Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,71 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- MAmmoTH-VL/MAmmoTH-VL-Instruct-12M
|
5 |
+
- liuhaotian/LLaVA-Pretrain
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
base_model:
|
11 |
+
- microsoft/bitnet-b1.58-2B-4T
|
12 |
+
pipeline_tag: image-text-to-text
|
13 |
+
tags:
|
14 |
+
- 1-bit
|
15 |
+
- VLA
|
16 |
+
- VLM
|
17 |
+
---
|
18 |
+
# BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation
|
19 |
+
[[paper]]() [[model]](https://huggingface.co/collections/hongyuw/bitvla-68468fb1e3aae15dd8a4e36e) [[code]](https://github.com/ustcwhy/BitVLA)
|
20 |
+
|
21 |
+
- June 2025: [BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation]()
|
22 |
+
|
23 |
+
|
24 |
+
## Open Source Plan
|
25 |
+
|
26 |
+
- ✅ Paper, Pre-trained VLM and evaluation code.
|
27 |
+
- 🧭 Fine-tuned VLA models, pre-training and fine-tuning code.
|
28 |
+
- 🧭 Pre-trained VLA.
|
29 |
+
|
30 |
+
|
31 |
+
## Evaluation on VQA
|
32 |
+
|
33 |
+
We use the [LMM-Eval](https://github.com/ustcwhy/BitVLA/tree/main/lmms-eval) toolkit to conduct evaluations on VQA tasks. We provide the [transformers repo](https://github.com/ustcwhy/BitVLA/tree/main/transformers) in which we modify the [modeling_llava.py](https://github.com/ustcwhy/BitVLA/blob/main/transformers/src/transformers/models/llava/modeling_llava.py) and [modeling_siglip.py](https://github.com/ustcwhy/BitVLA/blob/main/transformers/src/transformers/models/siglip/modeling_siglip.py) to support the W1.58-A8 quantization.
|
34 |
+
|
35 |
+
The evaluation should use nvidia_24_07 docker. Install the packages:
|
36 |
+
|
37 |
+
```bash
|
38 |
+
docker run --name nvidia_24_07 --privileged --net=host --ipc=host --gpus=all -v /mnt:/mnt -v /tmp:/tmp -d nvcr.io/nvidia/pytorch:24.07-py3 sleep infinity # only use for multimodal evaluation
|
39 |
+
docker exec -it nvidia_24_07 bash
|
40 |
+
git clone https://github.com/ustcwhy/BitVLA.git
|
41 |
+
cd BitVLA/
|
42 |
+
bash vl_eval_setup.sh # only use for multimodal evaluation
|
43 |
+
```
|
44 |
+
|
45 |
+
First, download the BitVLA model from HuggingFace:
|
46 |
+
|
47 |
+
```bash
|
48 |
+
git clone https://huggingface.co/hongyuw/bitvla-bitsiglipL-224px-bf16 # BitVLA w/ W1.58-A8 SigLIP-L
|
49 |
+
git clone https://huggingface.co/hongyuw/bitvla-siglipL-224px-bf16 # BitVLA w/ BF16 SigLIP-L
|
50 |
+
```
|
51 |
+
|
52 |
+
Then run the following scripts to conduct evaluations:
|
53 |
+
|
54 |
+
```bash
|
55 |
+
cd lmms-eval/
|
56 |
+
bash eval-dense-hf.sh /YOUR_PATH_TO_EXP/bitvla-bitsiglipL-224px-bf16
|
57 |
+
bash eval-dense-hf.sh /YOUR_PATH_TO_EXP/bitvla-siglipL-224px-bf16
|
58 |
+
```
|
59 |
+
|
60 |
+
Note that we provide the master weights of BitVLA and perform online quantization. For actual memory savings, you may quantize the weights offline to 1.58-bit precision. We recommend using the [bitnet.cpp](https://github.com/microsoft/bitnet) inference framework to accurately measure the reduction in inference cost.
|
61 |
+
|
62 |
+
## Acknowledgement
|
63 |
+
|
64 |
+
This repository is built using [LMM-Eval](https://github.com/EvolvingLMMs-Lab/lmms-eval) and [the HuggingFace's transformers](https://github.com/huggingface/transformers).
|
65 |
+
|
66 |
+
## License
|
67 |
+
This project is licensed under the MIT License.
|
68 |
+
|
69 |
+
### Contact Information
|
70 |
+
|
71 |
+
For help or issues using models, please submit a GitHub issue.
|