bniladridas commited on
Commit
e90f5f1
·
1 Parent(s): eb3b32a

Update README for new repo name harpertokenConvAI and remove emojis and noise

Browse files
Files changed (1) hide show
  1. README.md +17 -37
README.md CHANGED
@@ -13,7 +13,7 @@ metrics:
13
  - exact_match
14
  - f1_score
15
  model-index:
16
- - name: Conversational AI Base Model
17
  results:
18
  - task:
19
  type: question-answering
@@ -27,19 +27,13 @@ model-index:
27
  value: 0.85
28
  ---
29
 
30
- # Conversational AI Base Model
31
 
32
- <p align="center">
33
- <a href="https://huggingface.co/bniladridas/conversational-ai-base-model">
34
- <img src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg" width="200" alt="Hugging Face">
35
- </a>
36
- </p>
37
 
38
- ## 🤖 Model Overview
39
 
40
- A sophisticated, context-aware conversational AI model built on the DistilBERT architecture, designed for advanced natural language understanding and generation.
41
-
42
- ### 🌟 Key Features
43
  - **Advanced Response Generation**
44
  - Multi-strategy response mechanisms
45
  - Context-aware conversation tracking
@@ -55,7 +49,7 @@ A sophisticated, context-aware conversational AI model built on the DistilBERT a
55
  - Dynamic model loading
56
  - Error handling and recovery
57
 
58
- ## 🚀 Quick Start
59
 
60
  ### Installation
61
  ```bash
@@ -67,51 +61,37 @@ pip install transformers torch
67
  from transformers import AutoModelForQuestionAnswering, AutoTokenizer
68
 
69
  # Load model and tokenizer
70
- model = AutoModelForQuestionAnswering.from_pretrained('bniladridas/conversational-ai-base-model')
71
- tokenizer = AutoTokenizer.from_pretrained('bniladridas/conversational-ai-base-model')
72
  ```
73
 
74
- ## 🧠 Model Capabilities
75
  - Semantic understanding of context and questions
76
  - Ability to extract precise answers
77
  - Multiple response generation strategies
78
  - Fallback mechanisms for complex queries
79
 
80
- ## 📊 Performance
81
  - Trained on Stanford Question Answering Dataset (SQuAD)
82
  - Exact Match: 75%
83
  - F1 Score: 85%
84
 
85
- ## ⚠️ Limitations
86
  - Primarily trained on English text
87
  - Requires domain-specific fine-tuning
88
  - Performance varies by use case
89
 
90
- ## 🔍 Technical Details
91
  - **Base Model:** DistilBERT
92
  - **Variant:** Distilled for question-answering
93
  - **Maximum Sequence Length:** 512 tokens
94
  - **Supported Backends:** TensorFlow, PyTorch
95
 
96
- ## 🤝 Ethical Considerations
97
- - Designed with fairness in mind
98
- - Transparent about model capabilities
99
- - Ongoing work to reduce potential biases
100
-
101
- ## 📚 Citation
102
  ```bibtex
103
- @misc{conversational-ai-model,
104
- title={Conversational AI Base Model},
105
  author={Niladri Das},
106
  year={2025},
107
- url={https://huggingface.co/bniladridas/conversational-ai-base-model}
108
- }
109
- ```
110
-
111
- ## 📞 Contact
112
- - GitHub: [bniladridas](https://github.com/bniladridas)
113
- - Hugging Face: [@bniladridas](https://huggingface.co/bniladridas)
114
-
115
- ---
116
-
117
- *Last Updated: February 2025*
 
13
  - exact_match
14
  - f1_score
15
  model-index:
16
+ - name: Harpertoken ConvAI
17
  results:
18
  - task:
19
  type: question-answering
 
27
  value: 0.85
28
  ---
29
 
30
+ # Harpertoken ConvAI
31
 
32
+ ## Model Overview
 
 
 
 
33
 
34
+ A context-aware conversational AI model based on DistilBERT for natural language understanding and generation.
35
 
36
+ ### Key Features
 
 
37
  - **Advanced Response Generation**
38
  - Multi-strategy response mechanisms
39
  - Context-aware conversation tracking
 
49
  - Dynamic model loading
50
  - Error handling and recovery
51
 
52
+ ## Quick Start
53
 
54
  ### Installation
55
  ```bash
 
61
  from transformers import AutoModelForQuestionAnswering, AutoTokenizer
62
 
63
  # Load model and tokenizer
64
+ model = AutoModelForQuestionAnswering.from_pretrained('harpertoken/harpertokenConvAI')
65
+ tokenizer = AutoTokenizer.from_pretrained('harpertoken/harpertokenConvAI')
66
  ```
67
 
68
+ ## Model Capabilities
69
  - Semantic understanding of context and questions
70
  - Ability to extract precise answers
71
  - Multiple response generation strategies
72
  - Fallback mechanisms for complex queries
73
 
74
+ ## Performance
75
  - Trained on Stanford Question Answering Dataset (SQuAD)
76
  - Exact Match: 75%
77
  - F1 Score: 85%
78
 
79
+ ## Limitations
80
  - Primarily trained on English text
81
  - Requires domain-specific fine-tuning
82
  - Performance varies by use case
83
 
84
+ ## Technical Details
85
  - **Base Model:** DistilBERT
86
  - **Variant:** Distilled for question-answering
87
  - **Maximum Sequence Length:** 512 tokens
88
  - **Supported Backends:** TensorFlow, PyTorch
89
 
90
+ ## Citation
 
 
 
 
 
91
  ```bibtex
92
+ @misc{harpertoken-convai,
93
+ title={Harpertoken ConvAI},
94
  author={Niladri Das},
95
  year={2025},
96
+ url={https://huggingface.co/harpertoken/harpertokenConvAI}
97
+ }