gerasmark commited on
Commit
540ce3f
·
verified ·
1 Parent(s): bf42bfb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -166
README.md CHANGED
@@ -6,197 +6,108 @@ base_model:
6
  - mistralai/Mistral-7B-Instruct-v0.3
7
  ---
8
 
9
- # Model Card for Model ID
10
-
11
- <!-- Provide a quick summary of what the model is/does. -->
12
 
 
13
 
 
14
 
15
  ## Model Details
16
 
17
  ### Model Description
18
-
19
- <!-- Provide a longer summary of what this model is. -->
20
-
21
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
22
-
23
- - **Developed by:** [More Information Needed]
24
- - **Funded by [optional]:** [More Information Needed]
25
- - **Shared by [optional]:** [More Information Needed]
26
- - **Model type:** [More Information Needed]
27
- - **Language(s) (NLP):** [More Information Needed]
28
- - **License:** [More Information Needed]
29
- - **Finetuned from model [optional]:** [More Information Needed]
30
-
31
- ### Model Sources [optional]
32
-
33
- <!-- Provide the basic links for the model. -->
34
-
35
- - **Repository:** [More Information Needed]
36
- - **Paper [optional]:** [More Information Needed]
37
- - **Demo [optional]:** [More Information Needed]
38
-
39
- ## Uses
40
-
41
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
42
-
43
- ### Direct Use
44
-
45
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
46
-
47
- [More Information Needed]
48
-
49
- ### Downstream Use [optional]
50
-
51
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
52
-
53
- [More Information Needed]
54
-
55
- ### Out-of-Scope Use
56
-
57
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
58
-
59
- [More Information Needed]
60
-
61
- ## Bias, Risks, and Limitations
62
-
63
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
64
-
65
- [More Information Needed]
66
-
67
- ### Recommendations
68
-
69
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
70
-
71
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
72
-
73
- ## How to Get Started with the Model
74
-
75
- Use the code below to get started with the model.
76
-
77
- [More Information Needed]
78
-
79
  ## Training Details
80
 
81
  ### Training Data
82
 
83
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
84
-
85
- [More Information Needed]
 
86
 
87
  ### Training Procedure
88
 
89
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
90
-
91
- #### Preprocessing [optional]
92
-
93
- [More Information Needed]
94
-
95
-
96
- #### Training Hyperparameters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
99
-
100
- #### Speeds, Sizes, Times [optional]
101
-
102
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
103
-
104
- [More Information Needed]
105
 
106
  ## Evaluation
107
 
108
- <!-- This section describes the evaluation protocols and provides the results. -->
109
-
110
  ### Testing Data, Factors & Metrics
111
 
112
- #### Testing Data
113
-
114
- <!-- This should link to a Dataset Card if possible. -->
115
-
116
- [More Information Needed]
117
-
118
- #### Factors
119
-
120
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
121
-
122
- [More Information Needed]
123
-
124
- #### Metrics
125
-
126
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
127
-
128
- [More Information Needed]
129
-
130
- ### Results
131
 
132
- [More Information Needed]
133
 
134
- #### Summary
135
-
136
-
137
-
138
- ## Model Examination [optional]
139
-
140
- <!-- Relevant interpretability work for the model goes here -->
141
-
142
- [More Information Needed]
143
-
144
- ## Environmental Impact
145
-
146
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
147
-
148
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
149
-
150
- - **Hardware Type:** [More Information Needed]
151
- - **Hours used:** [More Information Needed]
152
- - **Cloud Provider:** [More Information Needed]
153
- - **Compute Region:** [More Information Needed]
154
- - **Carbon Emitted:** [More Information Needed]
155
 
156
- ## Technical Specifications [optional]
157
 
158
  ### Model Architecture and Objective
159
 
160
- [More Information Needed]
 
 
 
 
 
161
 
162
  ### Compute Infrastructure
163
 
164
- [More Information Needed]
165
-
166
- #### Hardware
167
-
168
- [More Information Needed]
169
-
170
- #### Software
171
-
172
- [More Information Needed]
173
-
174
- ## Citation [optional]
175
-
176
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
177
-
178
- **BibTeX:**
179
-
180
- [More Information Needed]
181
-
182
- **APA:**
183
-
184
- [More Information Needed]
185
-
186
- ## Glossary [optional]
187
-
188
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
189
-
190
- [More Information Needed]
191
-
192
- ## More Information [optional]
193
-
194
- [More Information Needed]
195
-
196
- ## Model Card Authors [optional]
197
-
198
- [More Information Needed]
199
-
200
- ## Model Card Contact
201
-
202
- [More Information Needed]
 
6
  - mistralai/Mistral-7B-Instruct-v0.3
7
  ---
8
 
9
+ ## Summary
 
 
10
 
11
+ This model is a fine-tuned version of the Mistral-7B-Instruct-v0.3 optimised for answering questions in the domain of forensic investigations. The model has been trained using a specialised dataset titled **Advanced_Forensic_Investigations_Knowledge_Library_v1**, which consists of approximately 100 domain-specific question-answer pairs. The objective is to support advanced forensic investigative reasoning, rapid knowledge retrieval, and high-precision forensic domain assistance.
12
 
13
+ ---
14
 
15
  ## Model Details
16
 
17
  ### Model Description
18
+
19
+ - **Model type:** Instruction-following Language Model (LoRA-based fine-tuning)
20
+
21
+ - **Language(s):** English
22
+
23
+ - **Fine-tuned from model:** Mistral-7B-Instruct-v0.3
24
+
25
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  ## Training Details
27
 
28
  ### Training Data
29
 
30
+ - **Dataset:** `Advanced_Forensic_Investigations_Knowledge_Library_v1`
31
+
32
+ - **Data size:** ~100 high-quality, domain-specific QA pairs
33
+
34
 
35
  ### Training Procedure
36
 
37
+ #### Preprocessing
38
+
39
+ - Template: `mistral`
40
+
41
+ - Token truncation/cutoff: 2048
42
+
43
+ - No vocab resizing or prompt packing
44
+
45
+
46
+ #### Hyperparameters
47
+
48
+ - **Finetuning type:** LoRA
49
+
50
+ - **Precision:** `bf16`
51
+
52
+ - **LoRA rank:** 16
53
+
54
+ - **LoRA alpha:** 32
55
+
56
+ - **Batch size:** 4
57
+
58
+ - **Gradient accumulation:** 8
59
+
60
+ - **Learning rate:** `3e-4`
61
+
62
+ - **Epochs:** 35
63
+
64
+ - **LR scheduler:** cosine
65
+
66
+ - **Quantisation:** 4-bit (bitsandbytes)
67
+
68
+ - **Cutoff length:** 2048
69
+
70
+
71
+ #### Compute
72
+
73
+ - **Training time:** close to 30 minutes
74
+
75
+ - **Framework:** LLaMA-Factory
76
 
77
+ ---
 
 
 
 
 
 
78
 
79
  ## Evaluation
80
 
 
 
81
  ### Testing Data, Factors & Metrics
82
 
83
+ - **Metrics Used:** BLEU-4, ROUGE-1, ROUGE-2
84
+
85
+ - **Results:**
86
+
87
+ - BLEU-4: 100%
88
+
89
+ - ROUGE-1: 100%
90
+
91
+ - ROUGE-2: 100%
92
+
 
 
 
 
 
 
 
 
 
93
 
94
+ These scores reflect perfect overlap with reference answers within the scope of the evaluation dataset.
95
 
96
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
+ ## Technical Specifications
99
 
100
  ### Model Architecture and Objective
101
 
102
+ - **Base:** Transformer (Mistral-7B architecture)
103
+
104
+ - **Fine-tuning method:** LoRA
105
+
106
+ - **Objective:** Instruction-following with forensic legal knowledge adaptation
107
+
108
 
109
  ### Compute Infrastructure
110
 
111
+ - **Hardware:** 2xL40s
112
+
113
+ - **Software:** LLaMA-Factory, PyTorch, Transformers, bitsandbytes