Update README.md
Browse files
README.md
CHANGED
|
@@ -1,79 +1,79 @@
|
|
| 1 |
-
---
|
| 2 |
-
tags:
|
| 3 |
-
- generated_from_trainer
|
| 4 |
-
base_model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
|
| 5 |
-
metrics:
|
| 6 |
-
- accuracy
|
| 7 |
-
- precision
|
| 8 |
-
- recall
|
| 9 |
-
- f1
|
| 10 |
-
model-index:
|
| 11 |
-
- name: all_keywords_multi-qa-MiniLM-L6-cos-v1_another
|
| 12 |
-
results: []
|
| 13 |
-
---
|
| 14 |
-
|
| 15 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 16 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 17 |
-
|
| 18 |
-
# all_keywords_multi-qa-MiniLM-L6-cos-v1_another
|
| 19 |
-
|
| 20 |
-
This model is a fine-tuned version of [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1) on the None dataset.
|
| 21 |
-
It achieves the following results on the evaluation set:
|
| 22 |
-
- Loss: 2.7780
|
| 23 |
-
- Accuracy: 0.5526
|
| 24 |
-
- Precision: 0.5526
|
| 25 |
-
- Recall: 0.5526
|
| 26 |
-
- F1: 0.5526
|
| 27 |
-
|
| 28 |
-
## Model description
|
| 29 |
-
|
| 30 |
-
More information needed
|
| 31 |
-
|
| 32 |
-
## Intended uses & limitations
|
| 33 |
-
|
| 34 |
-
More information needed
|
| 35 |
-
|
| 36 |
-
## Training and evaluation data
|
| 37 |
-
|
| 38 |
-
More information needed
|
| 39 |
-
|
| 40 |
-
## Training procedure
|
| 41 |
-
|
| 42 |
-
### Training hyperparameters
|
| 43 |
-
|
| 44 |
-
The following hyperparameters were used during training:
|
| 45 |
-
- learning_rate: 5e-05
|
| 46 |
-
- train_batch_size: 4
|
| 47 |
-
- eval_batch_size: 4
|
| 48 |
-
- seed: 42
|
| 49 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 50 |
-
- lr_scheduler_type: linear
|
| 51 |
-
- num_epochs: 15
|
| 52 |
-
|
| 53 |
-
### Training results
|
| 54 |
-
|
| 55 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 56 |
-
|
| 57 |
-
| 2.3017 | 1.0 | 712 | 2.0180 | 0.4362 |
|
| 58 |
-
| 2.09 | 2.0 | 1424 | 1.8306 | 0.4390 |
|
| 59 |
-
| 1.775 | 3.0 | 2136 | 1.7843 | 0.4783 |
|
| 60 |
-
| 1.5811 | 4.0 | 2848 | 1.7686 | 0.5175 |
|
| 61 |
-
| 1.2665 | 5.0 | 3560 | 1.7257 | 0.5147 |
|
| 62 |
-
| 1.0957 | 6.0 | 4272 | 1.8126 | 0.5568 |
|
| 63 |
-
| 0.9661 | 7.0 | 4984 | 2.0472 | 0.5386 |
|
| 64 |
-
| 0.7399 | 8.0 | 5696 | 2.1375 | 0.5428 |
|
| 65 |
-
| 0.6533 | 9.0 | 6408 | 2.2761 | 0.5400 |
|
| 66 |
-
| 0.5268 | 10.0 | 7120 | 2.4777 | 0.5400 |
|
| 67 |
-
| 0.5067 | 11.0 | 7832 | 2.6160 | 0.5372 |
|
| 68 |
-
| 0.4209 | 12.0 | 8544 | 2.6253 | 0.5512 |
|
| 69 |
-
| 0.4102 | 13.0 | 9256 | 2.7287 | 0.5442 |
|
| 70 |
-
| 0.3405 | 14.0 | 9968 | 2.7607 | 0.5470 |
|
| 71 |
-
| 0.3278 | 15.0 | 10680 | 2.7780 | 0.5526 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
### Framework versions
|
| 75 |
-
|
| 76 |
-
- Transformers 4.39.3
|
| 77 |
-
- Pytorch 2.2.1+cu118
|
| 78 |
-
- Datasets 2.14.7
|
| 79 |
-
- Tokenizers 0.15.2
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- generated_from_trainer
|
| 4 |
+
base_model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
|
| 5 |
+
metrics:
|
| 6 |
+
- accuracy
|
| 7 |
+
- precision
|
| 8 |
+
- recall
|
| 9 |
+
- f1
|
| 10 |
+
model-index:
|
| 11 |
+
- name: all_keywords_multi-qa-MiniLM-L6-cos-v1_another
|
| 12 |
+
results: []
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 16 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 17 |
+
|
| 18 |
+
# all_keywords_multi-qa-MiniLM-L6-cos-v1_another
|
| 19 |
+
|
| 20 |
+
This model is a fine-tuned version of [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1) on the None dataset.
|
| 21 |
+
It achieves the following results on the evaluation set:
|
| 22 |
+
- Loss: 2.7780
|
| 23 |
+
- Accuracy: 0.5526
|
| 24 |
+
- Precision: 0.5526
|
| 25 |
+
- Recall: 0.5526
|
| 26 |
+
- F1: 0.5526
|
| 27 |
+
|
| 28 |
+
## Model description
|
| 29 |
+
|
| 30 |
+
More information needed
|
| 31 |
+
|
| 32 |
+
## Intended uses & limitations
|
| 33 |
+
|
| 34 |
+
More information needed
|
| 35 |
+
|
| 36 |
+
## Training and evaluation data
|
| 37 |
+
|
| 38 |
+
More information needed
|
| 39 |
+
|
| 40 |
+
## Training procedure
|
| 41 |
+
|
| 42 |
+
### Training hyperparameters
|
| 43 |
+
|
| 44 |
+
The following hyperparameters were used during training:
|
| 45 |
+
- learning_rate: 5e-05
|
| 46 |
+
- train_batch_size: 4
|
| 47 |
+
- eval_batch_size: 4
|
| 48 |
+
- seed: 42
|
| 49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 50 |
+
- lr_scheduler_type: linear
|
| 51 |
+
- num_epochs: 15
|
| 52 |
+
|
| 53 |
+
### Training results
|
| 54 |
+
|
| 55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
| 57 |
+
| 2.3017 | 1.0 | 712 | 2.0180 | 0.4362 |
|
| 58 |
+
| 2.09 | 2.0 | 1424 | 1.8306 | 0.4390 |
|
| 59 |
+
| 1.775 | 3.0 | 2136 | 1.7843 | 0.4783 |
|
| 60 |
+
| 1.5811 | 4.0 | 2848 | 1.7686 | 0.5175 |
|
| 61 |
+
| 1.2665 | 5.0 | 3560 | 1.7257 | 0.5147 |
|
| 62 |
+
| 1.0957 | 6.0 | 4272 | 1.8126 | 0.5568 |
|
| 63 |
+
| 0.9661 | 7.0 | 4984 | 2.0472 | 0.5386 |
|
| 64 |
+
| 0.7399 | 8.0 | 5696 | 2.1375 | 0.5428 |
|
| 65 |
+
| 0.6533 | 9.0 | 6408 | 2.2761 | 0.5400 |
|
| 66 |
+
| 0.5268 | 10.0 | 7120 | 2.4777 | 0.5400 |
|
| 67 |
+
| 0.5067 | 11.0 | 7832 | 2.6160 | 0.5372 |
|
| 68 |
+
| 0.4209 | 12.0 | 8544 | 2.6253 | 0.5512 |
|
| 69 |
+
| 0.4102 | 13.0 | 9256 | 2.7287 | 0.5442 |
|
| 70 |
+
| 0.3405 | 14.0 | 9968 | 2.7607 | 0.5470 |
|
| 71 |
+
| 0.3278 | 15.0 | 10680 | 2.7780 | 0.5526 |
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
### Framework versions
|
| 75 |
+
|
| 76 |
+
- Transformers 4.39.3
|
| 77 |
+
- Pytorch 2.2.1+cu118
|
| 78 |
+
- Datasets 2.14.7
|
| 79 |
+
- Tokenizers 0.15.2
|