gosummer commited on
Commit
9c28733
·
verified ·
1 Parent(s): 920f620

Upload 68 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. echo/.gitkeep +0 -0
  2. input/.gitkeep +0 -0
  3. output/.gitkeep +0 -0
  4. uvr5_pack/lib_v5/__pycache__/layers.cpython-310.pyc +0 -0
  5. uvr5_pack/lib_v5/__pycache__/layers_123821KB.cpython-310.pyc +0 -0
  6. uvr5_pack/lib_v5/__pycache__/layers_123821KB.cpython-38.pyc +0 -0
  7. uvr5_pack/lib_v5/__pycache__/layers_123821KB.cpython-39.pyc +0 -0
  8. uvr5_pack/lib_v5/__pycache__/layers_new.cpython-310.pyc +0 -0
  9. uvr5_pack/lib_v5/__pycache__/layers_new.cpython-38.pyc +0 -0
  10. uvr5_pack/lib_v5/__pycache__/layers_new.cpython-39.pyc +0 -0
  11. uvr5_pack/lib_v5/__pycache__/model_param_init.cpython-310.pyc +0 -0
  12. uvr5_pack/lib_v5/__pycache__/model_param_init.cpython-38.pyc +0 -0
  13. uvr5_pack/lib_v5/__pycache__/model_param_init.cpython-39.pyc +0 -0
  14. uvr5_pack/lib_v5/__pycache__/nets.cpython-310.pyc +0 -0
  15. uvr5_pack/lib_v5/__pycache__/nets_61968KB.cpython-310.pyc +0 -0
  16. uvr5_pack/lib_v5/__pycache__/nets_61968KB.cpython-38.pyc +0 -0
  17. uvr5_pack/lib_v5/__pycache__/nets_61968KB.cpython-39.pyc +0 -0
  18. uvr5_pack/lib_v5/__pycache__/nets_new.cpython-310.pyc +0 -0
  19. uvr5_pack/lib_v5/__pycache__/nets_new.cpython-38.pyc +0 -0
  20. uvr5_pack/lib_v5/__pycache__/nets_new.cpython-39.pyc +0 -0
  21. uvr5_pack/lib_v5/__pycache__/spec_utils.cpython-310.pyc +0 -0
  22. uvr5_pack/lib_v5/__pycache__/spec_utils.cpython-38.pyc +0 -0
  23. uvr5_pack/lib_v5/__pycache__/spec_utils.cpython-39.pyc +0 -0
  24. uvr5_pack/lib_v5/dataset.py +183 -0
  25. uvr5_pack/lib_v5/layers.py +118 -0
  26. uvr5_pack/lib_v5/layers_123812KB .py +118 -0
  27. uvr5_pack/lib_v5/layers_123821KB.py +118 -0
  28. uvr5_pack/lib_v5/layers_33966KB.py +126 -0
  29. uvr5_pack/lib_v5/layers_537227KB.py +126 -0
  30. uvr5_pack/lib_v5/layers_537238KB.py +126 -0
  31. uvr5_pack/lib_v5/layers_new.py +126 -0
  32. uvr5_pack/lib_v5/model_param_init.py +69 -0
  33. uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json +19 -0
  34. uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json +19 -0
  35. uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json +19 -0
  36. uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json +19 -0
  37. uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json +19 -0
  38. uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json +19 -0
  39. uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512_cut.json +19 -0
  40. uvr5_pack/lib_v5/modelparams/2band_32000.json +30 -0
  41. uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json +30 -0
  42. uvr5_pack/lib_v5/modelparams/2band_48000.json +30 -0
  43. uvr5_pack/lib_v5/modelparams/3band_44100.json +42 -0
  44. uvr5_pack/lib_v5/modelparams/3band_44100_mid.json +43 -0
  45. uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json +43 -0
  46. uvr5_pack/lib_v5/modelparams/4band_44100.json +54 -0
  47. uvr5_pack/lib_v5/modelparams/4band_44100_mid.json +55 -0
  48. uvr5_pack/lib_v5/modelparams/4band_44100_msb.json +55 -0
  49. uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json +55 -0
  50. uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json +55 -0
echo/.gitkeep ADDED
File without changes
input/.gitkeep ADDED
File without changes
output/.gitkeep ADDED
File without changes
uvr5_pack/lib_v5/__pycache__/layers.cpython-310.pyc ADDED
Binary file (4.06 kB). View file
 
uvr5_pack/lib_v5/__pycache__/layers_123821KB.cpython-310.pyc ADDED
Binary file (4.07 kB). View file
 
uvr5_pack/lib_v5/__pycache__/layers_123821KB.cpython-38.pyc ADDED
Binary file (4.17 kB). View file
 
uvr5_pack/lib_v5/__pycache__/layers_123821KB.cpython-39.pyc ADDED
Binary file (4.13 kB). View file
 
uvr5_pack/lib_v5/__pycache__/layers_new.cpython-310.pyc ADDED
Binary file (4.44 kB). View file
 
uvr5_pack/lib_v5/__pycache__/layers_new.cpython-38.pyc ADDED
Binary file (4.45 kB). View file
 
uvr5_pack/lib_v5/__pycache__/layers_new.cpython-39.pyc ADDED
Binary file (4.44 kB). View file
 
uvr5_pack/lib_v5/__pycache__/model_param_init.cpython-310.pyc ADDED
Binary file (1.63 kB). View file
 
uvr5_pack/lib_v5/__pycache__/model_param_init.cpython-38.pyc ADDED
Binary file (1.58 kB). View file
 
uvr5_pack/lib_v5/__pycache__/model_param_init.cpython-39.pyc ADDED
Binary file (1.64 kB). View file
 
uvr5_pack/lib_v5/__pycache__/nets.cpython-310.pyc ADDED
Binary file (3.46 kB). View file
 
uvr5_pack/lib_v5/__pycache__/nets_61968KB.cpython-310.pyc ADDED
Binary file (3.45 kB). View file
 
uvr5_pack/lib_v5/__pycache__/nets_61968KB.cpython-38.pyc ADDED
Binary file (3.47 kB). View file
 
uvr5_pack/lib_v5/__pycache__/nets_61968KB.cpython-39.pyc ADDED
Binary file (3.47 kB). View file
 
uvr5_pack/lib_v5/__pycache__/nets_new.cpython-310.pyc ADDED
Binary file (3.79 kB). View file
 
uvr5_pack/lib_v5/__pycache__/nets_new.cpython-38.pyc ADDED
Binary file (3.81 kB). View file
 
uvr5_pack/lib_v5/__pycache__/nets_new.cpython-39.pyc ADDED
Binary file (3.82 kB). View file
 
uvr5_pack/lib_v5/__pycache__/spec_utils.cpython-310.pyc ADDED
Binary file (13.6 kB). View file
 
uvr5_pack/lib_v5/__pycache__/spec_utils.cpython-38.pyc ADDED
Binary file (13.6 kB). View file
 
uvr5_pack/lib_v5/__pycache__/spec_utils.cpython-39.pyc ADDED
Binary file (13.7 kB). View file
 
uvr5_pack/lib_v5/dataset.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+ from tqdm import tqdm
8
+
9
+ from uvr5_pack.lib_v5 import spec_utils
10
+
11
+
12
+ class VocalRemoverValidationSet(torch.utils.data.Dataset):
13
+ def __init__(self, patch_list):
14
+ self.patch_list = patch_list
15
+
16
+ def __len__(self):
17
+ return len(self.patch_list)
18
+
19
+ def __getitem__(self, idx):
20
+ path = self.patch_list[idx]
21
+ data = np.load(path)
22
+
23
+ X, y = data["X"], data["y"]
24
+
25
+ X_mag = np.abs(X)
26
+ y_mag = np.abs(y)
27
+
28
+ return X_mag, y_mag
29
+
30
+
31
+ def make_pair(mix_dir, inst_dir):
32
+ input_exts = [".wav", ".m4a", ".mp3", ".mp4", ".flac"]
33
+
34
+ X_list = sorted(
35
+ [
36
+ os.path.join(mix_dir, fname)
37
+ for fname in os.listdir(mix_dir)
38
+ if os.path.splitext(fname)[1] in input_exts
39
+ ]
40
+ )
41
+ y_list = sorted(
42
+ [
43
+ os.path.join(inst_dir, fname)
44
+ for fname in os.listdir(inst_dir)
45
+ if os.path.splitext(fname)[1] in input_exts
46
+ ]
47
+ )
48
+
49
+ filelist = list(zip(X_list, y_list))
50
+
51
+ return filelist
52
+
53
+
54
+ def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
55
+ if split_mode == "random":
56
+ filelist = make_pair(
57
+ os.path.join(dataset_dir, "mixtures"),
58
+ os.path.join(dataset_dir, "instruments"),
59
+ )
60
+
61
+ random.shuffle(filelist)
62
+
63
+ if len(val_filelist) == 0:
64
+ val_size = int(len(filelist) * val_rate)
65
+ train_filelist = filelist[:-val_size]
66
+ val_filelist = filelist[-val_size:]
67
+ else:
68
+ train_filelist = [
69
+ pair for pair in filelist if list(pair) not in val_filelist
70
+ ]
71
+ elif split_mode == "subdirs":
72
+ if len(val_filelist) != 0:
73
+ raise ValueError(
74
+ "The `val_filelist` option is not available in `subdirs` mode"
75
+ )
76
+
77
+ train_filelist = make_pair(
78
+ os.path.join(dataset_dir, "training/mixtures"),
79
+ os.path.join(dataset_dir, "training/instruments"),
80
+ )
81
+
82
+ val_filelist = make_pair(
83
+ os.path.join(dataset_dir, "validation/mixtures"),
84
+ os.path.join(dataset_dir, "validation/instruments"),
85
+ )
86
+
87
+ return train_filelist, val_filelist
88
+
89
+
90
+ def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha):
91
+ perm = np.random.permutation(len(X))
92
+ for i, idx in enumerate(tqdm(perm)):
93
+ if np.random.uniform() < reduction_rate:
94
+ y[idx] = spec_utils.reduce_vocal_aggressively(
95
+ X[idx], y[idx], reduction_mask
96
+ )
97
+
98
+ if np.random.uniform() < 0.5:
99
+ # swap channel
100
+ X[idx] = X[idx, ::-1]
101
+ y[idx] = y[idx, ::-1]
102
+ if np.random.uniform() < 0.02:
103
+ # mono
104
+ X[idx] = X[idx].mean(axis=0, keepdims=True)
105
+ y[idx] = y[idx].mean(axis=0, keepdims=True)
106
+ if np.random.uniform() < 0.02:
107
+ # inst
108
+ X[idx] = y[idx]
109
+
110
+ if np.random.uniform() < mixup_rate and i < len(perm) - 1:
111
+ lam = np.random.beta(mixup_alpha, mixup_alpha)
112
+ X[idx] = lam * X[idx] + (1 - lam) * X[perm[i + 1]]
113
+ y[idx] = lam * y[idx] + (1 - lam) * y[perm[i + 1]]
114
+
115
+ return X, y
116
+
117
+
118
+ def make_padding(width, cropsize, offset):
119
+ left = offset
120
+ roi_size = cropsize - left * 2
121
+ if roi_size == 0:
122
+ roi_size = cropsize
123
+ right = roi_size - (width % roi_size) + left
124
+
125
+ return left, right, roi_size
126
+
127
+
128
+ def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset):
129
+ len_dataset = patches * len(filelist)
130
+
131
+ X_dataset = np.zeros((len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
132
+ y_dataset = np.zeros((len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
133
+
134
+ for i, (X_path, y_path) in enumerate(tqdm(filelist)):
135
+ X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
136
+ coef = np.max([np.abs(X).max(), np.abs(y).max()])
137
+ X, y = X / coef, y / coef
138
+
139
+ l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
140
+ X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode="constant")
141
+ y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode="constant")
142
+
143
+ starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
144
+ ends = starts + cropsize
145
+ for j in range(patches):
146
+ idx = i * patches + j
147
+ X_dataset[idx] = X_pad[:, :, starts[j] : ends[j]]
148
+ y_dataset[idx] = y_pad[:, :, starts[j] : ends[j]]
149
+
150
+ return X_dataset, y_dataset
151
+
152
+
153
+ def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
154
+ patch_list = []
155
+ patch_dir = "cs{}_sr{}_hl{}_nf{}_of{}".format(
156
+ cropsize, sr, hop_length, n_fft, offset
157
+ )
158
+ os.makedirs(patch_dir, exist_ok=True)
159
+
160
+ for i, (X_path, y_path) in enumerate(tqdm(filelist)):
161
+ basename = os.path.splitext(os.path.basename(X_path))[0]
162
+
163
+ X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
164
+ coef = np.max([np.abs(X).max(), np.abs(y).max()])
165
+ X, y = X / coef, y / coef
166
+
167
+ l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
168
+ X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode="constant")
169
+ y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode="constant")
170
+
171
+ len_dataset = int(np.ceil(X.shape[2] / roi_size))
172
+ for j in range(len_dataset):
173
+ outpath = os.path.join(patch_dir, "{}_p{}.npz".format(basename, j))
174
+ start = j * roi_size
175
+ if not os.path.exists(outpath):
176
+ np.savez(
177
+ outpath,
178
+ X=X_pad[:, :, start : start + cropsize],
179
+ y=y_pad[:, :, start : start + cropsize],
180
+ )
181
+ patch_list.append(outpath)
182
+
183
+ return VocalRemoverValidationSet(patch_list)
uvr5_pack/lib_v5/layers.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+
8
+ class Conv2DBNActiv(nn.Module):
9
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10
+ super(Conv2DBNActiv, self).__init__()
11
+ self.conv = nn.Sequential(
12
+ nn.Conv2d(
13
+ nin,
14
+ nout,
15
+ kernel_size=ksize,
16
+ stride=stride,
17
+ padding=pad,
18
+ dilation=dilation,
19
+ bias=False,
20
+ ),
21
+ nn.BatchNorm2d(nout),
22
+ activ(),
23
+ )
24
+
25
+ def __call__(self, x):
26
+ return self.conv(x)
27
+
28
+
29
+ class SeperableConv2DBNActiv(nn.Module):
30
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31
+ super(SeperableConv2DBNActiv, self).__init__()
32
+ self.conv = nn.Sequential(
33
+ nn.Conv2d(
34
+ nin,
35
+ nin,
36
+ kernel_size=ksize,
37
+ stride=stride,
38
+ padding=pad,
39
+ dilation=dilation,
40
+ groups=nin,
41
+ bias=False,
42
+ ),
43
+ nn.Conv2d(nin, nout, kernel_size=1, bias=False),
44
+ nn.BatchNorm2d(nout),
45
+ activ(),
46
+ )
47
+
48
+ def __call__(self, x):
49
+ return self.conv(x)
50
+
51
+
52
+ class Encoder(nn.Module):
53
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54
+ super(Encoder, self).__init__()
55
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57
+
58
+ def __call__(self, x):
59
+ skip = self.conv1(x)
60
+ h = self.conv2(skip)
61
+
62
+ return h, skip
63
+
64
+
65
+ class Decoder(nn.Module):
66
+ def __init__(
67
+ self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
68
+ ):
69
+ super(Decoder, self).__init__()
70
+ self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
71
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
72
+
73
+ def __call__(self, x, skip=None):
74
+ x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
75
+ if skip is not None:
76
+ skip = spec_utils.crop_center(skip, x)
77
+ x = torch.cat([x, skip], dim=1)
78
+ h = self.conv(x)
79
+
80
+ if self.dropout is not None:
81
+ h = self.dropout(h)
82
+
83
+ return h
84
+
85
+
86
+ class ASPPModule(nn.Module):
87
+ def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
88
+ super(ASPPModule, self).__init__()
89
+ self.conv1 = nn.Sequential(
90
+ nn.AdaptiveAvgPool2d((1, None)),
91
+ Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
92
+ )
93
+ self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94
+ self.conv3 = SeperableConv2DBNActiv(
95
+ nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
96
+ )
97
+ self.conv4 = SeperableConv2DBNActiv(
98
+ nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
99
+ )
100
+ self.conv5 = SeperableConv2DBNActiv(
101
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
102
+ )
103
+ self.bottleneck = nn.Sequential(
104
+ Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
105
+ )
106
+
107
+ def forward(self, x):
108
+ _, _, h, w = x.size()
109
+ feat1 = F.interpolate(
110
+ self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
111
+ )
112
+ feat2 = self.conv2(x)
113
+ feat3 = self.conv3(x)
114
+ feat4 = self.conv4(x)
115
+ feat5 = self.conv5(x)
116
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
117
+ bottle = self.bottleneck(out)
118
+ return bottle
uvr5_pack/lib_v5/layers_123812KB .py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+
8
+ class Conv2DBNActiv(nn.Module):
9
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10
+ super(Conv2DBNActiv, self).__init__()
11
+ self.conv = nn.Sequential(
12
+ nn.Conv2d(
13
+ nin,
14
+ nout,
15
+ kernel_size=ksize,
16
+ stride=stride,
17
+ padding=pad,
18
+ dilation=dilation,
19
+ bias=False,
20
+ ),
21
+ nn.BatchNorm2d(nout),
22
+ activ(),
23
+ )
24
+
25
+ def __call__(self, x):
26
+ return self.conv(x)
27
+
28
+
29
+ class SeperableConv2DBNActiv(nn.Module):
30
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31
+ super(SeperableConv2DBNActiv, self).__init__()
32
+ self.conv = nn.Sequential(
33
+ nn.Conv2d(
34
+ nin,
35
+ nin,
36
+ kernel_size=ksize,
37
+ stride=stride,
38
+ padding=pad,
39
+ dilation=dilation,
40
+ groups=nin,
41
+ bias=False,
42
+ ),
43
+ nn.Conv2d(nin, nout, kernel_size=1, bias=False),
44
+ nn.BatchNorm2d(nout),
45
+ activ(),
46
+ )
47
+
48
+ def __call__(self, x):
49
+ return self.conv(x)
50
+
51
+
52
+ class Encoder(nn.Module):
53
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54
+ super(Encoder, self).__init__()
55
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57
+
58
+ def __call__(self, x):
59
+ skip = self.conv1(x)
60
+ h = self.conv2(skip)
61
+
62
+ return h, skip
63
+
64
+
65
+ class Decoder(nn.Module):
66
+ def __init__(
67
+ self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
68
+ ):
69
+ super(Decoder, self).__init__()
70
+ self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
71
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
72
+
73
+ def __call__(self, x, skip=None):
74
+ x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
75
+ if skip is not None:
76
+ skip = spec_utils.crop_center(skip, x)
77
+ x = torch.cat([x, skip], dim=1)
78
+ h = self.conv(x)
79
+
80
+ if self.dropout is not None:
81
+ h = self.dropout(h)
82
+
83
+ return h
84
+
85
+
86
+ class ASPPModule(nn.Module):
87
+ def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
88
+ super(ASPPModule, self).__init__()
89
+ self.conv1 = nn.Sequential(
90
+ nn.AdaptiveAvgPool2d((1, None)),
91
+ Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
92
+ )
93
+ self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94
+ self.conv3 = SeperableConv2DBNActiv(
95
+ nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
96
+ )
97
+ self.conv4 = SeperableConv2DBNActiv(
98
+ nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
99
+ )
100
+ self.conv5 = SeperableConv2DBNActiv(
101
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
102
+ )
103
+ self.bottleneck = nn.Sequential(
104
+ Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
105
+ )
106
+
107
+ def forward(self, x):
108
+ _, _, h, w = x.size()
109
+ feat1 = F.interpolate(
110
+ self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
111
+ )
112
+ feat2 = self.conv2(x)
113
+ feat3 = self.conv3(x)
114
+ feat4 = self.conv4(x)
115
+ feat5 = self.conv5(x)
116
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
117
+ bottle = self.bottleneck(out)
118
+ return bottle
uvr5_pack/lib_v5/layers_123821KB.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+
8
+ class Conv2DBNActiv(nn.Module):
9
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10
+ super(Conv2DBNActiv, self).__init__()
11
+ self.conv = nn.Sequential(
12
+ nn.Conv2d(
13
+ nin,
14
+ nout,
15
+ kernel_size=ksize,
16
+ stride=stride,
17
+ padding=pad,
18
+ dilation=dilation,
19
+ bias=False,
20
+ ),
21
+ nn.BatchNorm2d(nout),
22
+ activ(),
23
+ )
24
+
25
+ def __call__(self, x):
26
+ return self.conv(x)
27
+
28
+
29
+ class SeperableConv2DBNActiv(nn.Module):
30
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31
+ super(SeperableConv2DBNActiv, self).__init__()
32
+ self.conv = nn.Sequential(
33
+ nn.Conv2d(
34
+ nin,
35
+ nin,
36
+ kernel_size=ksize,
37
+ stride=stride,
38
+ padding=pad,
39
+ dilation=dilation,
40
+ groups=nin,
41
+ bias=False,
42
+ ),
43
+ nn.Conv2d(nin, nout, kernel_size=1, bias=False),
44
+ nn.BatchNorm2d(nout),
45
+ activ(),
46
+ )
47
+
48
+ def __call__(self, x):
49
+ return self.conv(x)
50
+
51
+
52
+ class Encoder(nn.Module):
53
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54
+ super(Encoder, self).__init__()
55
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57
+
58
+ def __call__(self, x):
59
+ skip = self.conv1(x)
60
+ h = self.conv2(skip)
61
+
62
+ return h, skip
63
+
64
+
65
+ class Decoder(nn.Module):
66
+ def __init__(
67
+ self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
68
+ ):
69
+ super(Decoder, self).__init__()
70
+ self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
71
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
72
+
73
+ def __call__(self, x, skip=None):
74
+ x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
75
+ if skip is not None:
76
+ skip = spec_utils.crop_center(skip, x)
77
+ x = torch.cat([x, skip], dim=1)
78
+ h = self.conv(x)
79
+
80
+ if self.dropout is not None:
81
+ h = self.dropout(h)
82
+
83
+ return h
84
+
85
+
86
+ class ASPPModule(nn.Module):
87
+ def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
88
+ super(ASPPModule, self).__init__()
89
+ self.conv1 = nn.Sequential(
90
+ nn.AdaptiveAvgPool2d((1, None)),
91
+ Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
92
+ )
93
+ self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94
+ self.conv3 = SeperableConv2DBNActiv(
95
+ nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
96
+ )
97
+ self.conv4 = SeperableConv2DBNActiv(
98
+ nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
99
+ )
100
+ self.conv5 = SeperableConv2DBNActiv(
101
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
102
+ )
103
+ self.bottleneck = nn.Sequential(
104
+ Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
105
+ )
106
+
107
+ def forward(self, x):
108
+ _, _, h, w = x.size()
109
+ feat1 = F.interpolate(
110
+ self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
111
+ )
112
+ feat2 = self.conv2(x)
113
+ feat3 = self.conv3(x)
114
+ feat4 = self.conv4(x)
115
+ feat5 = self.conv5(x)
116
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
117
+ bottle = self.bottleneck(out)
118
+ return bottle
uvr5_pack/lib_v5/layers_33966KB.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+
8
+ class Conv2DBNActiv(nn.Module):
9
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10
+ super(Conv2DBNActiv, self).__init__()
11
+ self.conv = nn.Sequential(
12
+ nn.Conv2d(
13
+ nin,
14
+ nout,
15
+ kernel_size=ksize,
16
+ stride=stride,
17
+ padding=pad,
18
+ dilation=dilation,
19
+ bias=False,
20
+ ),
21
+ nn.BatchNorm2d(nout),
22
+ activ(),
23
+ )
24
+
25
+ def __call__(self, x):
26
+ return self.conv(x)
27
+
28
+
29
+ class SeperableConv2DBNActiv(nn.Module):
30
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31
+ super(SeperableConv2DBNActiv, self).__init__()
32
+ self.conv = nn.Sequential(
33
+ nn.Conv2d(
34
+ nin,
35
+ nin,
36
+ kernel_size=ksize,
37
+ stride=stride,
38
+ padding=pad,
39
+ dilation=dilation,
40
+ groups=nin,
41
+ bias=False,
42
+ ),
43
+ nn.Conv2d(nin, nout, kernel_size=1, bias=False),
44
+ nn.BatchNorm2d(nout),
45
+ activ(),
46
+ )
47
+
48
+ def __call__(self, x):
49
+ return self.conv(x)
50
+
51
+
52
+ class Encoder(nn.Module):
53
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54
+ super(Encoder, self).__init__()
55
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57
+
58
+ def __call__(self, x):
59
+ skip = self.conv1(x)
60
+ h = self.conv2(skip)
61
+
62
+ return h, skip
63
+
64
+
65
+ class Decoder(nn.Module):
66
+ def __init__(
67
+ self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
68
+ ):
69
+ super(Decoder, self).__init__()
70
+ self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
71
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
72
+
73
+ def __call__(self, x, skip=None):
74
+ x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
75
+ if skip is not None:
76
+ skip = spec_utils.crop_center(skip, x)
77
+ x = torch.cat([x, skip], dim=1)
78
+ h = self.conv(x)
79
+
80
+ if self.dropout is not None:
81
+ h = self.dropout(h)
82
+
83
+ return h
84
+
85
+
86
+ class ASPPModule(nn.Module):
87
+ def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
88
+ super(ASPPModule, self).__init__()
89
+ self.conv1 = nn.Sequential(
90
+ nn.AdaptiveAvgPool2d((1, None)),
91
+ Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
92
+ )
93
+ self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94
+ self.conv3 = SeperableConv2DBNActiv(
95
+ nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
96
+ )
97
+ self.conv4 = SeperableConv2DBNActiv(
98
+ nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
99
+ )
100
+ self.conv5 = SeperableConv2DBNActiv(
101
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
102
+ )
103
+ self.conv6 = SeperableConv2DBNActiv(
104
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
105
+ )
106
+ self.conv7 = SeperableConv2DBNActiv(
107
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
108
+ )
109
+ self.bottleneck = nn.Sequential(
110
+ Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
111
+ )
112
+
113
+ def forward(self, x):
114
+ _, _, h, w = x.size()
115
+ feat1 = F.interpolate(
116
+ self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
117
+ )
118
+ feat2 = self.conv2(x)
119
+ feat3 = self.conv3(x)
120
+ feat4 = self.conv4(x)
121
+ feat5 = self.conv5(x)
122
+ feat6 = self.conv6(x)
123
+ feat7 = self.conv7(x)
124
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
125
+ bottle = self.bottleneck(out)
126
+ return bottle
uvr5_pack/lib_v5/layers_537227KB.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+
8
+ class Conv2DBNActiv(nn.Module):
9
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10
+ super(Conv2DBNActiv, self).__init__()
11
+ self.conv = nn.Sequential(
12
+ nn.Conv2d(
13
+ nin,
14
+ nout,
15
+ kernel_size=ksize,
16
+ stride=stride,
17
+ padding=pad,
18
+ dilation=dilation,
19
+ bias=False,
20
+ ),
21
+ nn.BatchNorm2d(nout),
22
+ activ(),
23
+ )
24
+
25
+ def __call__(self, x):
26
+ return self.conv(x)
27
+
28
+
29
+ class SeperableConv2DBNActiv(nn.Module):
30
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31
+ super(SeperableConv2DBNActiv, self).__init__()
32
+ self.conv = nn.Sequential(
33
+ nn.Conv2d(
34
+ nin,
35
+ nin,
36
+ kernel_size=ksize,
37
+ stride=stride,
38
+ padding=pad,
39
+ dilation=dilation,
40
+ groups=nin,
41
+ bias=False,
42
+ ),
43
+ nn.Conv2d(nin, nout, kernel_size=1, bias=False),
44
+ nn.BatchNorm2d(nout),
45
+ activ(),
46
+ )
47
+
48
+ def __call__(self, x):
49
+ return self.conv(x)
50
+
51
+
52
+ class Encoder(nn.Module):
53
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54
+ super(Encoder, self).__init__()
55
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57
+
58
+ def __call__(self, x):
59
+ skip = self.conv1(x)
60
+ h = self.conv2(skip)
61
+
62
+ return h, skip
63
+
64
+
65
+ class Decoder(nn.Module):
66
+ def __init__(
67
+ self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
68
+ ):
69
+ super(Decoder, self).__init__()
70
+ self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
71
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
72
+
73
+ def __call__(self, x, skip=None):
74
+ x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
75
+ if skip is not None:
76
+ skip = spec_utils.crop_center(skip, x)
77
+ x = torch.cat([x, skip], dim=1)
78
+ h = self.conv(x)
79
+
80
+ if self.dropout is not None:
81
+ h = self.dropout(h)
82
+
83
+ return h
84
+
85
+
86
+ class ASPPModule(nn.Module):
87
+ def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
88
+ super(ASPPModule, self).__init__()
89
+ self.conv1 = nn.Sequential(
90
+ nn.AdaptiveAvgPool2d((1, None)),
91
+ Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
92
+ )
93
+ self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94
+ self.conv3 = SeperableConv2DBNActiv(
95
+ nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
96
+ )
97
+ self.conv4 = SeperableConv2DBNActiv(
98
+ nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
99
+ )
100
+ self.conv5 = SeperableConv2DBNActiv(
101
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
102
+ )
103
+ self.conv6 = SeperableConv2DBNActiv(
104
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
105
+ )
106
+ self.conv7 = SeperableConv2DBNActiv(
107
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
108
+ )
109
+ self.bottleneck = nn.Sequential(
110
+ Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
111
+ )
112
+
113
+ def forward(self, x):
114
+ _, _, h, w = x.size()
115
+ feat1 = F.interpolate(
116
+ self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
117
+ )
118
+ feat2 = self.conv2(x)
119
+ feat3 = self.conv3(x)
120
+ feat4 = self.conv4(x)
121
+ feat5 = self.conv5(x)
122
+ feat6 = self.conv6(x)
123
+ feat7 = self.conv7(x)
124
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
125
+ bottle = self.bottleneck(out)
126
+ return bottle
uvr5_pack/lib_v5/layers_537238KB.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+
8
+ class Conv2DBNActiv(nn.Module):
9
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10
+ super(Conv2DBNActiv, self).__init__()
11
+ self.conv = nn.Sequential(
12
+ nn.Conv2d(
13
+ nin,
14
+ nout,
15
+ kernel_size=ksize,
16
+ stride=stride,
17
+ padding=pad,
18
+ dilation=dilation,
19
+ bias=False,
20
+ ),
21
+ nn.BatchNorm2d(nout),
22
+ activ(),
23
+ )
24
+
25
+ def __call__(self, x):
26
+ return self.conv(x)
27
+
28
+
29
+ class SeperableConv2DBNActiv(nn.Module):
30
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31
+ super(SeperableConv2DBNActiv, self).__init__()
32
+ self.conv = nn.Sequential(
33
+ nn.Conv2d(
34
+ nin,
35
+ nin,
36
+ kernel_size=ksize,
37
+ stride=stride,
38
+ padding=pad,
39
+ dilation=dilation,
40
+ groups=nin,
41
+ bias=False,
42
+ ),
43
+ nn.Conv2d(nin, nout, kernel_size=1, bias=False),
44
+ nn.BatchNorm2d(nout),
45
+ activ(),
46
+ )
47
+
48
+ def __call__(self, x):
49
+ return self.conv(x)
50
+
51
+
52
+ class Encoder(nn.Module):
53
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54
+ super(Encoder, self).__init__()
55
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57
+
58
+ def __call__(self, x):
59
+ skip = self.conv1(x)
60
+ h = self.conv2(skip)
61
+
62
+ return h, skip
63
+
64
+
65
+ class Decoder(nn.Module):
66
+ def __init__(
67
+ self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
68
+ ):
69
+ super(Decoder, self).__init__()
70
+ self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
71
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
72
+
73
+ def __call__(self, x, skip=None):
74
+ x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
75
+ if skip is not None:
76
+ skip = spec_utils.crop_center(skip, x)
77
+ x = torch.cat([x, skip], dim=1)
78
+ h = self.conv(x)
79
+
80
+ if self.dropout is not None:
81
+ h = self.dropout(h)
82
+
83
+ return h
84
+
85
+
86
+ class ASPPModule(nn.Module):
87
+ def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
88
+ super(ASPPModule, self).__init__()
89
+ self.conv1 = nn.Sequential(
90
+ nn.AdaptiveAvgPool2d((1, None)),
91
+ Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
92
+ )
93
+ self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94
+ self.conv3 = SeperableConv2DBNActiv(
95
+ nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
96
+ )
97
+ self.conv4 = SeperableConv2DBNActiv(
98
+ nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
99
+ )
100
+ self.conv5 = SeperableConv2DBNActiv(
101
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
102
+ )
103
+ self.conv6 = SeperableConv2DBNActiv(
104
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
105
+ )
106
+ self.conv7 = SeperableConv2DBNActiv(
107
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
108
+ )
109
+ self.bottleneck = nn.Sequential(
110
+ Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
111
+ )
112
+
113
+ def forward(self, x):
114
+ _, _, h, w = x.size()
115
+ feat1 = F.interpolate(
116
+ self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
117
+ )
118
+ feat2 = self.conv2(x)
119
+ feat3 = self.conv3(x)
120
+ feat4 = self.conv4(x)
121
+ feat5 = self.conv5(x)
122
+ feat6 = self.conv6(x)
123
+ feat7 = self.conv7(x)
124
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
125
+ bottle = self.bottleneck(out)
126
+ return bottle
uvr5_pack/lib_v5/layers_new.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+ class Conv2DBNActiv(nn.Module):
8
+
9
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10
+ super(Conv2DBNActiv, self).__init__()
11
+ self.conv = nn.Sequential(
12
+ nn.Conv2d(
13
+ nin, nout,
14
+ kernel_size=ksize,
15
+ stride=stride,
16
+ padding=pad,
17
+ dilation=dilation,
18
+ bias=False),
19
+ nn.BatchNorm2d(nout),
20
+ activ()
21
+ )
22
+
23
+ def __call__(self, x):
24
+ return self.conv(x)
25
+
26
+ class Encoder(nn.Module):
27
+
28
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
29
+ super(Encoder, self).__init__()
30
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
31
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
32
+
33
+ def __call__(self, x):
34
+ h = self.conv1(x)
35
+ h = self.conv2(h)
36
+
37
+ return h
38
+
39
+
40
+ class Decoder(nn.Module):
41
+
42
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
43
+ super(Decoder, self).__init__()
44
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
45
+ # self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
46
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
47
+
48
+ def __call__(self, x, skip=None):
49
+ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
50
+
51
+ if skip is not None:
52
+ skip = spec_utils.crop_center(skip, x)
53
+ x = torch.cat([x, skip], dim=1)
54
+
55
+ h = self.conv1(x)
56
+ # h = self.conv2(h)
57
+
58
+ if self.dropout is not None:
59
+ h = self.dropout(h)
60
+
61
+ return h
62
+
63
+
64
+ class ASPPModule(nn.Module):
65
+
66
+ def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
67
+ super(ASPPModule, self).__init__()
68
+ self.conv1 = nn.Sequential(
69
+ nn.AdaptiveAvgPool2d((1, None)),
70
+ Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
71
+ )
72
+ self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
73
+ self.conv3 = Conv2DBNActiv(
74
+ nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
75
+ )
76
+ self.conv4 = Conv2DBNActiv(
77
+ nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
78
+ )
79
+ self.conv5 = Conv2DBNActiv(
80
+ nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
81
+ )
82
+ self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
83
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
84
+
85
+ def forward(self, x):
86
+ _, _, h, w = x.size()
87
+ feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
88
+ feat2 = self.conv2(x)
89
+ feat3 = self.conv3(x)
90
+ feat4 = self.conv4(x)
91
+ feat5 = self.conv5(x)
92
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
93
+ out = self.bottleneck(out)
94
+
95
+ if self.dropout is not None:
96
+ out = self.dropout(out)
97
+
98
+ return out
99
+
100
+
101
+ class LSTMModule(nn.Module):
102
+
103
+ def __init__(self, nin_conv, nin_lstm, nout_lstm):
104
+ super(LSTMModule, self).__init__()
105
+ self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
106
+ self.lstm = nn.LSTM(
107
+ input_size=nin_lstm,
108
+ hidden_size=nout_lstm // 2,
109
+ bidirectional=True
110
+ )
111
+ self.dense = nn.Sequential(
112
+ nn.Linear(nout_lstm, nin_lstm),
113
+ nn.BatchNorm1d(nin_lstm),
114
+ nn.ReLU()
115
+ )
116
+
117
+ def forward(self, x):
118
+ N, _, nbins, nframes = x.size()
119
+ h = self.conv(x)[:, 0] # N, nbins, nframes
120
+ h = h.permute(2, 0, 1) # nframes, N, nbins
121
+ h, _ = self.lstm(h)
122
+ h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
123
+ h = h.reshape(nframes, N, 1, nbins)
124
+ h = h.permute(1, 2, 3, 0)
125
+
126
+ return h
uvr5_pack/lib_v5/model_param_init.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pathlib
4
+
5
+ default_param = {}
6
+ default_param["bins"] = 768
7
+ default_param["unstable_bins"] = 9 # training only
8
+ default_param["reduction_bins"] = 762 # training only
9
+ default_param["sr"] = 44100
10
+ default_param["pre_filter_start"] = 757
11
+ default_param["pre_filter_stop"] = 768
12
+ default_param["band"] = {}
13
+
14
+
15
+ default_param["band"][1] = {
16
+ "sr": 11025,
17
+ "hl": 128,
18
+ "n_fft": 960,
19
+ "crop_start": 0,
20
+ "crop_stop": 245,
21
+ "lpf_start": 61, # inference only
22
+ "res_type": "polyphase",
23
+ }
24
+
25
+ default_param["band"][2] = {
26
+ "sr": 44100,
27
+ "hl": 512,
28
+ "n_fft": 1536,
29
+ "crop_start": 24,
30
+ "crop_stop": 547,
31
+ "hpf_start": 81, # inference only
32
+ "res_type": "sinc_best",
33
+ }
34
+
35
+
36
+ def int_keys(d):
37
+ r = {}
38
+ for k, v in d:
39
+ if k.isdigit():
40
+ k = int(k)
41
+ r[k] = v
42
+ return r
43
+
44
+
45
+ class ModelParameters(object):
46
+ def __init__(self, config_path=""):
47
+ if ".pth" == pathlib.Path(config_path).suffix:
48
+ import zipfile
49
+
50
+ with zipfile.ZipFile(config_path, "r") as zip:
51
+ self.param = json.loads(
52
+ zip.read("param.json"), object_pairs_hook=int_keys
53
+ )
54
+ elif ".json" == pathlib.Path(config_path).suffix:
55
+ with open(config_path, "r") as f:
56
+ self.param = json.loads(f.read(), object_pairs_hook=int_keys)
57
+ else:
58
+ self.param = default_param
59
+
60
+ for k in [
61
+ "mid_side",
62
+ "mid_side_b",
63
+ "mid_side_b2",
64
+ "stereo_w",
65
+ "stereo_n",
66
+ "reverse",
67
+ ]:
68
+ if not k in self.param:
69
+ self.param[k] = False
uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 1024,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 16000,
8
+ "hl": 512,
9
+ "n_fft": 2048,
10
+ "crop_start": 0,
11
+ "crop_stop": 1024,
12
+ "hpf_start": -1,
13
+ "res_type": "sinc_best"
14
+ }
15
+ },
16
+ "sr": 16000,
17
+ "pre_filter_start": 1023,
18
+ "pre_filter_stop": 1024
19
+ }
uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 1024,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 32000,
8
+ "hl": 512,
9
+ "n_fft": 2048,
10
+ "crop_start": 0,
11
+ "crop_stop": 1024,
12
+ "hpf_start": -1,
13
+ "res_type": "kaiser_fast"
14
+ }
15
+ },
16
+ "sr": 32000,
17
+ "pre_filter_start": 1000,
18
+ "pre_filter_stop": 1021
19
+ }
uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 1024,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 33075,
8
+ "hl": 384,
9
+ "n_fft": 2048,
10
+ "crop_start": 0,
11
+ "crop_stop": 1024,
12
+ "hpf_start": -1,
13
+ "res_type": "sinc_best"
14
+ }
15
+ },
16
+ "sr": 33075,
17
+ "pre_filter_start": 1000,
18
+ "pre_filter_stop": 1021
19
+ }
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 1024,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 44100,
8
+ "hl": 1024,
9
+ "n_fft": 2048,
10
+ "crop_start": 0,
11
+ "crop_stop": 1024,
12
+ "hpf_start": -1,
13
+ "res_type": "sinc_best"
14
+ }
15
+ },
16
+ "sr": 44100,
17
+ "pre_filter_start": 1023,
18
+ "pre_filter_stop": 1024
19
+ }
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 256,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 44100,
8
+ "hl": 256,
9
+ "n_fft": 512,
10
+ "crop_start": 0,
11
+ "crop_stop": 256,
12
+ "hpf_start": -1,
13
+ "res_type": "sinc_best"
14
+ }
15
+ },
16
+ "sr": 44100,
17
+ "pre_filter_start": 256,
18
+ "pre_filter_stop": 256
19
+ }
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 1024,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 44100,
8
+ "hl": 512,
9
+ "n_fft": 2048,
10
+ "crop_start": 0,
11
+ "crop_stop": 1024,
12
+ "hpf_start": -1,
13
+ "res_type": "sinc_best"
14
+ }
15
+ },
16
+ "sr": 44100,
17
+ "pre_filter_start": 1023,
18
+ "pre_filter_stop": 1024
19
+ }
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512_cut.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 1024,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 44100,
8
+ "hl": 512,
9
+ "n_fft": 2048,
10
+ "crop_start": 0,
11
+ "crop_stop": 700,
12
+ "hpf_start": -1,
13
+ "res_type": "sinc_best"
14
+ }
15
+ },
16
+ "sr": 44100,
17
+ "pre_filter_start": 1023,
18
+ "pre_filter_stop": 700
19
+ }
uvr5_pack/lib_v5/modelparams/2band_32000.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 768,
3
+ "unstable_bins": 7,
4
+ "reduction_bins": 705,
5
+ "band": {
6
+ "1": {
7
+ "sr": 6000,
8
+ "hl": 66,
9
+ "n_fft": 512,
10
+ "crop_start": 0,
11
+ "crop_stop": 240,
12
+ "lpf_start": 60,
13
+ "lpf_stop": 118,
14
+ "res_type": "sinc_fastest"
15
+ },
16
+ "2": {
17
+ "sr": 32000,
18
+ "hl": 352,
19
+ "n_fft": 1024,
20
+ "crop_start": 22,
21
+ "crop_stop": 505,
22
+ "hpf_start": 44,
23
+ "hpf_stop": 23,
24
+ "res_type": "sinc_medium"
25
+ }
26
+ },
27
+ "sr": 32000,
28
+ "pre_filter_start": 710,
29
+ "pre_filter_stop": 731
30
+ }
uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 512,
3
+ "unstable_bins": 7,
4
+ "reduction_bins": 510,
5
+ "band": {
6
+ "1": {
7
+ "sr": 11025,
8
+ "hl": 160,
9
+ "n_fft": 768,
10
+ "crop_start": 0,
11
+ "crop_stop": 192,
12
+ "lpf_start": 41,
13
+ "lpf_stop": 139,
14
+ "res_type": "sinc_fastest"
15
+ },
16
+ "2": {
17
+ "sr": 44100,
18
+ "hl": 640,
19
+ "n_fft": 1024,
20
+ "crop_start": 10,
21
+ "crop_stop": 320,
22
+ "hpf_start": 47,
23
+ "hpf_stop": 15,
24
+ "res_type": "sinc_medium"
25
+ }
26
+ },
27
+ "sr": 44100,
28
+ "pre_filter_start": 510,
29
+ "pre_filter_stop": 512
30
+ }
uvr5_pack/lib_v5/modelparams/2band_48000.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 768,
3
+ "unstable_bins": 7,
4
+ "reduction_bins": 705,
5
+ "band": {
6
+ "1": {
7
+ "sr": 6000,
8
+ "hl": 66,
9
+ "n_fft": 512,
10
+ "crop_start": 0,
11
+ "crop_stop": 240,
12
+ "lpf_start": 60,
13
+ "lpf_stop": 240,
14
+ "res_type": "sinc_fastest"
15
+ },
16
+ "2": {
17
+ "sr": 48000,
18
+ "hl": 528,
19
+ "n_fft": 1536,
20
+ "crop_start": 22,
21
+ "crop_stop": 505,
22
+ "hpf_start": 82,
23
+ "hpf_stop": 22,
24
+ "res_type": "sinc_medium"
25
+ }
26
+ },
27
+ "sr": 48000,
28
+ "pre_filter_start": 710,
29
+ "pre_filter_stop": 731
30
+ }
uvr5_pack/lib_v5/modelparams/3band_44100.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 768,
3
+ "unstable_bins": 5,
4
+ "reduction_bins": 733,
5
+ "band": {
6
+ "1": {
7
+ "sr": 11025,
8
+ "hl": 128,
9
+ "n_fft": 768,
10
+ "crop_start": 0,
11
+ "crop_stop": 278,
12
+ "lpf_start": 28,
13
+ "lpf_stop": 140,
14
+ "res_type": "polyphase"
15
+ },
16
+ "2": {
17
+ "sr": 22050,
18
+ "hl": 256,
19
+ "n_fft": 768,
20
+ "crop_start": 14,
21
+ "crop_stop": 322,
22
+ "hpf_start": 70,
23
+ "hpf_stop": 14,
24
+ "lpf_start": 283,
25
+ "lpf_stop": 314,
26
+ "res_type": "polyphase"
27
+ },
28
+ "3": {
29
+ "sr": 44100,
30
+ "hl": 512,
31
+ "n_fft": 768,
32
+ "crop_start": 131,
33
+ "crop_stop": 313,
34
+ "hpf_start": 154,
35
+ "hpf_stop": 141,
36
+ "res_type": "sinc_medium"
37
+ }
38
+ },
39
+ "sr": 44100,
40
+ "pre_filter_start": 757,
41
+ "pre_filter_stop": 768
42
+ }
uvr5_pack/lib_v5/modelparams/3band_44100_mid.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "mid_side": true,
3
+ "bins": 768,
4
+ "unstable_bins": 5,
5
+ "reduction_bins": 733,
6
+ "band": {
7
+ "1": {
8
+ "sr": 11025,
9
+ "hl": 128,
10
+ "n_fft": 768,
11
+ "crop_start": 0,
12
+ "crop_stop": 278,
13
+ "lpf_start": 28,
14
+ "lpf_stop": 140,
15
+ "res_type": "polyphase"
16
+ },
17
+ "2": {
18
+ "sr": 22050,
19
+ "hl": 256,
20
+ "n_fft": 768,
21
+ "crop_start": 14,
22
+ "crop_stop": 322,
23
+ "hpf_start": 70,
24
+ "hpf_stop": 14,
25
+ "lpf_start": 283,
26
+ "lpf_stop": 314,
27
+ "res_type": "polyphase"
28
+ },
29
+ "3": {
30
+ "sr": 44100,
31
+ "hl": 512,
32
+ "n_fft": 768,
33
+ "crop_start": 131,
34
+ "crop_stop": 313,
35
+ "hpf_start": 154,
36
+ "hpf_stop": 141,
37
+ "res_type": "sinc_medium"
38
+ }
39
+ },
40
+ "sr": 44100,
41
+ "pre_filter_start": 757,
42
+ "pre_filter_stop": 768
43
+ }
uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "mid_side_b2": true,
3
+ "bins": 640,
4
+ "unstable_bins": 7,
5
+ "reduction_bins": 565,
6
+ "band": {
7
+ "1": {
8
+ "sr": 11025,
9
+ "hl": 108,
10
+ "n_fft": 1024,
11
+ "crop_start": 0,
12
+ "crop_stop": 187,
13
+ "lpf_start": 92,
14
+ "lpf_stop": 186,
15
+ "res_type": "polyphase"
16
+ },
17
+ "2": {
18
+ "sr": 22050,
19
+ "hl": 216,
20
+ "n_fft": 768,
21
+ "crop_start": 0,
22
+ "crop_stop": 212,
23
+ "hpf_start": 68,
24
+ "hpf_stop": 34,
25
+ "lpf_start": 174,
26
+ "lpf_stop": 209,
27
+ "res_type": "polyphase"
28
+ },
29
+ "3": {
30
+ "sr": 44100,
31
+ "hl": 432,
32
+ "n_fft": 640,
33
+ "crop_start": 66,
34
+ "crop_stop": 307,
35
+ "hpf_start": 86,
36
+ "hpf_stop": 72,
37
+ "res_type": "kaiser_fast"
38
+ }
39
+ },
40
+ "sr": 44100,
41
+ "pre_filter_start": 639,
42
+ "pre_filter_stop": 640
43
+ }
uvr5_pack/lib_v5/modelparams/4band_44100.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 768,
3
+ "unstable_bins": 7,
4
+ "reduction_bins": 668,
5
+ "band": {
6
+ "1": {
7
+ "sr": 11025,
8
+ "hl": 128,
9
+ "n_fft": 1024,
10
+ "crop_start": 0,
11
+ "crop_stop": 186,
12
+ "lpf_start": 37,
13
+ "lpf_stop": 73,
14
+ "res_type": "polyphase"
15
+ },
16
+ "2": {
17
+ "sr": 11025,
18
+ "hl": 128,
19
+ "n_fft": 512,
20
+ "crop_start": 4,
21
+ "crop_stop": 185,
22
+ "hpf_start": 36,
23
+ "hpf_stop": 18,
24
+ "lpf_start": 93,
25
+ "lpf_stop": 185,
26
+ "res_type": "polyphase"
27
+ },
28
+ "3": {
29
+ "sr": 22050,
30
+ "hl": 256,
31
+ "n_fft": 512,
32
+ "crop_start": 46,
33
+ "crop_stop": 186,
34
+ "hpf_start": 93,
35
+ "hpf_stop": 46,
36
+ "lpf_start": 164,
37
+ "lpf_stop": 186,
38
+ "res_type": "polyphase"
39
+ },
40
+ "4": {
41
+ "sr": 44100,
42
+ "hl": 512,
43
+ "n_fft": 768,
44
+ "crop_start": 121,
45
+ "crop_stop": 382,
46
+ "hpf_start": 138,
47
+ "hpf_stop": 123,
48
+ "res_type": "sinc_medium"
49
+ }
50
+ },
51
+ "sr": 44100,
52
+ "pre_filter_start": 740,
53
+ "pre_filter_stop": 768
54
+ }
uvr5_pack/lib_v5/modelparams/4band_44100_mid.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 768,
3
+ "unstable_bins": 7,
4
+ "mid_side": true,
5
+ "reduction_bins": 668,
6
+ "band": {
7
+ "1": {
8
+ "sr": 11025,
9
+ "hl": 128,
10
+ "n_fft": 1024,
11
+ "crop_start": 0,
12
+ "crop_stop": 186,
13
+ "lpf_start": 37,
14
+ "lpf_stop": 73,
15
+ "res_type": "polyphase"
16
+ },
17
+ "2": {
18
+ "sr": 11025,
19
+ "hl": 128,
20
+ "n_fft": 512,
21
+ "crop_start": 4,
22
+ "crop_stop": 185,
23
+ "hpf_start": 36,
24
+ "hpf_stop": 18,
25
+ "lpf_start": 93,
26
+ "lpf_stop": 185,
27
+ "res_type": "polyphase"
28
+ },
29
+ "3": {
30
+ "sr": 22050,
31
+ "hl": 256,
32
+ "n_fft": 512,
33
+ "crop_start": 46,
34
+ "crop_stop": 186,
35
+ "hpf_start": 93,
36
+ "hpf_stop": 46,
37
+ "lpf_start": 164,
38
+ "lpf_stop": 186,
39
+ "res_type": "polyphase"
40
+ },
41
+ "4": {
42
+ "sr": 44100,
43
+ "hl": 512,
44
+ "n_fft": 768,
45
+ "crop_start": 121,
46
+ "crop_stop": 382,
47
+ "hpf_start": 138,
48
+ "hpf_stop": 123,
49
+ "res_type": "sinc_medium"
50
+ }
51
+ },
52
+ "sr": 44100,
53
+ "pre_filter_start": 740,
54
+ "pre_filter_stop": 768
55
+ }
uvr5_pack/lib_v5/modelparams/4band_44100_msb.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "mid_side_b": true,
3
+ "bins": 768,
4
+ "unstable_bins": 7,
5
+ "reduction_bins": 668,
6
+ "band": {
7
+ "1": {
8
+ "sr": 11025,
9
+ "hl": 128,
10
+ "n_fft": 1024,
11
+ "crop_start": 0,
12
+ "crop_stop": 186,
13
+ "lpf_start": 37,
14
+ "lpf_stop": 73,
15
+ "res_type": "polyphase"
16
+ },
17
+ "2": {
18
+ "sr": 11025,
19
+ "hl": 128,
20
+ "n_fft": 512,
21
+ "crop_start": 4,
22
+ "crop_stop": 185,
23
+ "hpf_start": 36,
24
+ "hpf_stop": 18,
25
+ "lpf_start": 93,
26
+ "lpf_stop": 185,
27
+ "res_type": "polyphase"
28
+ },
29
+ "3": {
30
+ "sr": 22050,
31
+ "hl": 256,
32
+ "n_fft": 512,
33
+ "crop_start": 46,
34
+ "crop_stop": 186,
35
+ "hpf_start": 93,
36
+ "hpf_stop": 46,
37
+ "lpf_start": 164,
38
+ "lpf_stop": 186,
39
+ "res_type": "polyphase"
40
+ },
41
+ "4": {
42
+ "sr": 44100,
43
+ "hl": 512,
44
+ "n_fft": 768,
45
+ "crop_start": 121,
46
+ "crop_stop": 382,
47
+ "hpf_start": 138,
48
+ "hpf_stop": 123,
49
+ "res_type": "sinc_medium"
50
+ }
51
+ },
52
+ "sr": 44100,
53
+ "pre_filter_start": 740,
54
+ "pre_filter_stop": 768
55
+ }
uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "mid_side_b": true,
3
+ "bins": 768,
4
+ "unstable_bins": 7,
5
+ "reduction_bins": 668,
6
+ "band": {
7
+ "1": {
8
+ "sr": 11025,
9
+ "hl": 128,
10
+ "n_fft": 1024,
11
+ "crop_start": 0,
12
+ "crop_stop": 186,
13
+ "lpf_start": 37,
14
+ "lpf_stop": 73,
15
+ "res_type": "polyphase"
16
+ },
17
+ "2": {
18
+ "sr": 11025,
19
+ "hl": 128,
20
+ "n_fft": 512,
21
+ "crop_start": 4,
22
+ "crop_stop": 185,
23
+ "hpf_start": 36,
24
+ "hpf_stop": 18,
25
+ "lpf_start": 93,
26
+ "lpf_stop": 185,
27
+ "res_type": "polyphase"
28
+ },
29
+ "3": {
30
+ "sr": 22050,
31
+ "hl": 256,
32
+ "n_fft": 512,
33
+ "crop_start": 46,
34
+ "crop_stop": 186,
35
+ "hpf_start": 93,
36
+ "hpf_stop": 46,
37
+ "lpf_start": 164,
38
+ "lpf_stop": 186,
39
+ "res_type": "polyphase"
40
+ },
41
+ "4": {
42
+ "sr": 44100,
43
+ "hl": 512,
44
+ "n_fft": 768,
45
+ "crop_start": 121,
46
+ "crop_stop": 382,
47
+ "hpf_start": 138,
48
+ "hpf_stop": 123,
49
+ "res_type": "sinc_medium"
50
+ }
51
+ },
52
+ "sr": 44100,
53
+ "pre_filter_start": 740,
54
+ "pre_filter_stop": 768
55
+ }
uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "reverse": true,
3
+ "bins": 768,
4
+ "unstable_bins": 7,
5
+ "reduction_bins": 668,
6
+ "band": {
7
+ "1": {
8
+ "sr": 11025,
9
+ "hl": 128,
10
+ "n_fft": 1024,
11
+ "crop_start": 0,
12
+ "crop_stop": 186,
13
+ "lpf_start": 37,
14
+ "lpf_stop": 73,
15
+ "res_type": "polyphase"
16
+ },
17
+ "2": {
18
+ "sr": 11025,
19
+ "hl": 128,
20
+ "n_fft": 512,
21
+ "crop_start": 4,
22
+ "crop_stop": 185,
23
+ "hpf_start": 36,
24
+ "hpf_stop": 18,
25
+ "lpf_start": 93,
26
+ "lpf_stop": 185,
27
+ "res_type": "polyphase"
28
+ },
29
+ "3": {
30
+ "sr": 22050,
31
+ "hl": 256,
32
+ "n_fft": 512,
33
+ "crop_start": 46,
34
+ "crop_stop": 186,
35
+ "hpf_start": 93,
36
+ "hpf_stop": 46,
37
+ "lpf_start": 164,
38
+ "lpf_stop": 186,
39
+ "res_type": "polyphase"
40
+ },
41
+ "4": {
42
+ "sr": 44100,
43
+ "hl": 512,
44
+ "n_fft": 768,
45
+ "crop_start": 121,
46
+ "crop_stop": 382,
47
+ "hpf_start": 138,
48
+ "hpf_stop": 123,
49
+ "res_type": "sinc_medium"
50
+ }
51
+ },
52
+ "sr": 44100,
53
+ "pre_filter_start": 740,
54
+ "pre_filter_stop": 768
55
+ }