FallenMerick commited on
Commit
8712f72
·
verified ·
1 Parent(s): 48bfb3d

Delete .__Models__cognitivecomputations__samantha-mistral-instruct-7b

Browse files
.__Models__cognitivecomputations__samantha-mistral-instruct-7b/results_2024-07-02T19-23-24.931098.json DELETED
@@ -1,177 +0,0 @@
1
- {
2
- "results": {
3
- "hellaswag": {
4
- "acc,none": 0.5549691296554471,
5
- "acc_stderr,none": 0.004959535443170614,
6
- "acc_norm,none": 0.7365066719776937,
7
- "acc_norm_stderr,none": 0.004396273173717414,
8
- "alias": "hellaswag"
9
- },
10
- "eq_bench": {
11
- "eqbench,none": 18.697258501455963,
12
- "eqbench_stderr,none": 3.7651200808947474,
13
- "percent_parseable,none": 100.0,
14
- "percent_parseable_stderr,none": 0.0,
15
- "alias": "eq_bench"
16
- }
17
- },
18
- "group_subtasks": {
19
- "eq_bench": [],
20
- "hellaswag": []
21
- },
22
- "configs": {
23
- "eq_bench": {
24
- "task": "eq_bench",
25
- "dataset_path": "pbevan11/EQ-Bench",
26
- "validation_split": "validation",
27
- "doc_to_text": "prompt",
28
- "doc_to_target": "reference_answer_fullscale",
29
- "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
- "description": "",
31
- "target_delimiter": " ",
32
- "fewshot_delimiter": "\n\n",
33
- "num_fewshot": 0,
34
- "metric_list": [
35
- {
36
- "metric": "eqbench",
37
- "aggregation": "mean",
38
- "higher_is_better": true
39
- },
40
- {
41
- "metric": "percent_parseable",
42
- "aggregation": "mean",
43
- "higher_is_better": true
44
- }
45
- ],
46
- "output_type": "generate_until",
47
- "generation_kwargs": {
48
- "do_sample": false,
49
- "temperature": 0.0,
50
- "max_gen_toks": 80,
51
- "until": [
52
- "\n\n"
53
- ]
54
- },
55
- "repeats": 1,
56
- "should_decontaminate": false,
57
- "metadata": {
58
- "version": 2.1
59
- }
60
- },
61
- "hellaswag": {
62
- "task": "hellaswag",
63
- "group": [
64
- "multiple_choice"
65
- ],
66
- "dataset_path": "hellaswag",
67
- "training_split": "train",
68
- "validation_split": "validation",
69
- "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
- "doc_to_text": "{{query}}",
71
- "doc_to_target": "{{label}}",
72
- "doc_to_choice": "choices",
73
- "description": "",
74
- "target_delimiter": " ",
75
- "fewshot_delimiter": "\n\n",
76
- "num_fewshot": 0,
77
- "metric_list": [
78
- {
79
- "metric": "acc",
80
- "aggregation": "mean",
81
- "higher_is_better": true
82
- },
83
- {
84
- "metric": "acc_norm",
85
- "aggregation": "mean",
86
- "higher_is_better": true
87
- }
88
- ],
89
- "output_type": "multiple_choice",
90
- "repeats": 1,
91
- "should_decontaminate": false,
92
- "metadata": {
93
- "version": 1.0
94
- }
95
- }
96
- },
97
- "versions": {
98
- "eq_bench": 2.1,
99
- "hellaswag": 1.0
100
- },
101
- "n-shot": {
102
- "eq_bench": 0,
103
- "hellaswag": 0
104
- },
105
- "higher_is_better": {
106
- "eq_bench": {
107
- "eqbench": true,
108
- "percent_parseable": true
109
- },
110
- "hellaswag": {
111
- "acc": true,
112
- "acc_norm": true
113
- }
114
- },
115
- "n-samples": {
116
- "hellaswag": {
117
- "original": 10042,
118
- "effective": 10042
119
- },
120
- "eq_bench": {
121
- "original": 171,
122
- "effective": 171
123
- }
124
- },
125
- "config": {
126
- "model": "hf",
127
- "model_args": "pretrained=./Models/cognitivecomputations/samantha-mistral-instruct-7b",
128
- "model_num_parameters": 7241732096,
129
- "model_dtype": "torch.bfloat16",
130
- "model_revision": "main",
131
- "model_sha": "",
132
- "batch_size": "auto",
133
- "batch_sizes": [
134
- 64
135
- ],
136
- "device": "cuda:0",
137
- "use_cache": null,
138
- "limit": null,
139
- "bootstrap_iters": 100000,
140
- "gen_kwargs": null,
141
- "random_seed": 0,
142
- "numpy_seed": 1234,
143
- "torch_seed": 1234,
144
- "fewshot_seed": 1234
145
- },
146
- "git_hash": null,
147
- "date": 1719946631.0748322,
148
- "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
- "transformers_version": "4.42.3",
150
- "upper_git_hash": null,
151
- "tokenizer_pad_token": [
152
- "<unk>",
153
- 0
154
- ],
155
- "tokenizer_eos_token": [
156
- "</s>",
157
- 2
158
- ],
159
- "tokenizer_bos_token": [
160
- "<s>",
161
- 1
162
- ],
163
- "eot_token_id": 2,
164
- "max_length": 32768,
165
- "task_hashes": {},
166
- "model_source": "hf",
167
- "model_name": "./Models/cognitivecomputations/samantha-mistral-instruct-7b",
168
- "model_name_sanitized": ".__Models__cognitivecomputations__samantha-mistral-instruct-7b",
169
- "system_instruction": null,
170
- "system_instruction_sha": null,
171
- "fewshot_as_multiturn": false,
172
- "chat_template": null,
173
- "chat_template_sha": null,
174
- "start_time": 157926.171562761,
175
- "end_time": 159506.860535868,
176
- "total_evaluation_time_seconds": "1580.6889731069969"
177
- }