Update README.md
Browse files
README.md
CHANGED
|
@@ -46,27 +46,6 @@ across four domains: documents, illustrations, user interfaces, and natural imag
|
|
| 46 |
|
| 47 |
This model has been fine-tuned on VQA, you need to provide a question in a specific format, ideally in the format of a Choices question answering
|
| 48 |
|
| 49 |
-
## Converting from T5x to huggingface
|
| 50 |
-
|
| 51 |
-
You can use the [`convert_pix2struct_checkpoint_to_pytorch.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/pix2struct/convert_pix2struct_checkpoint_to_pytorch.py) script as follows:
|
| 52 |
-
```bash
|
| 53 |
-
python convert_pix2struct_checkpoint_to_pytorch.py --t5x_checkpoint_path PATH_TO_T5X_CHECKPOINTS --pytorch_dump_path PATH_TO_SAVE --is_vqa
|
| 54 |
-
```
|
| 55 |
-
if you are converting a large model, run:
|
| 56 |
-
```bash
|
| 57 |
-
python convert_pix2struct_checkpoint_to_pytorch.py --t5x_checkpoint_path PATH_TO_T5X_CHECKPOINTS --pytorch_dump_path PATH_TO_SAVE --use-large --is_vqa
|
| 58 |
-
```
|
| 59 |
-
Once saved, you can push your converted model with the following snippet:
|
| 60 |
-
```python
|
| 61 |
-
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
| 62 |
-
|
| 63 |
-
model = Pix2StructForConditionalGeneration.from_pretrained(PATH_TO_SAVE)
|
| 64 |
-
processor = Pix2StructProcessor.from_pretrained(PATH_TO_SAVE)
|
| 65 |
-
|
| 66 |
-
model.push_to_hub("USERNAME/MODEL_NAME")
|
| 67 |
-
processor.push_to_hub("USERNAME/MODEL_NAME")
|
| 68 |
-
```
|
| 69 |
-
|
| 70 |
## Running the model
|
| 71 |
|
| 72 |
### In full precision, on CPU:
|
|
@@ -140,6 +119,27 @@ print(processor.decode(predictions[0], skip_special_tokens=True))
|
|
| 140 |
>>> ash cloud
|
| 141 |
```
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
# Contribution
|
| 145 |
|
|
|
|
| 46 |
|
| 47 |
This model has been fine-tuned on VQA, you need to provide a question in a specific format, ideally in the format of a Choices question answering
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
## Running the model
|
| 50 |
|
| 51 |
### In full precision, on CPU:
|
|
|
|
| 119 |
>>> ash cloud
|
| 120 |
```
|
| 121 |
|
| 122 |
+
## Converting from T5x to huggingface
|
| 123 |
+
|
| 124 |
+
You can use the [`convert_pix2struct_checkpoint_to_pytorch.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/pix2struct/convert_pix2struct_checkpoint_to_pytorch.py) script as follows:
|
| 125 |
+
```bash
|
| 126 |
+
python convert_pix2struct_checkpoint_to_pytorch.py --t5x_checkpoint_path PATH_TO_T5X_CHECKPOINTS --pytorch_dump_path PATH_TO_SAVE --is_vqa
|
| 127 |
+
```
|
| 128 |
+
if you are converting a large model, run:
|
| 129 |
+
```bash
|
| 130 |
+
python convert_pix2struct_checkpoint_to_pytorch.py --t5x_checkpoint_path PATH_TO_T5X_CHECKPOINTS --pytorch_dump_path PATH_TO_SAVE --use-large --is_vqa
|
| 131 |
+
```
|
| 132 |
+
Once saved, you can push your converted model with the following snippet:
|
| 133 |
+
```python
|
| 134 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
| 135 |
+
|
| 136 |
+
model = Pix2StructForConditionalGeneration.from_pretrained(PATH_TO_SAVE)
|
| 137 |
+
processor = Pix2StructProcessor.from_pretrained(PATH_TO_SAVE)
|
| 138 |
+
|
| 139 |
+
model.push_to_hub("USERNAME/MODEL_NAME")
|
| 140 |
+
processor.push_to_hub("USERNAME/MODEL_NAME")
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
|
| 144 |
# Contribution
|
| 145 |
|