File size: 3,316 Bytes
d19a3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b4b3ce
 
d19a3de
 
 
 
5b4b3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a7a1e
5b4b3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a7a1e
5b4b3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d19a3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: mistralai/Mistral-7B-Instruct-v0.1
model-index:
- name: Mistral-7B-text-to-sql-without-flash-attention-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral-7B-text-to-sql-without-flash-attention-2

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the generator dataset.

with dataset b-mc2/sql-create-context

## Model description

More information needed

### Testing results

import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer, pipeline

peft_model_id = "frankmorales2020/Mistral-7B-text-to-sql-without-flash-attention-2"

model = AutoPeftModelForCausalLM.from_pretrained(
  peft_model_id,
  device_map="auto",
  torch_dtype=torch.float16
)

tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

CASE Number 1:
prompt='What was the first album Beyoncé released as a solo artist?'
prompt = f"Instruct: generate a SQL query.\n{prompt}\nOutput:\n" # for dataset b-mc2/sql-create-context
outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.9, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.eos_token_id)

print('Question: %s'%prompt)
#print('Answer: %s \nOutput:\n'%outputs[0]['generated_text'])
print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}")

Question: Instruct: generate a SQL query.
What was the first album Beyoncé released as a solo artist?
Output:

Generated Answer:
SELECT first_album FROM table_name_82 WHERE solo_artist = "beyoncé"

CASE Number 2:
prompt='What was the first album Beyoncé released as a solo artist?'
prompt = f"Instruct: Answer the following question.\n{prompt}\nOutput:\n" 
outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.9, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.eos_token_id)

print('Question: %s'%prompt)
#print('Answer: %s \nOutput:\n'%outputs[0]['generated_text'])
print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}")

Question: Instruct: Answer the following question.
What was the first album Beyoncé released as a solo artist?
Output:

Generated Answer:
The first album Beyoncé released as a solo artist was "Dangerously in Love".

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3

### Training results



### Framework versions

- PEFT 0.10.0
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2