Update README.md
Browse files
README.md
CHANGED
|
@@ -20,7 +20,6 @@ The [SFT (Supervised Fine-Tuning)](https://github.com/modelscope/ms-swift) proce
|
|
| 20 |
1. Create the environment.
|
| 21 |
|
| 22 |
```
|
| 23 |
-
|
| 24 |
mkdir MicroThinker-1B-Preview
|
| 25 |
cd MicroThinker-1B-Preview
|
| 26 |
conda create -yn ms-swift python=3.11
|
|
@@ -37,7 +36,6 @@ cd ..
|
|
| 37 |
2. Download the model and dataset.
|
| 38 |
|
| 39 |
```
|
| 40 |
-
|
| 41 |
huggingface-cli download huihui-ai/Llama-3.2-1B-Instruct-abliterated --local-dir ./huihui-ai/Llama-3.2-1B-Instruct-abliterated
|
| 42 |
huggingface-cli download --repo-type dataset huihui-ai/QWQ-LONGCOT-500K --local-dir ./data/QWQ-LONGCOT-500K
|
| 43 |
huggingface-cli download --repo-type dataset huihui-ai/LONGCOT-Refine-500K --local-dir ./data/LONGCOT-Refine-500K
|
|
@@ -47,7 +45,6 @@ huggingface-cli download --repo-type dataset huihui-ai/LONGCOT-Refine-500K --lo
|
|
| 47 |
3. Used only the huihui-ai/QWQ-LONGCOT-500K dataset (#20000), Trained for 1 epoch:
|
| 48 |
|
| 49 |
```
|
| 50 |
-
|
| 51 |
swift sft --model huihui-ai/Llama-3.2-1B-Instruct-abliterated --model_type llama3_2 --train_type lora --dataset "data/qwq_500k.jsonl#20000" --torch_dtype bfloat16 --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --learning_rate 1e-4 --lora_rank 8 --lora_alpha 32 --target_modules all-linear --gradient_accumulation_steps 16 --eval_steps 50 --save_steps 50 --save_total_limit 2 --logging_steps 5 --max_length 16384 --output_dir output/Llama-3.2-1B-Instruct-abliterated/lora/sft --system "You are a helpful assistant. You should think step-by-step." --warmup_ratio 0.05 --dataloader_num_workers 4 --model_author "huihui-ai" --model_name "huihui-ai-robot"
|
| 52 |
```
|
| 53 |
|
|
@@ -56,7 +53,6 @@ swift sft --model huihui-ai/Llama-3.2-1B-Instruct-abliterated --model_type llama
|
|
| 56 |
Replace the directories below with specific ones.
|
| 57 |
|
| 58 |
```
|
| 59 |
-
|
| 60 |
swift infer --model huihui-ai/Llama-3.2-1B-Instruct-abliterated --adapters output/Llama-3.2-1B-Instruct-abliterated/lora/sft/v0-20250102-153619/checkpoint-1237 --merge_lora true
|
| 61 |
```
|
| 62 |
|
|
@@ -66,34 +62,30 @@ This should create a new model directory: `checkpoint-1237-merged`, Copy or move
|
|
| 66 |
5. Perform inference on the fine-tuned model.
|
| 67 |
|
| 68 |
```
|
| 69 |
-
|
| 70 |
swift infer --model huihui/checkpoint-1237-merged --stream true --infer_backend pt --max_new_tokens 8192
|
| 71 |
```
|
| 72 |
|
| 73 |
|
| 74 |
-
|
| 75 |
|
| 76 |
```
|
| 77 |
-
|
| 78 |
swift sft --model huihui-ai/checkpoint-1237-merged --model_type llama3_2 --train_type lora --dataset "data/qwq_500k.jsonl#20000" "data/refine_from_qwen2_5.jsonl#20000" --torch_dtype bfloat16 --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --learning_rate 1e-4 --lora_rank 8 --lora_alpha 32 --target_modules all-linear --gradient_accumulation_steps 16 --eval_steps 50 --save_steps 50 --save_total_limit 2 --logging_steps 5 --max_length 16384 --output_dir output/Llama-3.2-1B-Instruct-abliterated/lora/sft2 --system "You are a helpful assistant. You should think step-by-step." --warmup_ratio 0.05 --dataloader_num_workers 4 --model_author "huihui-ai" --model_name "huihui-ai-robot"
|
| 79 |
```
|
| 80 |
|
| 81 |
|
| 82 |
-
|
| 83 |
Replace the directories below with specific ones.
|
| 84 |
|
| 85 |
```
|
| 86 |
-
|
| 87 |
swift infer --model huihui-ai/checkpoint-1237-merged --adapters output/Llama-3.2-1B-Instruct-abliterated/lora/sft2/v0-20250103-121319/checkpoint-1237 --merge_lora true
|
| 88 |
```
|
| 89 |
|
| 90 |
|
| 91 |
This should create a new model directory: `checkpoint-1237-merged`, Rename the directory to `MicroThinker-1B-Preview`, Copy or move this directory to the `huihui` directory.
|
| 92 |
|
| 93 |
-
|
| 94 |
|
| 95 |
```
|
| 96 |
-
|
| 97 |
swift infer --model huihui/MicroThinker-1B-Preview --stream true --infer_backend pt --max_new_tokens 8192
|
| 98 |
```
|
| 99 |
|
|
|
|
| 20 |
1. Create the environment.
|
| 21 |
|
| 22 |
```
|
|
|
|
| 23 |
mkdir MicroThinker-1B-Preview
|
| 24 |
cd MicroThinker-1B-Preview
|
| 25 |
conda create -yn ms-swift python=3.11
|
|
|
|
| 36 |
2. Download the model and dataset.
|
| 37 |
|
| 38 |
```
|
|
|
|
| 39 |
huggingface-cli download huihui-ai/Llama-3.2-1B-Instruct-abliterated --local-dir ./huihui-ai/Llama-3.2-1B-Instruct-abliterated
|
| 40 |
huggingface-cli download --repo-type dataset huihui-ai/QWQ-LONGCOT-500K --local-dir ./data/QWQ-LONGCOT-500K
|
| 41 |
huggingface-cli download --repo-type dataset huihui-ai/LONGCOT-Refine-500K --local-dir ./data/LONGCOT-Refine-500K
|
|
|
|
| 45 |
3. Used only the huihui-ai/QWQ-LONGCOT-500K dataset (#20000), Trained for 1 epoch:
|
| 46 |
|
| 47 |
```
|
|
|
|
| 48 |
swift sft --model huihui-ai/Llama-3.2-1B-Instruct-abliterated --model_type llama3_2 --train_type lora --dataset "data/qwq_500k.jsonl#20000" --torch_dtype bfloat16 --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --learning_rate 1e-4 --lora_rank 8 --lora_alpha 32 --target_modules all-linear --gradient_accumulation_steps 16 --eval_steps 50 --save_steps 50 --save_total_limit 2 --logging_steps 5 --max_length 16384 --output_dir output/Llama-3.2-1B-Instruct-abliterated/lora/sft --system "You are a helpful assistant. You should think step-by-step." --warmup_ratio 0.05 --dataloader_num_workers 4 --model_author "huihui-ai" --model_name "huihui-ai-robot"
|
| 49 |
```
|
| 50 |
|
|
|
|
| 53 |
Replace the directories below with specific ones.
|
| 54 |
|
| 55 |
```
|
|
|
|
| 56 |
swift infer --model huihui-ai/Llama-3.2-1B-Instruct-abliterated --adapters output/Llama-3.2-1B-Instruct-abliterated/lora/sft/v0-20250102-153619/checkpoint-1237 --merge_lora true
|
| 57 |
```
|
| 58 |
|
|
|
|
| 62 |
5. Perform inference on the fine-tuned model.
|
| 63 |
|
| 64 |
```
|
|
|
|
| 65 |
swift infer --model huihui/checkpoint-1237-merged --stream true --infer_backend pt --max_new_tokens 8192
|
| 66 |
```
|
| 67 |
|
| 68 |
|
| 69 |
+
6. Combined training with huihui-ai/QWQ-LONGCOT-500K (#20000) and huihui-ai/LONGCOT-Refine datasets (#20000), Trained for 1 epoch:
|
| 70 |
|
| 71 |
```
|
|
|
|
| 72 |
swift sft --model huihui-ai/checkpoint-1237-merged --model_type llama3_2 --train_type lora --dataset "data/qwq_500k.jsonl#20000" "data/refine_from_qwen2_5.jsonl#20000" --torch_dtype bfloat16 --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --learning_rate 1e-4 --lora_rank 8 --lora_alpha 32 --target_modules all-linear --gradient_accumulation_steps 16 --eval_steps 50 --save_steps 50 --save_total_limit 2 --logging_steps 5 --max_length 16384 --output_dir output/Llama-3.2-1B-Instruct-abliterated/lora/sft2 --system "You are a helpful assistant. You should think step-by-step." --warmup_ratio 0.05 --dataloader_num_workers 4 --model_author "huihui-ai" --model_name "huihui-ai-robot"
|
| 73 |
```
|
| 74 |
|
| 75 |
|
| 76 |
+
7. Save the final fine-tuned model.
|
| 77 |
Replace the directories below with specific ones.
|
| 78 |
|
| 79 |
```
|
|
|
|
| 80 |
swift infer --model huihui-ai/checkpoint-1237-merged --adapters output/Llama-3.2-1B-Instruct-abliterated/lora/sft2/v0-20250103-121319/checkpoint-1237 --merge_lora true
|
| 81 |
```
|
| 82 |
|
| 83 |
|
| 84 |
This should create a new model directory: `checkpoint-1237-merged`, Rename the directory to `MicroThinker-1B-Preview`, Copy or move this directory to the `huihui` directory.
|
| 85 |
|
| 86 |
+
8. Perform inference on the final fine-tuned model.
|
| 87 |
|
| 88 |
```
|
|
|
|
| 89 |
swift infer --model huihui/MicroThinker-1B-Preview --stream true --infer_backend pt --max_new_tokens 8192
|
| 90 |
```
|
| 91 |
|