bniladridas
commited on
Commit
·
e90f5f1
1
Parent(s):
eb3b32a
Update README for new repo name harpertokenConvAI and remove emojis and noise
Browse files
README.md
CHANGED
|
@@ -13,7 +13,7 @@ metrics:
|
|
| 13 |
- exact_match
|
| 14 |
- f1_score
|
| 15 |
model-index:
|
| 16 |
-
- name:
|
| 17 |
results:
|
| 18 |
- task:
|
| 19 |
type: question-answering
|
|
@@ -27,19 +27,13 @@ model-index:
|
|
| 27 |
value: 0.85
|
| 28 |
---
|
| 29 |
|
| 30 |
-
#
|
| 31 |
|
| 32 |
-
|
| 33 |
-
<a href="https://huggingface.co/bniladridas/conversational-ai-base-model">
|
| 34 |
-
<img src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg" width="200" alt="Hugging Face">
|
| 35 |
-
</a>
|
| 36 |
-
</p>
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
### 🌟 Key Features
|
| 43 |
- **Advanced Response Generation**
|
| 44 |
- Multi-strategy response mechanisms
|
| 45 |
- Context-aware conversation tracking
|
|
@@ -55,7 +49,7 @@ A sophisticated, context-aware conversational AI model built on the DistilBERT a
|
|
| 55 |
- Dynamic model loading
|
| 56 |
- Error handling and recovery
|
| 57 |
|
| 58 |
-
##
|
| 59 |
|
| 60 |
### Installation
|
| 61 |
```bash
|
|
@@ -67,51 +61,37 @@ pip install transformers torch
|
|
| 67 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
| 68 |
|
| 69 |
# Load model and tokenizer
|
| 70 |
-
model = AutoModelForQuestionAnswering.from_pretrained('
|
| 71 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
| 72 |
```
|
| 73 |
|
| 74 |
-
##
|
| 75 |
- Semantic understanding of context and questions
|
| 76 |
- Ability to extract precise answers
|
| 77 |
- Multiple response generation strategies
|
| 78 |
- Fallback mechanisms for complex queries
|
| 79 |
|
| 80 |
-
##
|
| 81 |
- Trained on Stanford Question Answering Dataset (SQuAD)
|
| 82 |
- Exact Match: 75%
|
| 83 |
- F1 Score: 85%
|
| 84 |
|
| 85 |
-
##
|
| 86 |
- Primarily trained on English text
|
| 87 |
- Requires domain-specific fine-tuning
|
| 88 |
- Performance varies by use case
|
| 89 |
|
| 90 |
-
##
|
| 91 |
- **Base Model:** DistilBERT
|
| 92 |
- **Variant:** Distilled for question-answering
|
| 93 |
- **Maximum Sequence Length:** 512 tokens
|
| 94 |
- **Supported Backends:** TensorFlow, PyTorch
|
| 95 |
|
| 96 |
-
##
|
| 97 |
-
- Designed with fairness in mind
|
| 98 |
-
- Transparent about model capabilities
|
| 99 |
-
- Ongoing work to reduce potential biases
|
| 100 |
-
|
| 101 |
-
## 📚 Citation
|
| 102 |
```bibtex
|
| 103 |
-
@misc{
|
| 104 |
-
title={
|
| 105 |
author={Niladri Das},
|
| 106 |
year={2025},
|
| 107 |
-
url={https://huggingface.co/
|
| 108 |
-
}
|
| 109 |
-
```
|
| 110 |
-
|
| 111 |
-
## 📞 Contact
|
| 112 |
-
- GitHub: [bniladridas](https://github.com/bniladridas)
|
| 113 |
-
- Hugging Face: [@bniladridas](https://huggingface.co/bniladridas)
|
| 114 |
-
|
| 115 |
-
---
|
| 116 |
-
|
| 117 |
-
*Last Updated: February 2025*
|
|
|
|
| 13 |
- exact_match
|
| 14 |
- f1_score
|
| 15 |
model-index:
|
| 16 |
+
- name: Harpertoken ConvAI
|
| 17 |
results:
|
| 18 |
- task:
|
| 19 |
type: question-answering
|
|
|
|
| 27 |
value: 0.85
|
| 28 |
---
|
| 29 |
|
| 30 |
+
# Harpertoken ConvAI
|
| 31 |
|
| 32 |
+
## Model Overview
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
A context-aware conversational AI model based on DistilBERT for natural language understanding and generation.
|
| 35 |
|
| 36 |
+
### Key Features
|
|
|
|
|
|
|
| 37 |
- **Advanced Response Generation**
|
| 38 |
- Multi-strategy response mechanisms
|
| 39 |
- Context-aware conversation tracking
|
|
|
|
| 49 |
- Dynamic model loading
|
| 50 |
- Error handling and recovery
|
| 51 |
|
| 52 |
+
## Quick Start
|
| 53 |
|
| 54 |
### Installation
|
| 55 |
```bash
|
|
|
|
| 61 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
| 62 |
|
| 63 |
# Load model and tokenizer
|
| 64 |
+
model = AutoModelForQuestionAnswering.from_pretrained('harpertoken/harpertokenConvAI')
|
| 65 |
+
tokenizer = AutoTokenizer.from_pretrained('harpertoken/harpertokenConvAI')
|
| 66 |
```
|
| 67 |
|
| 68 |
+
## Model Capabilities
|
| 69 |
- Semantic understanding of context and questions
|
| 70 |
- Ability to extract precise answers
|
| 71 |
- Multiple response generation strategies
|
| 72 |
- Fallback mechanisms for complex queries
|
| 73 |
|
| 74 |
+
## Performance
|
| 75 |
- Trained on Stanford Question Answering Dataset (SQuAD)
|
| 76 |
- Exact Match: 75%
|
| 77 |
- F1 Score: 85%
|
| 78 |
|
| 79 |
+
## Limitations
|
| 80 |
- Primarily trained on English text
|
| 81 |
- Requires domain-specific fine-tuning
|
| 82 |
- Performance varies by use case
|
| 83 |
|
| 84 |
+
## Technical Details
|
| 85 |
- **Base Model:** DistilBERT
|
| 86 |
- **Variant:** Distilled for question-answering
|
| 87 |
- **Maximum Sequence Length:** 512 tokens
|
| 88 |
- **Supported Backends:** TensorFlow, PyTorch
|
| 89 |
|
| 90 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
```bibtex
|
| 92 |
+
@misc{harpertoken-convai,
|
| 93 |
+
title={Harpertoken ConvAI},
|
| 94 |
author={Niladri Das},
|
| 95 |
year={2025},
|
| 96 |
+
url={https://huggingface.co/harpertoken/harpertokenConvAI}
|
| 97 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|