Harshini Murali
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load model
|
7 |
+
model = tf.keras.models.load_model("oa.keras")
|
8 |
+
|
9 |
+
# Define class labels
|
10 |
+
class_labels = ['Healthy', 'Moderate', 'Severe']
|
11 |
+
|
12 |
+
# Page title
|
13 |
+
st.title("Knee Osteoarthritis Severity Classifier")
|
14 |
+
|
15 |
+
# File uploader
|
16 |
+
uploaded_file = st.file_uploader("Upload a Knee X-ray Image", type=["jpg", "jpeg", "png"])
|
17 |
+
|
18 |
+
if uploaded_file:
|
19 |
+
# Show uploaded image
|
20 |
+
image = Image.open(uploaded_file)
|
21 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
22 |
+
|
23 |
+
# Preprocess the image
|
24 |
+
img = image.resize((224, 224))
|
25 |
+
img_array = np.array(img)
|
26 |
+
if img_array.shape[-1] == 4: # if RGBA, convert to RGB
|
27 |
+
img_array = img_array[:, :, :3]
|
28 |
+
img_array = img_array / 255.0
|
29 |
+
img_array = np.expand_dims(img_array, axis=0)
|
30 |
+
|
31 |
+
# Predict
|
32 |
+
prediction = model.predict(img_array)
|
33 |
+
predicted_class = class_labels[np.argmax(prediction)]
|
34 |
+
confidence = np.max(prediction)
|
35 |
+
|
36 |
+
# Show result
|
37 |
+
st.markdown(f"### 🩺 Predicted Class: **{predicted_class}**")
|
38 |
+
st.markdown(f"Confidence: `{confidence:.2f}`")
|