Level 4 ###################################################
|
| 535 |
+
# decoder2 out2 : 1 x H/8 x W/8 (Level 4)
|
| 536 |
+
# decoder2_1_up2 : (H/16,W/16)->(H/8,W/8)
|
| 537 |
+
self.decoder2_1_up2 = upConvLayer(dimList[4] // 4, dimList[4] // 8, 2, norm, act, (dimList[4] // 4) // 16)
|
| 538 |
+
self.decoder2_1_reduc2 = myConv(dimList[4] // 8 + dimList[2], dimList[4] // 8 - 4, kSize=1, stride=1, padding=0,
|
| 539 |
+
bias=False,
|
| 540 |
+
norm=norm, act=act, num_groups=(dimList[4] // 8 + dimList[2]) // 16)
|
| 541 |
+
self.decoder2_1_1 = myConv(dimList[4] // 8, dimList[4] // 8, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 542 |
+
norm=norm, act=act, num_groups=(dimList[4] // 8) // 16)
|
| 543 |
+
|
| 544 |
+
self.decoder2_1_2 = myConv(dimList[4] // 8, dimList[4] // 16, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 545 |
+
norm=norm, act=act, num_groups=(dimList[4] // 8) // 16)
|
| 546 |
+
|
| 547 |
+
self.decoder2_1_3 = myConv(dimList[4] // 16, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 548 |
+
norm=norm, act=act, num_groups=(dimList[4] // 16) // 16)
|
| 549 |
+
########################################################################################################################
|
| 550 |
+
|
| 551 |
+
############################################ Pyramid Level 3 ###################################################
|
| 552 |
+
# decoder2 out3 : 1 x H/4 x W/4 (Level 3)
|
| 553 |
+
# decoder2_1_1_up3 : (H/8,W/8)->(H/4,W/4)
|
| 554 |
+
self.decoder2_1_1_up3 = upConvLayer(dimList[4] // 8, dimList[4] // 16, 2, norm, act, (dimList[4] // 8) // 16)
|
| 555 |
+
self.decoder2_1_1_reduc3 = myConv(dimList[4] // 16 + dimList[1], dimList[4] // 16 - 4, kSize=1, stride=1,
|
| 556 |
+
padding=0, bias=False,
|
| 557 |
+
norm=norm, act=act, num_groups=(dimList[4] // 16 + dimList[1]) // 8)
|
| 558 |
+
self.decoder2_1_1_1 = myConv(dimList[4] // 16, dimList[4] // 16, kSize, stride=1, padding=kSize // 2,
|
| 559 |
+
bias=False,
|
| 560 |
+
norm=norm, act=act, num_groups=(dimList[4] // 16) // 16)
|
| 561 |
+
|
| 562 |
+
self.decoder2_1_1_2 = myConv(dimList[4] // 16, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 563 |
+
norm=norm, act=act, num_groups=(dimList[4] // 16) // 16)
|
| 564 |
+
########################################################################################################################
|
| 565 |
+
|
| 566 |
+
############################################ Pyramid Level 2 ###################################################
|
| 567 |
+
# decoder2 out4 : 1 x H/2 x W/2 (Level 2)
|
| 568 |
+
# decoder2_1_1_1_up4 : (H/4,W/4)->(H/2,W/2)
|
| 569 |
+
self.decoder2_1_1_1_up4 = upConvLayer(dimList[4] // 16, dimList[4] // 32, 2, norm, act,
|
| 570 |
+
(dimList[4] // 16) // 16)
|
| 571 |
+
self.decoder2_1_1_1_reduc4 = myConv(dimList[4] // 32 + dimList[0], dimList[4] // 32 - 4, kSize=1, stride=1,
|
| 572 |
+
padding=0, bias=False,
|
| 573 |
+
norm=norm, act=act, num_groups=(dimList[4] // 32 + dimList[0]) // 8)
|
| 574 |
+
self.decoder2_1_1_1_1 = myConv(dimList[4] // 32, dimList[4] // 32, kSize, stride=1, padding=kSize // 2,
|
| 575 |
+
bias=False,
|
| 576 |
+
norm=norm, act=act, num_groups=(dimList[4] // 32) // 8)
|
| 577 |
+
|
| 578 |
+
self.decoder2_1_1_1_2 = myConv(dimList[4] // 32, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 579 |
+
norm=norm, act=act, num_groups=(dimList[4] // 32) // 8)
|
| 580 |
+
########################################################################################################################
|
| 581 |
+
|
| 582 |
+
############################################ Pyramid Level 1 ###################################################
|
| 583 |
+
# decoder5 out : 1 x H x W (Level 1)
|
| 584 |
+
# decoder2_1_1_1_1_up5 : (H/2,W/2)->(H,W)
|
| 585 |
+
self.decoder2_1_1_1_1_up5 = upConvLayer(dimList[4] // 32, dimList[4] // 32 - 4, 2, norm, act,
|
| 586 |
+
(dimList[4] // 32) // 8) # H x W (64 -> 60)
|
| 587 |
+
self.decoder2_1_1_1_1_1 = myConv(dimList[4] // 32, dimList[4] // 32, kSize, stride=1, padding=kSize // 2,
|
| 588 |
+
bias=False,
|
| 589 |
+
norm=norm, act=act, num_groups=(dimList[4] // 32) // 8)
|
| 590 |
+
|
| 591 |
+
self.decoder2_1_1_1_1_2 = myConv(dimList[4] // 32, dimList[4] // 64, kSize, stride=1, padding=kSize // 2,
|
| 592 |
+
bias=False,
|
| 593 |
+
norm=norm, act=act, num_groups=(dimList[4] // 32) // 8)
|
| 594 |
+
self.decoder2_1_1_1_1_3 = myConv(dimList[4] // 64, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
| 595 |
+
norm=norm, act=act, num_groups=(dimList[4] // 64) // 4)
|
| 596 |
+
########################################################################################################################
|
| 597 |
+
self.upscale = F.interpolate
|
| 598 |
+
|
| 599 |
+
def forward(self, x, rgb):
|
| 600 |
+
cat1, cat2, cat3, cat4, dense_feat = x[0], x[1], x[2], x[3], x[4]
|
| 601 |
+
rgb_lv6, rgb_lv5, rgb_lv4, rgb_lv3, rgb_lv2, rgb_lv1 = rgb[0], rgb[1], rgb[2], rgb[3], rgb[4], rgb[5]
|
| 602 |
+
dense_feat = self.ASPP(dense_feat) # Dense feature for lev 6
|
| 603 |
+
# decoder 1 - Pyramid level 6
|
| 604 |
+
lap_lv6 = torch.sigmoid(self.decoder1(dense_feat))
|
| 605 |
+
lap_lv6_up = self.upscale(lap_lv6, scale_factor=2, mode='bilinear')
|
| 606 |
+
|
| 607 |
+
# decoder 2 - Pyramid level 5
|
| 608 |
+
dec2 = self.decoder2_up1(dense_feat)
|
| 609 |
+
dec2 = self.decoder2_reduc1(torch.cat([dec2, cat4], dim=1))
|
| 610 |
+
dec2_up = self.decoder2_1(torch.cat([dec2, lap_lv6_up, rgb_lv5], dim=1))
|
| 611 |
+
dec2 = self.decoder2_2(dec2_up)
|
| 612 |
+
dec2 = self.decoder2_3(dec2)
|
| 613 |
+
lap_lv5 = torch.tanh(self.decoder2_4(dec2) + (0.1 * rgb_lv5.mean(dim=1, keepdim=True)))
|
| 614 |
+
# if depth range is (0,1), laplacian image range is (-1,1)
|
| 615 |
+
lap_lv5_up = self.upscale(lap_lv5, scale_factor=2, mode='bilinear')
|
| 616 |
+
# decoder 2 - Pyramid level 4
|
| 617 |
+
dec3 = self.decoder2_1_up2(dec2_up)
|
| 618 |
+
dec3 = self.decoder2_1_reduc2(torch.cat([dec3, cat3], dim=1))
|
| 619 |
+
dec3_up = self.decoder2_1_1(torch.cat([dec3, lap_lv5_up, rgb_lv4], dim=1))
|
| 620 |
+
dec3 = self.decoder2_1_2(dec3_up)
|
| 621 |
+
lap_lv4 = torch.tanh(self.decoder2_1_3(dec3) + (0.1 * rgb_lv4.mean(dim=1, keepdim=True)))
|
| 622 |
+
# if depth range is (0,1), laplacian image range is (-1,1)
|
| 623 |
+
lap_lv4_up = self.upscale(lap_lv4, scale_factor=2, mode='bilinear')
|
| 624 |
+
# decoder 2 - Pyramid level 3
|
| 625 |
+
dec4 = self.decoder2_1_1_up3(dec3_up)
|
| 626 |
+
dec4 = self.decoder2_1_1_reduc3(torch.cat([dec4, cat2], dim=1))
|
| 627 |
+
dec4_up = self.decoder2_1_1_1(torch.cat([dec4, lap_lv4_up, rgb_lv3], dim=1))
|
| 628 |
+
|
| 629 |
+
lap_lv3 = torch.tanh(self.decoder2_1_1_2(dec4_up) + (0.1 * rgb_lv3.mean(dim=1, keepdim=True)))
|
| 630 |
+
# if depth range is (0,1), laplacian image range is (-1,1)
|
| 631 |
+
lap_lv3_up = self.upscale(lap_lv3, scale_factor=2, mode='bilinear')
|
| 632 |
+
# decoder 2 - Pyramid level 2
|
| 633 |
+
dec5 = self.decoder2_1_1_1_up4(dec4_up)
|
| 634 |
+
dec5 = self.decoder2_1_1_1_reduc4(torch.cat([dec5, cat1], dim=1))
|
| 635 |
+
dec5_up = self.decoder2_1_1_1_1(torch.cat([dec5, lap_lv3_up, rgb_lv2], dim=1))
|
| 636 |
+
|
| 637 |
+
lap_lv2 = torch.tanh(self.decoder2_1_1_1_2(dec5_up) + (0.1 * rgb_lv2.mean(dim=1, keepdim=True)))
|
| 638 |
+
# if depth range is (0,1), laplacian image range is (-1,1)
|
| 639 |
+
lap_lv2_up = self.upscale(lap_lv2, scale_factor=2, mode='bilinear')
|
| 640 |
+
# decoder 2 - Pyramid level 1
|
| 641 |
+
dec6 = self.decoder2_1_1_1_1_up5(dec5_up)
|
| 642 |
+
dec6 = self.decoder2_1_1_1_1_1(torch.cat([dec6, lap_lv2_up, rgb_lv1], dim=1))
|
| 643 |
+
dec6 = self.decoder2_1_1_1_1_2(dec6)
|
| 644 |
+
lap_lv1 = torch.tanh(self.decoder2_1_1_1_1_3(dec6) + (0.1 * rgb_lv1.mean(dim=1, keepdim=True)))
|
| 645 |
+
# if depth range is (0,1), laplacian image range is (-1,1)
|
| 646 |
+
|
| 647 |
+
# Laplacian restoration
|
| 648 |
+
lap_lv5_img = lap_lv5 + lap_lv6_up
|
| 649 |
+
lap_lv4_img = lap_lv4 + self.upscale(lap_lv5_img, scale_factor=2, mode='bilinear')
|
| 650 |
+
lap_lv3_img = lap_lv3 + self.upscale(lap_lv4_img, scale_factor=2, mode='bilinear')
|
| 651 |
+
lap_lv2_img = lap_lv2 + self.upscale(lap_lv3_img, scale_factor=2, mode='bilinear')
|
| 652 |
+
final_depth = lap_lv1 + self.upscale(lap_lv2_img, scale_factor=2, mode='bilinear')
|
| 653 |
+
final_depth = torch.sigmoid(final_depth)
|
| 654 |
+
return [(lap_lv6) * self.max_depth, (lap_lv5) * self.max_depth, (lap_lv4) * self.max_depth,
|
| 655 |
+
(lap_lv3) * self.max_depth, (lap_lv2) * self.max_depth,
|
| 656 |
+
(lap_lv1) * self.max_depth], final_depth * self.max_depth
|
| 657 |
+
# fit laplacian image range (-80,80), depth image range(0,80)
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
# Laplacian Depth Residual Network
|
| 661 |
+
class LDRN(nn.Module):
|
| 662 |
+
def __init__(self, args):
|
| 663 |
+
super(LDRN, self).__init__()
|
| 664 |
+
lv6 = args.lv6
|
| 665 |
+
self.encoder = deepFeatureExtractor_ResNext101(args, lv6)
|
| 666 |
+
|
| 667 |
+
if lv6 is True:
|
| 668 |
+
self.decoder = Lap_decoder_lv6(args, self.encoder.dimList)
|
| 669 |
+
else:
|
| 670 |
+
self.decoder = Lap_decoder_lv5(args, self.encoder.dimList)
|
| 671 |
+
|
| 672 |
+
def forward(self, x):
|
| 673 |
+
out_featList = self.encoder(x)
|
| 674 |
+
rgb_down2 = F.interpolate(x, scale_factor=0.5, mode='bilinear')
|
| 675 |
+
rgb_down4 = F.interpolate(rgb_down2, scale_factor=0.5, mode='bilinear')
|
| 676 |
+
rgb_down8 = F.interpolate(rgb_down4, scale_factor=0.5, mode='bilinear')
|
| 677 |
+
rgb_down16 = F.interpolate(rgb_down8, scale_factor=0.5, mode='bilinear')
|
| 678 |
+
rgb_down32 = F.interpolate(rgb_down16, scale_factor=0.5, mode='bilinear')
|
| 679 |
+
rgb_up16 = F.interpolate(rgb_down32, rgb_down16.shape[2:], mode='bilinear')
|
| 680 |
+
rgb_up8 = F.interpolate(rgb_down16, rgb_down8.shape[2:], mode='bilinear')
|
| 681 |
+
rgb_up4 = F.interpolate(rgb_down8, rgb_down4.shape[2:], mode='bilinear')
|
| 682 |
+
rgb_up2 = F.interpolate(rgb_down4, rgb_down2.shape[2:], mode='bilinear')
|
| 683 |
+
rgb_up = F.interpolate(rgb_down2, x.shape[2:], mode='bilinear')
|
| 684 |
+
lap1 = x - rgb_up
|
| 685 |
+
lap2 = rgb_down2 - rgb_up2
|
| 686 |
+
lap3 = rgb_down4 - rgb_up4
|
| 687 |
+
lap4 = rgb_down8 - rgb_up8
|
| 688 |
+
lap5 = rgb_down16 - rgb_up16
|
| 689 |
+
rgb_list = [rgb_down32, lap5, lap4, lap3, lap2, lap1]
|
| 690 |
+
|
| 691 |
+
d_res_list, depth = self.decoder(out_featList, rgb_list)
|
| 692 |
+
return d_res_list, depth
|
| 693 |
+
|
| 694 |
+
def train(self, mode=True):
|
| 695 |
+
super().train(mode)
|
| 696 |
+
self.encoder.freeze_bn()
|