Commit
·
20bd5b3
1
Parent(s):
1da1f10
Added handler for FUNSD example
Browse files- handler.py +46 -15
handler.py
CHANGED
|
@@ -1,15 +1,25 @@
|
|
|
|
|
| 1 |
from typing import Dict, List, Any
|
| 2 |
-
from
|
|
|
|
| 3 |
from transformers import pipeline, AutoTokenizer
|
| 4 |
|
| 5 |
|
| 6 |
class EndpointHandler():
|
| 7 |
def __init__(self, path=""):
|
| 8 |
-
# load the
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
|
@@ -22,13 +32,34 @@ class EndpointHandler():
|
|
| 22 |
- "label": A string representing what the label/class is. There can be multiple labels.
|
| 23 |
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
| 24 |
"""
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
# postprocess the prediction
|
| 34 |
-
return
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
from typing import Dict, List, Any
|
| 3 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 4 |
+
from transformers import LayoutLMv2Processor, LayoutLMv2ForTokenClassification
|
| 5 |
from transformers import pipeline, AutoTokenizer
|
| 6 |
|
| 7 |
|
| 8 |
class EndpointHandler():
|
| 9 |
def __init__(self, path=""):
|
| 10 |
+
# load the processor and model
|
| 11 |
+
|
| 12 |
+
self.processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
| 13 |
+
self.model = LayoutLMv2ForTokenClassification.from_pretrained("nielsr/layoutlmv2-finetuned-funsd")
|
| 14 |
+
self.id2label = {
|
| 15 |
+
0: 'O',
|
| 16 |
+
1: 'B-HEADER',
|
| 17 |
+
2: 'I-HEADER',
|
| 18 |
+
3: 'B-QUESTION',
|
| 19 |
+
4: 'I-QUESTION',
|
| 20 |
+
5: 'B-ANSWER',
|
| 21 |
+
6: 'I-ANSWER'
|
| 22 |
+
}
|
| 23 |
|
| 24 |
|
| 25 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
|
|
|
| 32 |
- "label": A string representing what the label/class is. There can be multiple labels.
|
| 33 |
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
| 34 |
"""
|
| 35 |
+
|
| 36 |
+
def unnormalize_box(bbox, width, height):
|
| 37 |
+
return [
|
| 38 |
+
width * (bbox[0] / 1000),
|
| 39 |
+
height * (bbox[1] / 1000),
|
| 40 |
+
width * (bbox[2] / 1000),
|
| 41 |
+
height * (bbox[3] / 1000),
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
image = data.pop("inputs", data)
|
| 45 |
+
# encode
|
| 46 |
+
encoding = self.processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
|
| 47 |
+
offset_mapping = encoding.pop('offset_mapping')
|
| 48 |
+
|
| 49 |
+
# forward pass
|
| 50 |
+
outputs = self.model(**encoding)
|
| 51 |
+
|
| 52 |
+
# get predictions
|
| 53 |
+
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
| 54 |
+
token_boxes = encoding.bbox.squeeze().tolist()
|
| 55 |
+
|
| 56 |
+
# only keep non-subword predictions
|
| 57 |
+
#is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
|
| 58 |
+
width, height = image.size
|
| 59 |
+
|
| 60 |
+
true_predictions = [self.id2label[prediction] for prediction in predictions]
|
| 61 |
+
true_boxes = [unnormalize_box(box, width, height) for box in token_boxes]
|
| 62 |
+
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
|
| 63 |
+
|
| 64 |
# postprocess the prediction
|
| 65 |
+
return {"labels": true_predictions, "boxes": true_boxes, "is_subword": is_subword}
|