Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,178 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: BiRefNet
|
| 3 |
+
tags:
|
| 4 |
+
- background-removal
|
| 5 |
+
- mask-generation
|
| 6 |
+
- Dichotomous Image Segmentation
|
| 7 |
+
- Camouflaged Object Detection
|
| 8 |
+
- Salient Object Detection
|
| 9 |
+
- pytorch_model_hub_mixin
|
| 10 |
+
- model_hub_mixin
|
| 11 |
+
repo_url: https://github.com/ZhengPeng7/BiRefNet
|
| 12 |
+
pipeline_tag: image-segmentation
|
| 13 |
+
---
|
| 14 |
+
<h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
|
| 15 |
+
|
| 16 |
+
<div align='center'>
|
| 17 |
+
<a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>, 
|
| 18 |
+
<a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>, 
|
| 19 |
+
<a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>, 
|
| 20 |
+
<a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>, 
|
| 21 |
+
<a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>, 
|
| 22 |
+
<a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>, 
|
| 23 |
+
<a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup>
|
| 24 |
+
</div>
|
| 25 |
+
|
| 26 |
+
<div align='center'>
|
| 27 |
+
<sup>1 </sup>Nankai University  <sup>2 </sup>Northwestern Polytechnical University  <sup>3 </sup>National University of Defense Technology  <sup>4 </sup>Aalto University  <sup>5 </sup>Shanghai AI Laboratory  <sup>6 </sup>University of Trento 
|
| 28 |
+
</div>
|
| 29 |
+
|
| 30 |
+
<div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
|
| 31 |
+
<a href='https://arxiv.org/pdf/2401.03407'><img src='https://img.shields.io/badge/arXiv-BiRefNet-red'></a> 
|
| 32 |
+
<a href='https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link'><img src='https://img.shields.io/badge/中文版-BiRefNet-red'></a> 
|
| 33 |
+
<a href='https://www.birefnet.top'><img src='https://img.shields.io/badge/Page-BiRefNet-red'></a> 
|
| 34 |
+
<a href='https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM'><img src='https://img.shields.io/badge/Drive-Stuff-green'></a> 
|
| 35 |
+
<a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a> 
|
| 36 |
+
<a href='https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Spaces-BiRefNet-blue'></a> 
|
| 37 |
+
<a href='https://huggingface.co/ZhengPeng7/BiRefNet'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Models-BiRefNet-blue'></a> 
|
| 38 |
+
<a href='https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link'><img src='https://img.shields.io/badge/Single_Image_Inference-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a> 
|
| 39 |
+
<a href='https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S'><img src='https://img.shields.io/badge/Inference_&_Evaluation-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a> 
|
| 40 |
+
</div>
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
| *DIS-Sample_1* | *DIS-Sample_2* |
|
| 44 |
+
| :------------------------------: | :-------------------------------: |
|
| 45 |
+
| <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> |
|
| 46 |
+
|
| 47 |
+
This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___CAAI AIR 2024___).
|
| 48 |
+
|
| 49 |
+
Visit our GitHub repo: [https://github.com/ZhengPeng7/BiRefNet](https://github.com/ZhengPeng7/BiRefNet) for more details -- **codes**, **docs**, and **model zoo**!
|
| 50 |
+
|
| 51 |
+
## How to use (this tiny version)
|
| 52 |
+
|
| 53 |
+
### 0. Install Packages:
|
| 54 |
+
```
|
| 55 |
+
pip install -qr https://raw.githubusercontent.com/ZhengPeng7/BiRefNet/main/requirements.txt
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
### 1. Load BiRefNet:
|
| 59 |
+
|
| 60 |
+
#### Use codes + weights from HuggingFace
|
| 61 |
+
> Only use the weights on HuggingFace -- Pro: No need to download BiRefNet codes manually; Con: Codes on HuggingFace might not be latest version (I'll try to keep them always latest).
|
| 62 |
+
|
| 63 |
+
```python
|
| 64 |
+
# Load BiRefNet with weights
|
| 65 |
+
from transformers import AutoModelForImageSegmentation
|
| 66 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet_lite', trust_remote_code=True)
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
#### Use codes from GitHub + weights from HuggingFace
|
| 70 |
+
> Only use the weights on HuggingFace -- Pro: codes are always the latest; Con: Need to clone the BiRefNet repo from my GitHub.
|
| 71 |
+
|
| 72 |
+
```shell
|
| 73 |
+
# Download codes
|
| 74 |
+
git clone https://github.com/ZhengPeng7/BiRefNet.git
|
| 75 |
+
cd BiRefNet
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
```python
|
| 79 |
+
# Use codes locally
|
| 80 |
+
from models.birefnet import BiRefNet
|
| 81 |
+
|
| 82 |
+
# Load weights from Hugging Face Models
|
| 83 |
+
### >>> Remember to set the `bb` in `config.py` as `swin_v1_t` to use this tiny version. <<< ###
|
| 84 |
+
birefnet = BiRefNet.from_pretrained('zhengpeng7/BiRefNet_lite')
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
#### Use codes from GitHub + weights from local space
|
| 88 |
+
> Only use the weights and codes both locally.
|
| 89 |
+
|
| 90 |
+
```python
|
| 91 |
+
# Use codes and weights locally
|
| 92 |
+
### >>> Remember to set the `bb` in `config.py` as `swin_v1_t` to use this tiny version. <<< ###
|
| 93 |
+
import torch
|
| 94 |
+
from utils import check_state_dict
|
| 95 |
+
|
| 96 |
+
birefnet = BiRefNet(bb_pretrained=False)
|
| 97 |
+
state_dict = torch.load(PATH_TO_WEIGHT, map_location='cpu')
|
| 98 |
+
state_dict = check_state_dict(state_dict)
|
| 99 |
+
birefnet.load_state_dict(state_dict)
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
#### Use the loaded BiRefNet for inference
|
| 103 |
+
```python
|
| 104 |
+
# Imports
|
| 105 |
+
from PIL import Image
|
| 106 |
+
import matplotlib.pyplot as plt
|
| 107 |
+
import torch
|
| 108 |
+
from torchvision import transforms
|
| 109 |
+
from models.birefnet import BiRefNet
|
| 110 |
+
|
| 111 |
+
birefnet = ... # -- BiRefNet should be loaded with codes above, either way.
|
| 112 |
+
torch.set_float32_matmul_precision(['high', 'highest'][0])
|
| 113 |
+
birefnet.to('cuda')
|
| 114 |
+
birefnet.eval()
|
| 115 |
+
|
| 116 |
+
def extract_object(birefnet, imagepath):
|
| 117 |
+
# Data settings
|
| 118 |
+
image_size = (1024, 1024)
|
| 119 |
+
transform_image = transforms.Compose([
|
| 120 |
+
transforms.Resize(image_size),
|
| 121 |
+
transforms.ToTensor(),
|
| 122 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 123 |
+
])
|
| 124 |
+
|
| 125 |
+
image = Image.open(imagepath)
|
| 126 |
+
input_images = transform_image(image).unsqueeze(0).to('cuda')
|
| 127 |
+
|
| 128 |
+
# Prediction
|
| 129 |
+
with torch.no_grad():
|
| 130 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 131 |
+
pred = preds[0].squeeze()
|
| 132 |
+
pred_pil = transforms.ToPILImage()(pred)
|
| 133 |
+
mask = pred_pil.resize(image.size)
|
| 134 |
+
image.putalpha(mask)
|
| 135 |
+
return image, mask
|
| 136 |
+
|
| 137 |
+
# Visualization
|
| 138 |
+
plt.axis("off")
|
| 139 |
+
plt.imshow(extract_object(birefnet, imagepath='PATH-TO-YOUR_IMAGE.jpg')[0])
|
| 140 |
+
plt.show()
|
| 141 |
+
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
> This BiRefNet for standard dichotomous image segmentation (DIS) is trained on **DIS-TR** and validated on **DIS-TEs and DIS-VD**.
|
| 146 |
+
|
| 147 |
+
## This repo holds the official model weights of "[<ins>Bilateral Reference for High-Resolution Dichotomous Image Segmentation</ins>](https://arxiv.org/pdf/2401.03407)" (_CAAI AIR 2024_).
|
| 148 |
+
|
| 149 |
+
This repo contains the weights of BiRefNet proposed in our paper, which has achieved the SOTA performance on three tasks (DIS, HRSOD, and COD).
|
| 150 |
+
|
| 151 |
+
Go to my GitHub page for BiRefNet codes and the latest updates: https://github.com/ZhengPeng7/BiRefNet :)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
#### Try our online demos for inference:
|
| 155 |
+
|
| 156 |
+
+ Online **Single Image Inference** on Colab: [](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link)
|
| 157 |
+
+ **Online Inference with GUI on Hugging Face** with adjustable resolutions: [](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo)
|
| 158 |
+
+ **Inference and evaluation** of your given weights: [](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S)
|
| 159 |
+
<img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1080" />
|
| 160 |
+
|
| 161 |
+
## Acknowledgement:
|
| 162 |
+
|
| 163 |
+
+ Many thanks to @fal for their generous support on GPU resources for training better BiRefNet models.
|
| 164 |
+
+ Many thanks to @not-lain for his help on the better deployment of our BiRefNet model on HuggingFace.
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
## Citation
|
| 168 |
+
|
| 169 |
+
```
|
| 170 |
+
@article{zheng2024birefnet,
|
| 171 |
+
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
|
| 172 |
+
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
|
| 173 |
+
journal={CAAI Artificial Intelligence Research},
|
| 174 |
+
volume = {3},
|
| 175 |
+
pages = {9150038},
|
| 176 |
+
year={2024}
|
| 177 |
+
}
|
| 178 |
+
```
|