Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,202 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
|
| 50 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
[
|
|
|
|
| 57 |
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
| 61 |
|
| 62 |
-
[
|
| 63 |
|
| 64 |
-
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: other
|
| 5 |
+
license_name: deepseek
|
| 6 |
+
license_link: https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL
|
| 7 |
library_name: transformers
|
| 8 |
+
tags:
|
| 9 |
+
- mathematics
|
| 10 |
+
datasets:
|
| 11 |
+
- hkust-nlp/dart-math-hard
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
pipeline_tag: text-generation
|
| 15 |
+
base_model: deepseek-ai/deepseek-math-7b-base
|
| 16 |
+
model-index:
|
| 17 |
+
- name: dart-math-dsmath-7b-prop2diff
|
| 18 |
+
results:
|
| 19 |
+
- task:
|
| 20 |
+
type: text-generation
|
| 21 |
+
name: Mathematical Problem-Solving
|
| 22 |
+
dataset:
|
| 23 |
+
type: hendrycks/competition_math
|
| 24 |
+
name: MATH
|
| 25 |
+
split: test
|
| 26 |
+
metrics:
|
| 27 |
+
- type: accuracy
|
| 28 |
+
name: Pass@1 (0-shot CoT)
|
| 29 |
+
value: 53.6
|
| 30 |
+
source:
|
| 31 |
+
name: "Paper *DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving*"
|
| 32 |
+
url: "https://arxiv.org/abs/2407.13690"
|
| 33 |
+
- task:
|
| 34 |
+
type: text-generation
|
| 35 |
+
name: Mathematical Problem-Solving
|
| 36 |
+
dataset:
|
| 37 |
+
type: openai/gsm8k
|
| 38 |
+
name: GSM8K
|
| 39 |
+
config: main
|
| 40 |
+
split: test
|
| 41 |
+
metrics:
|
| 42 |
+
- type: accuracy
|
| 43 |
+
name: Pass@1 (0-shot CoT)
|
| 44 |
+
value: 86.8
|
| 45 |
+
source:
|
| 46 |
+
name: "Paper *DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving*"
|
| 47 |
+
url: "https://arxiv.org/abs/2407.13690"
|
| 48 |
+
- task:
|
| 49 |
+
type: text-generation
|
| 50 |
+
name: Mathematical Problem-Solving
|
| 51 |
+
dataset:
|
| 52 |
+
type: college-math
|
| 53 |
+
name: CollegeMath
|
| 54 |
+
metrics:
|
| 55 |
+
- type: accuracy
|
| 56 |
+
name: Pass@1 (0-shot CoT)
|
| 57 |
+
value: 40.7
|
| 58 |
+
source:
|
| 59 |
+
name: "Paper *DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving*"
|
| 60 |
+
url: "https://arxiv.org/abs/2407.13690"
|
| 61 |
+
- task:
|
| 62 |
+
type: text-generation
|
| 63 |
+
name: Mathematical Problem-Solving
|
| 64 |
+
dataset:
|
| 65 |
+
type: deepmind-mathematics
|
| 66 |
+
name: DeepMind-Mathematics
|
| 67 |
+
metrics:
|
| 68 |
+
- type: accuracy
|
| 69 |
+
name: Pass@1 (0-shot CoT)
|
| 70 |
+
value: 61.6
|
| 71 |
+
source:
|
| 72 |
+
name: "Paper *DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving*"
|
| 73 |
+
url: "https://arxiv.org/abs/2407.13690"
|
| 74 |
+
- task:
|
| 75 |
+
type: text-generation
|
| 76 |
+
name: Mathematical Problem-Solving
|
| 77 |
+
dataset:
|
| 78 |
+
type: Hothan/OlympiadBench
|
| 79 |
+
name: OlympiadBench-OE_TO_maths_en_COMP
|
| 80 |
+
config: OE_TO_maths_en_COMP
|
| 81 |
+
split: train
|
| 82 |
+
metrics:
|
| 83 |
+
- type: accuracy
|
| 84 |
+
name: Pass@1 (0-shot CoT)
|
| 85 |
+
value: 21.7
|
| 86 |
+
source:
|
| 87 |
+
name: "Paper *DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving*"
|
| 88 |
+
url: "https://arxiv.org/abs/2407.13690"
|
| 89 |
+
- task:
|
| 90 |
+
type: text-generation
|
| 91 |
+
name: Mathematical Problem-Solving
|
| 92 |
+
dataset:
|
| 93 |
+
type: TIGER-Lab/TheoremQA
|
| 94 |
+
name: TheoremQA
|
| 95 |
+
split: test
|
| 96 |
+
metrics:
|
| 97 |
+
- type: accuracy
|
| 98 |
+
name: Pass@1 (0-shot CoT)
|
| 99 |
+
value: 32.2
|
| 100 |
+
source:
|
| 101 |
+
name: "Paper *DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving*"
|
| 102 |
+
url: "https://arxiv.org/abs/2407.13690"
|
| 103 |
---
|
| 104 |
|
| 105 |
+
# DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving
|
| 106 |
|
| 107 |
+
📝 [Paper@arXiv](https://arxiv.org/abs/2407.13690) | 🤗 [Datasets&Models@HF](https://huggingface.co/collections/hkust-nlp/dart-math-665704599b35de59f8fdf6c1) | 🐱 [Code@GitHub](https://github.com/hkust-nlp/dart-math) | 🐦 [Thread@X(Twitter)](https://x.com/tongyx361/status/1811413243350454455) | 🐶 [中文博客@知乎](https://zhuanlan.zhihu.com/p/708371895) | 📑 [BibTeX](https://github.com/hkust-nlp/dart-math?tab=readme-ov-file#citation)
|
| 108 |
|
| 109 |
+
## Models: `DART-Math`
|
| 110 |
|
| 111 |
+
`DART-Math` models achieve performance **superior or competitive to previous SOTAs** on 2 in-domain and 4 challenging out-of-domain mathematical reasoning benchmarks, despite using **much smaller datasets** and **no proprietary model like GPT-4**.
|
| 112 |
|
| 113 |
+
| Model | [MATH](https://huggingface.co/datasets/hendrycks/competition_math) | [GSM8K](https://huggingface.co/datasets/gsm8k) | [College](https://github.com/hkust-nlp/dart-math/tree/main/data/eval-dsets/mwpbench/college-math-test.jsonl) | [DM](https://github.com/hkust-nlp/dart-math/tree/main/data/eval-dsets/deepmind-mathematics.json) | [Olympiad](https://github.com/hkust-nlp/dart-math/tree/main/data/eval-dsets/olympiadbench/OE_TO_maths_en_COMP.json) | [Theorem](https://github.com/hkust-nlp/dart-math/tree/main/data/eval-dsets/theoremqa.json) | AVG |
|
| 114 |
+
| :----------------------------------------------------------------------------------------------------- | -----------------------------------------------------------------: | ---------------------------------------------: | -----------------------------------------------------------------------------------------------------------: | -----------------------------------------------------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------: | -----------------------------------------------------------------------------------------: | -------: |
|
| 115 |
+
| GPT-4 (0314) | [52.6](https://arxiv.org/abs/2403.04706) | [94.7](https://arxiv.org/abs/2403.04706) | [24.4](https://arxiv.org/abs/2403.02884) | -- | -- | -- | -- |
|
| 116 |
+
| Llama-3-70B-MetaMath | 44.9 | 88.0 | 31.9 | 53.2 | 11.6 | 21.9 | 41.9 |
|
| 117 |
+
| [`DART-Math-Llama-3-70B` (Uniform)](https://huggingface.co/hkust-nlp/dart-math-llama3-70b-uniform) | 54.9 | **90.4** | **38.5** | **64.1** | 19.1 | 27.4 | 49.1 |
|
| 118 |
+
| [`DART-Math-Llama-3-70B` (Prop2Diff)](https://huggingface.co/hkust-nlp/dart-math-llama3-70b-prop2diff) | **56.1** | 89.6 | 37.9 | **64.1** | **20.0** | **28.2** | **49.3** |
|
| 119 |
+
| DeepSeekMath-7B-MetaMath | 43.7 | 81.8 | 33.7 | 53.0 | 13.6 | 23.2 | 41.5 |
|
| 120 |
+
| [DeepSeekMath-7B-RL](https://huggingface.co/deepseek-ai/deepseek-math-7b-rl) | 53.1 | 88.4 | 41.3 | 58.3 | 18.7 | 35.9 | 49.3 |
|
| 121 |
+
| [`DART-Math-DSMath-7B` (Uniform)](https://huggingface.co/hkust-nlp/dart-math-dsmath-7b-uniform) | 52.9 | **88.2** | 40.1 | 60.2 | 21.3 | **32.5** | 49.2 |
|
| 122 |
+
| [`DART-Math-DSMath-7B` (Prop2Diff)](https://huggingface.co/hkust-nlp/dart-math-dsmath-7b-prop2diff) | **53.6** | 86.8 | **40.7** | **61.6** | **21.7** | 32.2 | **49.4** |
|
| 123 |
+
| Mistral-7B-MetaMath | 29.8 | 76.5 | 19.3 | 28.0 | 5.9 | 14.0 | 28.9 |
|
| 124 |
+
| [`DART-Math-Mistral-7B` (Uniform)](https://huggingface.co/hkust-nlp/dart-math-mistral-7b-uniform) | 43.5 | **82.6** | 26.9 | 42.0 | 13.2 | 16.4 | 27.4 |
|
| 125 |
+
| [`DART-Math-Mistral-7B` (Prop2Diff)](https://huggingface.co/hkust-nlp/dart-math-mistral-7b-prop2diff) | **45.5** | 81.1 | **29.4** | **45.1** | **14.7** | **17.0** | **38.8** |
|
| 126 |
+
| Llama-3-8B-MetaMath | 32.5 | 77.3 | 20.6 | 35.0 | 5.5 | 13.8 | 30.8 |
|
| 127 |
+
| [`DART-Math-Llama-3-8B` (Uniform)](https://huggingface.co/hkust-nlp/dart-math-llama3-8b-uniform) | 45.3 | **82.5** | 27.1 | **48.2** | 13.6 | 15.4 | 38.7 |
|
| 128 |
+
| [`DART-Math-Llama-3-8B` (Prop2Diff)](https://huggingface.co/hkust-nlp/dart-math-llama3-8b-prop2diff) | **46.6** | 81.1 | **28.8** | 48.0 | **14.5** | **19.4** | **39.7** |
|
| 129 |
|
| 130 |
+
***Abbreviations**: College (CollegeMath), DM (DeepMind Mathematics), Olympiad (OlympiadBench-Math), Theorem (TheoremQA).
|
| 131 |
+
**Bold** means the best score by SFT on the respective base model here.
|
| 132 |
+
To reproduce our results, please refer to [the `DART-Math` GitHub repository](https://github.com/hkust-nlp/dart-math).*
|
| 133 |
|
| 134 |
+
## Prompt Template
|
| 135 |
|
| 136 |
+
All the `DART-Math` models use the [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) prompt template:
|
| 137 |
|
| 138 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n###Instruction:\n{query}\n\n### Response:\n
|
| 141 |
|
| 142 |
+
```
|
| 143 |
|
| 144 |
+
## Training Dataset
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
We construct our traning datasets by applying **Difficulty-Aware Rejection Sampling** (`DARS`) to the **MATH and GSM8K** training sets.
|
| 147 |
|
| 148 |
+
`DARS` tackle **severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries**, in previous datasets.
|
| 149 |
|
| 150 |
+
These biases are primarily caused by vanilla rejection sampling, where **the same number of responses is
|
| 151 |
+
sampled for each query**, yet the likelihood of obtaining correct responses for difficult queries is significantly lower, sometimes even zero.
|
| 152 |
|
| 153 |
+
Please refer to [`DART-Math-Hard`](https://huggingface.co/datasets/hkust-nlp/dart-math-hard) / [`DART-Math-Uniform`](https://huggingface.co/datasets/hkust-nlp/dart-math-uniform) for more details.
|
| 154 |
|
| 155 |
+
## Training Setup
|
| 156 |
|
| 157 |
+
We perform standard instruction tuning to several base models including Llama3-8B & Mistral-7B & Llama3-70B as representatives of general models and DeepSeekMath-
|
| 158 |
+
7B as the representative of math-specialized model
|
| 159 |
+
on our synthetic datasets [`DART-Math-Hard`](https://huggingface.co/datasets/hkust-nlp/dart-math-hard) & [`DART-Math-Uniform`](https://huggingface.co/datasets/hkust-nlp/dart-math-uniform),
|
| 160 |
+
leading to `DART-Math (Prop2Diff)` & `DART-Math (Uniform)` respectively.
|
| 161 |
|
| 162 |
+
For simplicity, we keep most hyper-parameters the same across different models and datasets:
|
| 163 |
|
| 164 |
+
- Model max length (of [packed](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing) sequence): 4096
|
| 165 |
+
- Batch size: 64
|
| 166 |
+
- Warm-up ratio: 0.03
|
| 167 |
+
- Learning rate scheduler: cosine
|
| 168 |
+
- Prompt template: [Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
|
| 169 |
|
| 170 |
+
Several other key hyper-parameters are tuned as follow:
|
| 171 |
|
| 172 |
+
| Base Model | Max. L.R. | # of Epochs | # of Grad. Acc. Steps | # of A100 GPUs |
|
| 173 |
+
|:--------------- | ---------:| -----------:| ---------------------:| --------------:|
|
| 174 |
+
| Mistral-7B | `1e-5` | 3 | 1 | 8 |
|
| 175 |
+
| Llama3-8B | `5e-5` | 1 | 2 | 8 |
|
| 176 |
+
| Llama3-70B | `2e-5` | 1 | 1 | 32 |
|
| 177 |
+
| DeepSeekMath-7B | `5e-5` | 3 | 1 | 8 |
|
| 178 |
|
| 179 |
+
- For **maximum learning rate**, we determine the values by **searching** through `1e-6,5e-6,1e-5,2e-5,5e-5,1e-4` according to the MATH performance after training on MMIQC for 1 epoch, except for Llama3-70B that is so expensive to search for that we derive from Llama3-8B’s learning rate in analogy to the relationship of (per-training) learning rates between [Llama2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) and [Llama2-70B](https://huggingface.co/meta-llama/Llama-2-70b-hf) (\~2:1).
|
| 180 |
+
- For **Llama3** models, preliminary experiments indicate that **training for 1 epoch consistently outperforms 3 epochs**.
|
| 181 |
|
| 182 |
+
Please refer to [Appendix A.1 of our paper](https://tongyx361.github.io/assets/dart-math/paper-dart-math.pdf) for more details.
|
| 183 |
|
| 184 |
+
## Other Details
|
| 185 |
|
| 186 |
+
- For Mistral-7B-based models, we disable `sliding_window` by default following [the newest Mistral-7B-Instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3/blob/main/config.json) (Flash Attention 2 does not support `sliding_window` and XFormer backend in vLLM has throughput \~10% lower in our experiments.)
|
| 187 |
|
| 188 |
+
## Citation
|
| 189 |
|
| 190 |
+
If you find our data, model or code useful for your work, please kindly cite [our paper](https://arxiv.org/abs/2407.13690):
|
| 191 |
|
| 192 |
+
```latex
|
| 193 |
+
@article{tong2024dartmath,
|
| 194 |
+
title={DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving},
|
| 195 |
+
author={Yuxuan Tong and Xiwen Zhang and Rui Wang and Ruidong Wu and Junxian He},
|
| 196 |
+
year={2024},
|
| 197 |
+
eprint={2407.13690},
|
| 198 |
+
archivePrefix={arXiv},
|
| 199 |
+
primaryClass={cs.CL},
|
| 200 |
+
url={https://arxiv.org/abs/2407.13690},
|
| 201 |
+
}
|
| 202 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|