update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- generated_from_trainer
|
| 4 |
+
model-index:
|
| 5 |
+
- name: ViTGPT2_vizwiz
|
| 6 |
+
results: []
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 10 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 11 |
+
|
| 12 |
+
# ViTGPT2_vizwiz
|
| 13 |
+
|
| 14 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
| 15 |
+
It achieves the following results on the evaluation set:
|
| 16 |
+
- Loss: 0.0719
|
| 17 |
+
|
| 18 |
+
## Model description
|
| 19 |
+
|
| 20 |
+
More information needed
|
| 21 |
+
|
| 22 |
+
## Intended uses & limitations
|
| 23 |
+
|
| 24 |
+
More information needed
|
| 25 |
+
|
| 26 |
+
## Training and evaluation data
|
| 27 |
+
|
| 28 |
+
More information needed
|
| 29 |
+
|
| 30 |
+
## Training procedure
|
| 31 |
+
|
| 32 |
+
### Training hyperparameters
|
| 33 |
+
|
| 34 |
+
The following hyperparameters were used during training:
|
| 35 |
+
- learning_rate: 2e-05
|
| 36 |
+
- train_batch_size: 8
|
| 37 |
+
- eval_batch_size: 8
|
| 38 |
+
- seed: 42
|
| 39 |
+
- distributed_type: multi-GPU
|
| 40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 41 |
+
- lr_scheduler_type: linear
|
| 42 |
+
- num_epochs: 3.0
|
| 43 |
+
- mixed_precision_training: Native AMP
|
| 44 |
+
|
| 45 |
+
### Training results
|
| 46 |
+
|
| 47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
| 48 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
| 49 |
+
| 0.1207 | 0.07 | 1000 | 0.0906 |
|
| 50 |
+
| 0.0916 | 0.14 | 2000 | 0.0861 |
|
| 51 |
+
| 0.0879 | 0.2 | 3000 | 0.0840 |
|
| 52 |
+
| 0.0856 | 0.27 | 4000 | 0.0822 |
|
| 53 |
+
| 0.0834 | 0.34 | 5000 | 0.0806 |
|
| 54 |
+
| 0.0817 | 0.41 | 6000 | 0.0795 |
|
| 55 |
+
| 0.0812 | 0.48 | 7000 | 0.0785 |
|
| 56 |
+
| 0.0808 | 0.55 | 8000 | 0.0779 |
|
| 57 |
+
| 0.0796 | 0.61 | 9000 | 0.0771 |
|
| 58 |
+
| 0.0786 | 0.68 | 10000 | 0.0767 |
|
| 59 |
+
| 0.0774 | 0.75 | 11000 | 0.0762 |
|
| 60 |
+
| 0.0772 | 0.82 | 12000 | 0.0758 |
|
| 61 |
+
| 0.0756 | 0.89 | 13000 | 0.0754 |
|
| 62 |
+
| 0.0759 | 0.96 | 14000 | 0.0750 |
|
| 63 |
+
| 0.0756 | 1.02 | 15000 | 0.0748 |
|
| 64 |
+
| 0.0726 | 1.09 | 16000 | 0.0745 |
|
| 65 |
+
| 0.0727 | 1.16 | 17000 | 0.0745 |
|
| 66 |
+
| 0.0715 | 1.23 | 18000 | 0.0742 |
|
| 67 |
+
| 0.0726 | 1.3 | 19000 | 0.0741 |
|
| 68 |
+
| 0.072 | 1.37 | 20000 | 0.0738 |
|
| 69 |
+
| 0.0723 | 1.43 | 21000 | 0.0735 |
|
| 70 |
+
| 0.0715 | 1.5 | 22000 | 0.0734 |
|
| 71 |
+
| 0.0724 | 1.57 | 23000 | 0.0732 |
|
| 72 |
+
| 0.0723 | 1.64 | 24000 | 0.0730 |
|
| 73 |
+
| 0.0718 | 1.71 | 25000 | 0.0729 |
|
| 74 |
+
| 0.07 | 1.78 | 26000 | 0.0728 |
|
| 75 |
+
| 0.0702 | 1.84 | 27000 | 0.0726 |
|
| 76 |
+
| 0.0704 | 1.91 | 28000 | 0.0725 |
|
| 77 |
+
| 0.0703 | 1.98 | 29000 | 0.0725 |
|
| 78 |
+
| 0.0686 | 2.05 | 30000 | 0.0726 |
|
| 79 |
+
| 0.0687 | 2.12 | 31000 | 0.0726 |
|
| 80 |
+
| 0.0688 | 2.19 | 32000 | 0.0724 |
|
| 81 |
+
| 0.0677 | 2.25 | 33000 | 0.0724 |
|
| 82 |
+
| 0.0665 | 2.32 | 34000 | 0.0725 |
|
| 83 |
+
| 0.0684 | 2.39 | 35000 | 0.0723 |
|
| 84 |
+
| 0.0678 | 2.46 | 36000 | 0.0722 |
|
| 85 |
+
| 0.0686 | 2.53 | 37000 | 0.0722 |
|
| 86 |
+
| 0.067 | 2.59 | 38000 | 0.0721 |
|
| 87 |
+
| 0.0669 | 2.66 | 39000 | 0.0721 |
|
| 88 |
+
| 0.0673 | 2.73 | 40000 | 0.0721 |
|
| 89 |
+
| 0.0673 | 2.8 | 41000 | 0.0720 |
|
| 90 |
+
| 0.0662 | 2.87 | 42000 | 0.0720 |
|
| 91 |
+
| 0.0681 | 2.94 | 43000 | 0.0719 |
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
### Framework versions
|
| 95 |
+
|
| 96 |
+
- Transformers 4.17.0.dev0
|
| 97 |
+
- Pytorch 1.10.2+cu102
|
| 98 |
+
- Datasets 1.18.2.dev0
|
| 99 |
+
- Tokenizers 0.11.0
|