mhassanch commited on
Commit
d2a7940
·
1 Parent(s): 0aa4a0a

add model card

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - geospatial
4
+ - geobase
5
+ - wetland-segmentation
6
+ ---
7
+ | <img src="https://upload.wikimedia.org/wikipedia/commons/6/6a/JavaScript-logo.png" width="28" height="28"> | [@geobase-js/geoai](https://www.npmjs.com/package/@geobase-js/geoai) |
8
+ |---|---|
9
+
10
+
11
+
12
+ > `task = wetland-segmentation`
13
+
14
+ ### 🛠 Model Purpose
15
+ This model is part of the **[@geobase-js/geoai](https://github.com/geobase-ai/geoai)** javascript library.
16
+
17
+ **GeoAi** enables geospatial AI inference **directly in the browser or Node.js** without requiring a heavy backend.
18
+
19
+ **GeoAi** pipeline accepts **geospatial polygons** as input (in GeoJSON format) and outputs results as a **GeoJSON FeatureCollection**, ready for use with libraries like **Leaflet** and **Mapbox GL**.
20
+
21
+ <video controls autoplay loop width="1024" height="720" src="https://geobase-docs.s3.amazonaws.com/geobase-ai-assets/wetland-segmentation.mp4"></video>
22
+
23
+ ---
24
+ ### 🚀 Demo
25
+
26
+ Explore the model in action with the interactive [Demo](https://docs.geobase.app/geoai-live/tasks/wetland-segmentation).
27
+
28
+ ### 📦 Model Information
29
+ - **Architecture**: MaskRCNN
30
+ - **Source Model**: https://opengeoai.org/examples/wetland_mapping/
31
+ - **Quantization**: Yes
32
+ ---
33
+
34
+ > **Note:** This model only works if the input imagery contains both RGB and NIR bands.
35
+
36
+
37
+ ### 💡 Example Usage
38
+
39
+ ```javascript
40
+ import { geoai } from "@geobase-js/geoai";
41
+
42
+ // Example polygon (GeoJSON)
43
+ const polygon = {
44
+ type: "Feature",
45
+ properties: {},
46
+ geometry: {
47
+ coordinates: [
48
+ [
49
+ [-99.0983079371952, 46.60892272965549],
50
+ [-99.0983079371952, 46.5949877901148],
51
+ [-99.07778265091567, 46.5949877901148],
52
+ [-99.07778265091567, 46.60892272965549],
53
+ [-99.0983079371952, 46.60892272965549],
54
+ ],
55
+ ],
56
+ type: "Polygon",
57
+ },
58
+ } as GeoJSON.Feature;
59
+
60
+ // Initialize pipeline
61
+ const pipeline = await geoai.pipeline(
62
+ [{ task: "wetland-segmentation" }],
63
+ providerParams
64
+ );
65
+
66
+ // Run detection
67
+ const result = await pipeline.inference({
68
+ inputs: { polygon }
69
+ });
70
+
71
+ // Sample output format
72
+ // {
73
+ // "detections": {
74
+ // "type": "FeatureCollection",
75
+ // "features": [
76
+ // {
77
+ // "type": "Feature",
78
+ // "properties": {
79
+ // },
80
+ // "geometry": {
81
+ // "type": "Polygon",
82
+ // "coordinates": [
83
+ // [
84
+ // [54.69479163045772, 24.766579711184693],
85
+ // [54.69521093930892, 24.766579711184693],
86
+ // [54.69521093930892, 24.766203991224682],
87
+ // [54.69479163045772, 24.766203991224682],
88
+ // [54.69479163045772, 24.766579711184693],
89
+ // ]
90
+ // ]
91
+ // }
92
+ // },
93
+ // {"type": 'Feature', "properties": {…}, "geometry": {…}},
94
+ // {"type": 'Feature', "properties": {…}, "geometry": {…}},
95
+ // ]
96
+ // },
97
+ // "geoRawImage": GeoRawImage {data: Uint8ClampedArray(1048576), width: 512, height: 512, channels: 4, bounds: {…}, …}
98
+ // }
99
+
100
+ ```
101
+ ### 📖 Documentation & Demo
102
+
103
+ - GeoBase Docs: https://docs.geobase.app/geoai
104
+ - NPM Package: https://www.npmjs.com/package/@geobase-js/geoai
105
+ - Demo Playground: https://docs.geobase.app/geoai-live/tasks/wetland-segmentation
106
+ - GitHub Repo: https://github.com/decision-labs/geobase-ai.js