File size: 6,767 Bytes
e625816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

class STFT:
    def __init__(self, config):
        self.n_fft = config.n_fft
        self.hop_length = config.hop_length
        self.window = torch.hann_window(window_length=self.n_fft, periodic=True)
        self.dim_f = config.dim_f

    def __call__(self, x):
        window = self.window.to(x.device)
        batch_dims = x.shape[:-2]
        c, t = x.shape[-2:]
        x = x.reshape([-1, t])
        x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop_length, window=window, center=True, return_complex=True)
        x = torch.view_as_real(x)
        x = x.permute([0, 3, 1, 2])
        x = x.reshape([*batch_dims, c, 2, -1, x.shape[-1]]).reshape([*batch_dims, c * 2, -1, x.shape[-1]])
        return x[..., :self.dim_f, :]

    def inverse(self, x):
        window = self.window.to(x.device)
        batch_dims = x.shape[:-3]
        c, f, t = x.shape[-3:]
        n = self.n_fft // 2 + 1
        f_pad = torch.zeros([*batch_dims, c, n - f, t]).to(x.device)
        x = torch.cat([x, f_pad], -2)
        x = x.reshape([*batch_dims, c // 2, 2, n, t]).reshape([-1, 2, n, t])
        x = x.permute([0, 2, 3, 1])
        x = x[..., 0] + x[..., 1] * 1.j
        x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop_length, window=window, center=True)
        x = x.reshape([*batch_dims, 2, -1])
        return x

def get_norm(norm_type):
    def norm(c, norm_type):
        if norm_type == 'BatchNorm':
            return nn.BatchNorm2d(c)
        elif norm_type == 'InstanceNorm':
            return nn.InstanceNorm2d(c, affine=True)
        elif 'GroupNorm' in norm_type:
            g = int(norm_type.replace('GroupNorm', ''))
            return nn.GroupNorm(num_groups=g, num_channels=c)
        else:
            return nn.Identity()

    return partial(norm, norm_type=norm_type)

def get_act(act_type):
    if act_type == 'gelu':
        return nn.GELU()
    elif act_type == 'relu':
        return nn.ReLU()
    elif act_type[:3] == 'elu':
        alpha = float(act_type.replace('elu', ''))
        return nn.ELU(alpha)
    else:
        raise Exception

class Upscale(nn.Module):
    def __init__(self, in_c, out_c, scale, norm, act):
        super().__init__()
        self.conv = nn.Sequential(norm(in_c), act, nn.ConvTranspose2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False))

    def forward(self, x):
        return self.conv(x)

class Downscale(nn.Module):
    def __init__(self, in_c, out_c, scale, norm, act):
        super().__init__()
        self.conv = nn.Sequential(norm(in_c), act, nn.Conv2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False))

    def forward(self, x):
        return self.conv(x)

class TFC_TDF(nn.Module):
    def __init__(self, in_c, c, l, f, bn, norm, act):
        super().__init__()
        self.blocks = nn.ModuleList()
        
        for i in range(l):
            block = nn.Module()
            block.tfc1 = nn.Sequential(norm(in_c), act, nn.Conv2d(in_c, c, 3, 1, 1, bias=False),)
            block.tdf = nn.Sequential(norm(c), act, nn.Linear(f, f // bn, bias=False), norm(c), act, nn.Linear(f // bn, f, bias=False))
            block.tfc2 = nn.Sequential(norm(c), act, nn.Conv2d(c, c, 3, 1, 1, bias=False))
            block.shortcut = nn.Conv2d(in_c, c, 1, 1, 0, bias=False)
            self.blocks.append(block)
            in_c = c

    def forward(self, x):
        for block in self.blocks:
            s = block.shortcut(x)
            x = block.tfc1(x)
            x = x + block.tdf(x)
            x = block.tfc2(x)
            x = x + s
        return x

class TFC_TDF_net(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        norm = get_norm(norm_type=config.model.norm)
        act = get_act(act_type=config.model.act)
        self.num_target_instruments = 1 if config.training.target_instrument else len(config.training.instruments)
        self.num_subbands = config.model.num_subbands
        dim_c = self.num_subbands * config.audio.num_channels * 2
        n = config.model.num_scales
        scale = config.model.scale
        l = config.model.num_blocks_per_scale
        c = config.model.num_channels
        g = config.model.growth
        bn = config.model.bottleneck_factor
        f = config.audio.dim_f // self.num_subbands
        self.first_conv = nn.Conv2d(dim_c, c, 1, 1, 0, bias=False)
        self.encoder_blocks = nn.ModuleList()
        
        for i in range(n):
            block = nn.Module()
            block.tfc_tdf = TFC_TDF(c, c, l, f, bn, norm, act)
            block.downscale = Downscale(c, c + g, scale, norm, act)
            f = f // scale[1]
            c += g
            self.encoder_blocks.append(block)

        self.bottleneck_block = TFC_TDF(c, c, l, f, bn, norm, act)
        self.decoder_blocks = nn.ModuleList()
        
        for i in range(n):
            block = nn.Module()
            block.upscale = Upscale(c, c - g, scale, norm, act)
            f = f * scale[1]
            c -= g
            block.tfc_tdf = TFC_TDF(2 * c, c, l, f, bn, norm, act)
            self.decoder_blocks.append(block)

        self.final_conv = nn.Sequential(nn.Conv2d(c + dim_c, c, 1, 1, 0, bias=False), act, nn.Conv2d(c, self.num_target_instruments * dim_c, 1, 1, 0, bias=False))
        self.stft = STFT(config.audio)

    def cac2cws(self, x):
        k = self.num_subbands
        b, c, f, t = x.shape
        x = x.reshape(b, c, k, f // k, t)
        x = x.reshape(b, c * k, f // k, t)
        return x

    def cws2cac(self, x):
        k = self.num_subbands
        b, c, f, t = x.shape
        x = x.reshape(b, c // k, k, f, t)
        x = x.reshape(b, c // k, f * k, t)
        return x

    def forward(self, x):
        x = self.stft(x)
        mix = x = self.cac2cws(x)
        first_conv_out = x = self.first_conv(x)
        x = x.transpose(-1, -2)
        encoder_outputs = []
        
        for block in self.encoder_blocks:
            x = block.tfc_tdf(x)
            encoder_outputs.append(x)
            x = block.downscale(x)
            
        x = self.bottleneck_block(x)
        
        for block in self.decoder_blocks:
            x = block.upscale(x)
            x = torch.cat([x, encoder_outputs.pop()], 1)
            x = block.tfc_tdf(x)

        x = x.transpose(-1, -2)
        x = x * first_conv_out  
        x = self.final_conv(torch.cat([mix, x], 1))
        x = self.cws2cac(x)
        
        if self.num_target_instruments > 1:
            b, c, f, t = x.shape
            x = x.reshape(b, self.num_target_instruments, -1, f, t)
            
        x = self.stft.inverse(x)

        return x