Commit
·
fa5a3c6
1
Parent(s):
6583e5b
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,49 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
## Usage Code
|
| 6 |
+
|
| 7 |
+
```python
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
+
import numpy as np
|
| 11 |
+
from scipy.special import softmax
|
| 12 |
+
# 选择模型和模型名称(例如,这里使用GPT-2模型)
|
| 13 |
+
model_name = "hkust-nlp/Deita-Complexity-Scorer"
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
complexity_template = ("You are a helpful assistant. Please identify the complexity score of the following user query. \n##Query: {instruction} \n##Complexity: ")
|
| 19 |
+
# 输入文本
|
| 20 |
+
input_text = "write a performance review for a junior data scientist"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
user_input = complexity_template.format(instruction=input_text)
|
| 24 |
+
|
| 25 |
+
# 将输入文本编码为tokens
|
| 26 |
+
input_ids = tokenizer.encode(user_input, return_tensors="pt")
|
| 27 |
+
|
| 28 |
+
# 生成文本
|
| 29 |
+
max_length = 512 # 设置生成文本的最大长度
|
| 30 |
+
outputs = model.generate(input_ids, max_length=512, num_return_sequences=1, return_dict_in_generate=True, output_scores=True)
|
| 31 |
+
logprobs_list = outputs.scores[0][0]
|
| 32 |
+
score_logits = []
|
| 33 |
+
id2score = {
|
| 34 |
+
29896: "1",
|
| 35 |
+
29906: "2",
|
| 36 |
+
29941: "3",
|
| 37 |
+
29946: "4",
|
| 38 |
+
29945: "5",
|
| 39 |
+
29953: "6"
|
| 40 |
+
}
|
| 41 |
+
score_template = np.array([1,2,3,4,5,6])
|
| 42 |
+
for k in id2score:
|
| 43 |
+
score_logits.append(logprobs_list[k])
|
| 44 |
+
score_logits = np.array(score_logits)
|
| 45 |
+
score_npy = softmax(score_logits, axis=0)
|
| 46 |
+
score_npy = score_npy * score_template
|
| 47 |
+
|
| 48 |
+
score_npy = np.sum(score_npy, axis=0)
|
| 49 |
+
```
|