Commit 
							
							·
						
						1ff436e
	
1
								Parent(s):
							
							60e5b4d
								
Delete models
Browse files- models/.ipynb_checkpoints/blip_decoder-checkpoint.py +0 -175
- models/blip_decoder.py +0 -175
- models/med.py +0 -953
- models/vit.py +0 -305
    	
        models/.ipynb_checkpoints/blip_decoder-checkpoint.py
    DELETED
    
    | @@ -1,175 +0,0 @@ | |
| 1 | 
            -
            '''
         | 
| 2 | 
            -
             * Copyright (c) 2022, salesforce.com, inc.
         | 
| 3 | 
            -
             * All rights reserved.
         | 
| 4 | 
            -
             * SPDX-License-Identifier: BSD-3-Clause
         | 
| 5 | 
            -
             * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
         | 
| 6 | 
            -
             * By Junnan Li
         | 
| 7 | 
            -
            '''
         | 
| 8 | 
            -
            import warnings
         | 
| 9 | 
            -
            warnings.filterwarnings("ignore")
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            from vit import VisionTransformer, interpolate_pos_embed
         | 
| 12 | 
            -
            from med import BertConfig, BertModel, BertLMHeadModel
         | 
| 13 | 
            -
            from transformers import BertTokenizer
         | 
| 14 | 
            -
             | 
| 15 | 
            -
            import torch
         | 
| 16 | 
            -
            from torch import nn
         | 
| 17 | 
            -
            import torch.nn.functional as F
         | 
| 18 | 
            -
             | 
| 19 | 
            -
            import os
         | 
| 20 | 
            -
            from urllib.parse import urlparse
         | 
| 21 | 
            -
            from timm.models.hub import download_cached_file
         | 
| 22 | 
            -
             | 
| 23 | 
            -
            class BLIP_Decoder(nn.Module):
         | 
| 24 | 
            -
                def __init__(self,                 
         | 
| 25 | 
            -
                             med_config = 'configs/med_config.json',  
         | 
| 26 | 
            -
                             image_size = 384,
         | 
| 27 | 
            -
                             vit = 'base',
         | 
| 28 | 
            -
                             vit_grad_ckpt = False,
         | 
| 29 | 
            -
                             vit_ckpt_layer = 0,
         | 
| 30 | 
            -
                             prompt = 'a picture of ',
         | 
| 31 | 
            -
                             ):
         | 
| 32 | 
            -
                    """
         | 
| 33 | 
            -
                    Args:
         | 
| 34 | 
            -
                        med_config (str): path for the mixture of encoder-decoder model's configuration file
         | 
| 35 | 
            -
                        image_size (int): input image size
         | 
| 36 | 
            -
                        vit (str): model size of vision transformer
         | 
| 37 | 
            -
                    """            
         | 
| 38 | 
            -
                    super().__init__()
         | 
| 39 | 
            -
                    
         | 
| 40 | 
            -
                    self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
         | 
| 41 | 
            -
                    self.tokenizer = init_tokenizer()   
         | 
| 42 | 
            -
                    med_config = BertConfig.from_json_file(med_config)
         | 
| 43 | 
            -
                    med_config.encoder_width = vision_width
         | 
| 44 | 
            -
                    self.text_decoder = BertLMHeadModel(config=med_config)    
         | 
| 45 | 
            -
                    
         | 
| 46 | 
            -
                    self.prompt = prompt
         | 
| 47 | 
            -
                    self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
         | 
| 48 | 
            -
             | 
| 49 | 
            -
                    
         | 
| 50 | 
            -
                def forward(self, image, caption):
         | 
| 51 | 
            -
                    
         | 
| 52 | 
            -
                    image_embeds = self.visual_encoder(image) 
         | 
| 53 | 
            -
                    image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
         | 
| 54 | 
            -
                    
         | 
| 55 | 
            -
                    text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device) 
         | 
| 56 | 
            -
                    
         | 
| 57 | 
            -
                    text.input_ids[:,0] = self.tokenizer.bos_token_id
         | 
| 58 | 
            -
                    
         | 
| 59 | 
            -
                    decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)         
         | 
| 60 | 
            -
                    decoder_targets[:,:self.prompt_length] = -100
         | 
| 61 | 
            -
                 
         | 
| 62 | 
            -
                    decoder_output = self.text_decoder(text.input_ids, 
         | 
| 63 | 
            -
                                                       attention_mask = text.attention_mask, 
         | 
| 64 | 
            -
                                                       encoder_hidden_states = image_embeds,
         | 
| 65 | 
            -
                                                       encoder_attention_mask = image_atts,                  
         | 
| 66 | 
            -
                                                       labels = decoder_targets,
         | 
| 67 | 
            -
                                                       return_dict = True,   
         | 
| 68 | 
            -
                                                      )   
         | 
| 69 | 
            -
                    loss_lm = decoder_output.loss
         | 
| 70 | 
            -
                    
         | 
| 71 | 
            -
                    return loss_lm
         | 
| 72 | 
            -
                    
         | 
| 73 | 
            -
                def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
         | 
| 74 | 
            -
                    image_embeds = self.visual_encoder(image)
         | 
| 75 | 
            -
             | 
| 76 | 
            -
                    if not sample:
         | 
| 77 | 
            -
                        image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
         | 
| 78 | 
            -
                        
         | 
| 79 | 
            -
                    image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
         | 
| 80 | 
            -
                    model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
         | 
| 81 | 
            -
                    
         | 
| 82 | 
            -
                    prompt = [self.prompt] * image.size(0)
         | 
| 83 | 
            -
                    input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) 
         | 
| 84 | 
            -
                    input_ids[:,0] = self.tokenizer.bos_token_id
         | 
| 85 | 
            -
                    input_ids = input_ids[:, :-1] 
         | 
| 86 | 
            -
             | 
| 87 | 
            -
                    if sample:
         | 
| 88 | 
            -
                        #nucleus sampling
         | 
| 89 | 
            -
                        outputs = self.text_decoder.generate(input_ids=input_ids,
         | 
| 90 | 
            -
                                                              max_length=max_length,
         | 
| 91 | 
            -
                                                              min_length=min_length,
         | 
| 92 | 
            -
                                                              do_sample=True,
         | 
| 93 | 
            -
                                                              top_p=top_p,
         | 
| 94 | 
            -
                                                              num_return_sequences=1,
         | 
| 95 | 
            -
                                                              eos_token_id=self.tokenizer.sep_token_id,
         | 
| 96 | 
            -
                                                              pad_token_id=self.tokenizer.pad_token_id, 
         | 
| 97 | 
            -
                                                              repetition_penalty=1.1,                                            
         | 
| 98 | 
            -
                                                              **model_kwargs)
         | 
| 99 | 
            -
                    else:
         | 
| 100 | 
            -
                        #beam search
         | 
| 101 | 
            -
                        outputs = self.text_decoder.generate(input_ids=input_ids,
         | 
| 102 | 
            -
                                                              max_length=max_length,
         | 
| 103 | 
            -
                                                              min_length=min_length,
         | 
| 104 | 
            -
                                                              num_beams=num_beams,
         | 
| 105 | 
            -
                                                              eos_token_id=self.tokenizer.sep_token_id,
         | 
| 106 | 
            -
                                                              pad_token_id=self.tokenizer.pad_token_id,     
         | 
| 107 | 
            -
                                                              repetition_penalty=repetition_penalty,
         | 
| 108 | 
            -
                                                              **model_kwargs)            
         | 
| 109 | 
            -
                        
         | 
| 110 | 
            -
                    captions = []    
         | 
| 111 | 
            -
                    for output in outputs:
         | 
| 112 | 
            -
                        caption = self.tokenizer.decode(output, skip_special_tokens=True)    
         | 
| 113 | 
            -
                        captions.append(caption[len(self.prompt):])
         | 
| 114 | 
            -
                    return captions
         | 
| 115 | 
            -
             | 
| 116 | 
            -
             | 
| 117 | 
            -
            def blip_decoder(pretrained='',**kwargs):
         | 
| 118 | 
            -
                model = BLIP_Decoder(**kwargs)
         | 
| 119 | 
            -
                if pretrained:
         | 
| 120 | 
            -
                    model,msg = load_checkpoint(model,pretrained)
         | 
| 121 | 
            -
                    assert(len(msg.missing_keys)==0)
         | 
| 122 | 
            -
                return model    
         | 
| 123 | 
            -
             | 
| 124 | 
            -
            def init_tokenizer():
         | 
| 125 | 
            -
                tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
         | 
| 126 | 
            -
                tokenizer.add_special_tokens({'bos_token':'[DEC]'})
         | 
| 127 | 
            -
                tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})       
         | 
| 128 | 
            -
                tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]  
         | 
| 129 | 
            -
                return tokenizer
         | 
| 130 | 
            -
             | 
| 131 | 
            -
             | 
| 132 | 
            -
            def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
         | 
| 133 | 
            -
                    
         | 
| 134 | 
            -
                assert vit in ['base', 'large'], "vit parameter must be base or large"
         | 
| 135 | 
            -
                if vit=='base':
         | 
| 136 | 
            -
                    vision_width = 768
         | 
| 137 | 
            -
                    visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, 
         | 
| 138 | 
            -
                                                       num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
         | 
| 139 | 
            -
                                                       drop_path_rate=0 or drop_path_rate
         | 
| 140 | 
            -
                                                      )   
         | 
| 141 | 
            -
                elif vit=='large':
         | 
| 142 | 
            -
                    vision_width = 1024
         | 
| 143 | 
            -
                    visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, 
         | 
| 144 | 
            -
                                                       num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
         | 
| 145 | 
            -
                                                       drop_path_rate=0.1 or drop_path_rate
         | 
| 146 | 
            -
                                                      )   
         | 
| 147 | 
            -
                return visual_encoder, vision_width
         | 
| 148 | 
            -
             | 
| 149 | 
            -
            def is_url(url_or_filename):
         | 
| 150 | 
            -
                parsed = urlparse(url_or_filename)
         | 
| 151 | 
            -
                return parsed.scheme in ("http", "https")
         | 
| 152 | 
            -
             | 
| 153 | 
            -
            def load_checkpoint(model,url_or_filename):
         | 
| 154 | 
            -
                if is_url(url_or_filename):
         | 
| 155 | 
            -
                    cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
         | 
| 156 | 
            -
                    checkpoint = torch.load(cached_file, map_location='cpu') 
         | 
| 157 | 
            -
                elif os.path.isfile(url_or_filename):        
         | 
| 158 | 
            -
                    checkpoint = torch.load(url_or_filename, map_location='cpu') 
         | 
| 159 | 
            -
                else:
         | 
| 160 | 
            -
                    raise RuntimeError('checkpoint url or path is invalid')
         | 
| 161 | 
            -
                    
         | 
| 162 | 
            -
                state_dict = checkpoint['model']
         | 
| 163 | 
            -
                
         | 
| 164 | 
            -
                state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) 
         | 
| 165 | 
            -
                if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
         | 
| 166 | 
            -
                    state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
         | 
| 167 | 
            -
                                                                                     model.visual_encoder_m)    
         | 
| 168 | 
            -
                for key in model.state_dict().keys():
         | 
| 169 | 
            -
                    if key in state_dict.keys():
         | 
| 170 | 
            -
                        if state_dict[key].shape!=model.state_dict()[key].shape:
         | 
| 171 | 
            -
                            del state_dict[key]
         | 
| 172 | 
            -
                
         | 
| 173 | 
            -
                msg = model.load_state_dict(state_dict,strict=False)
         | 
| 174 | 
            -
                print('load checkpoint from %s'%url_or_filename)  
         | 
| 175 | 
            -
                return model,msg
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        models/blip_decoder.py
    DELETED
    
    | @@ -1,175 +0,0 @@ | |
| 1 | 
            -
            '''
         | 
| 2 | 
            -
             * Copyright (c) 2022, salesforce.com, inc.
         | 
| 3 | 
            -
             * All rights reserved.
         | 
| 4 | 
            -
             * SPDX-License-Identifier: BSD-3-Clause
         | 
| 5 | 
            -
             * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
         | 
| 6 | 
            -
             * By Junnan Li
         | 
| 7 | 
            -
            '''
         | 
| 8 | 
            -
            import warnings
         | 
| 9 | 
            -
            warnings.filterwarnings("ignore")
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            from models.vit import VisionTransformer, interpolate_pos_embed
         | 
| 12 | 
            -
            from models.med import BertConfig, BertModel, BertLMHeadModel
         | 
| 13 | 
            -
            from transformers import BertTokenizer
         | 
| 14 | 
            -
             | 
| 15 | 
            -
            import torch
         | 
| 16 | 
            -
            from torch import nn
         | 
| 17 | 
            -
            import torch.nn.functional as F
         | 
| 18 | 
            -
             | 
| 19 | 
            -
            import os
         | 
| 20 | 
            -
            from urllib.parse import urlparse
         | 
| 21 | 
            -
            from timm.models.hub import download_cached_file
         | 
| 22 | 
            -
             | 
| 23 | 
            -
            class BLIP_Decoder(nn.Module):
         | 
| 24 | 
            -
                def __init__(self,                 
         | 
| 25 | 
            -
                             med_config = 'configs/med_config.json',  
         | 
| 26 | 
            -
                             image_size = 384,
         | 
| 27 | 
            -
                             vit = 'base',
         | 
| 28 | 
            -
                             vit_grad_ckpt = False,
         | 
| 29 | 
            -
                             vit_ckpt_layer = 0,
         | 
| 30 | 
            -
                             prompt = 'a picture of ',
         | 
| 31 | 
            -
                             ):
         | 
| 32 | 
            -
                    """
         | 
| 33 | 
            -
                    Args:
         | 
| 34 | 
            -
                        med_config (str): path for the mixture of encoder-decoder model's configuration file
         | 
| 35 | 
            -
                        image_size (int): input image size
         | 
| 36 | 
            -
                        vit (str): model size of vision transformer
         | 
| 37 | 
            -
                    """            
         | 
| 38 | 
            -
                    super().__init__()
         | 
| 39 | 
            -
                    
         | 
| 40 | 
            -
                    self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
         | 
| 41 | 
            -
                    self.tokenizer = init_tokenizer()   
         | 
| 42 | 
            -
                    med_config = BertConfig.from_json_file(med_config)
         | 
| 43 | 
            -
                    med_config.encoder_width = vision_width
         | 
| 44 | 
            -
                    self.text_decoder = BertLMHeadModel(config=med_config)    
         | 
| 45 | 
            -
                    
         | 
| 46 | 
            -
                    self.prompt = prompt
         | 
| 47 | 
            -
                    self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
         | 
| 48 | 
            -
             | 
| 49 | 
            -
                    
         | 
| 50 | 
            -
                def forward(self, image, caption):
         | 
| 51 | 
            -
                    
         | 
| 52 | 
            -
                    image_embeds = self.visual_encoder(image) 
         | 
| 53 | 
            -
                    image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
         | 
| 54 | 
            -
                    
         | 
| 55 | 
            -
                    text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device) 
         | 
| 56 | 
            -
                    
         | 
| 57 | 
            -
                    text.input_ids[:,0] = self.tokenizer.bos_token_id
         | 
| 58 | 
            -
                    
         | 
| 59 | 
            -
                    decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)         
         | 
| 60 | 
            -
                    decoder_targets[:,:self.prompt_length] = -100
         | 
| 61 | 
            -
                 
         | 
| 62 | 
            -
                    decoder_output = self.text_decoder(text.input_ids, 
         | 
| 63 | 
            -
                                                       attention_mask = text.attention_mask, 
         | 
| 64 | 
            -
                                                       encoder_hidden_states = image_embeds,
         | 
| 65 | 
            -
                                                       encoder_attention_mask = image_atts,                  
         | 
| 66 | 
            -
                                                       labels = decoder_targets,
         | 
| 67 | 
            -
                                                       return_dict = True,   
         | 
| 68 | 
            -
                                                      )   
         | 
| 69 | 
            -
                    loss_lm = decoder_output.loss
         | 
| 70 | 
            -
                    
         | 
| 71 | 
            -
                    return loss_lm
         | 
| 72 | 
            -
                    
         | 
| 73 | 
            -
                def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
         | 
| 74 | 
            -
                    image_embeds = self.visual_encoder(image)
         | 
| 75 | 
            -
             | 
| 76 | 
            -
                    if not sample:
         | 
| 77 | 
            -
                        image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
         | 
| 78 | 
            -
                        
         | 
| 79 | 
            -
                    image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
         | 
| 80 | 
            -
                    model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
         | 
| 81 | 
            -
                    
         | 
| 82 | 
            -
                    prompt = [self.prompt] * image.size(0)
         | 
| 83 | 
            -
                    input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) 
         | 
| 84 | 
            -
                    input_ids[:,0] = self.tokenizer.bos_token_id
         | 
| 85 | 
            -
                    input_ids = input_ids[:, :-1] 
         | 
| 86 | 
            -
             | 
| 87 | 
            -
                    if sample:
         | 
| 88 | 
            -
                        #nucleus sampling
         | 
| 89 | 
            -
                        outputs = self.text_decoder.generate(input_ids=input_ids,
         | 
| 90 | 
            -
                                                              max_length=max_length,
         | 
| 91 | 
            -
                                                              min_length=min_length,
         | 
| 92 | 
            -
                                                              do_sample=True,
         | 
| 93 | 
            -
                                                              top_p=top_p,
         | 
| 94 | 
            -
                                                              num_return_sequences=1,
         | 
| 95 | 
            -
                                                              eos_token_id=self.tokenizer.sep_token_id,
         | 
| 96 | 
            -
                                                              pad_token_id=self.tokenizer.pad_token_id, 
         | 
| 97 | 
            -
                                                              repetition_penalty=1.1,                                            
         | 
| 98 | 
            -
                                                              **model_kwargs)
         | 
| 99 | 
            -
                    else:
         | 
| 100 | 
            -
                        #beam search
         | 
| 101 | 
            -
                        outputs = self.text_decoder.generate(input_ids=input_ids,
         | 
| 102 | 
            -
                                                              max_length=max_length,
         | 
| 103 | 
            -
                                                              min_length=min_length,
         | 
| 104 | 
            -
                                                              num_beams=num_beams,
         | 
| 105 | 
            -
                                                              eos_token_id=self.tokenizer.sep_token_id,
         | 
| 106 | 
            -
                                                              pad_token_id=self.tokenizer.pad_token_id,     
         | 
| 107 | 
            -
                                                              repetition_penalty=repetition_penalty,
         | 
| 108 | 
            -
                                                              **model_kwargs)            
         | 
| 109 | 
            -
                        
         | 
| 110 | 
            -
                    captions = []    
         | 
| 111 | 
            -
                    for output in outputs:
         | 
| 112 | 
            -
                        caption = self.tokenizer.decode(output, skip_special_tokens=True)    
         | 
| 113 | 
            -
                        captions.append(caption[len(self.prompt):])
         | 
| 114 | 
            -
                    return captions
         | 
| 115 | 
            -
             | 
| 116 | 
            -
             | 
| 117 | 
            -
            def blip_decoder(pretrained='',**kwargs):
         | 
| 118 | 
            -
                model = BLIP_Decoder(**kwargs)
         | 
| 119 | 
            -
                if pretrained:
         | 
| 120 | 
            -
                    model,msg = load_checkpoint(model,pretrained)
         | 
| 121 | 
            -
                    assert(len(msg.missing_keys)==0)
         | 
| 122 | 
            -
                return model    
         | 
| 123 | 
            -
             | 
| 124 | 
            -
            def init_tokenizer():
         | 
| 125 | 
            -
                tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
         | 
| 126 | 
            -
                tokenizer.add_special_tokens({'bos_token':'[DEC]'})
         | 
| 127 | 
            -
                tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})       
         | 
| 128 | 
            -
                tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]  
         | 
| 129 | 
            -
                return tokenizer
         | 
| 130 | 
            -
             | 
| 131 | 
            -
             | 
| 132 | 
            -
            def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
         | 
| 133 | 
            -
                    
         | 
| 134 | 
            -
                assert vit in ['base', 'large'], "vit parameter must be base or large"
         | 
| 135 | 
            -
                if vit=='base':
         | 
| 136 | 
            -
                    vision_width = 768
         | 
| 137 | 
            -
                    visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, 
         | 
| 138 | 
            -
                                                       num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
         | 
| 139 | 
            -
                                                       drop_path_rate=0 or drop_path_rate
         | 
| 140 | 
            -
                                                      )   
         | 
| 141 | 
            -
                elif vit=='large':
         | 
| 142 | 
            -
                    vision_width = 1024
         | 
| 143 | 
            -
                    visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, 
         | 
| 144 | 
            -
                                                       num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
         | 
| 145 | 
            -
                                                       drop_path_rate=0.1 or drop_path_rate
         | 
| 146 | 
            -
                                                      )   
         | 
| 147 | 
            -
                return visual_encoder, vision_width
         | 
| 148 | 
            -
             | 
| 149 | 
            -
            def is_url(url_or_filename):
         | 
| 150 | 
            -
                parsed = urlparse(url_or_filename)
         | 
| 151 | 
            -
                return parsed.scheme in ("http", "https")
         | 
| 152 | 
            -
             | 
| 153 | 
            -
            def load_checkpoint(model,url_or_filename):
         | 
| 154 | 
            -
                if is_url(url_or_filename):
         | 
| 155 | 
            -
                    cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
         | 
| 156 | 
            -
                    checkpoint = torch.load(cached_file, map_location='cpu') 
         | 
| 157 | 
            -
                elif os.path.isfile(url_or_filename):        
         | 
| 158 | 
            -
                    checkpoint = torch.load(url_or_filename, map_location='cpu') 
         | 
| 159 | 
            -
                else:
         | 
| 160 | 
            -
                    raise RuntimeError('checkpoint url or path is invalid')
         | 
| 161 | 
            -
                    
         | 
| 162 | 
            -
                state_dict = checkpoint['model']
         | 
| 163 | 
            -
                
         | 
| 164 | 
            -
                state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) 
         | 
| 165 | 
            -
                if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
         | 
| 166 | 
            -
                    state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
         | 
| 167 | 
            -
                                                                                     model.visual_encoder_m)    
         | 
| 168 | 
            -
                for key in model.state_dict().keys():
         | 
| 169 | 
            -
                    if key in state_dict.keys():
         | 
| 170 | 
            -
                        if state_dict[key].shape!=model.state_dict()[key].shape:
         | 
| 171 | 
            -
                            del state_dict[key]
         | 
| 172 | 
            -
                
         | 
| 173 | 
            -
                msg = model.load_state_dict(state_dict,strict=False)
         | 
| 174 | 
            -
                print('load checkpoint from %s'%url_or_filename)  
         | 
| 175 | 
            -
                return model,msg
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        models/med.py
    DELETED
    
    | @@ -1,953 +0,0 @@ | |
| 1 | 
            -
            '''
         | 
| 2 | 
            -
             * Copyright (c) 2022, salesforce.com, inc.
         | 
| 3 | 
            -
             * All rights reserved.
         | 
| 4 | 
            -
             * SPDX-License-Identifier: BSD-3-Clause
         | 
| 5 | 
            -
             * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
         | 
| 6 | 
            -
             * By Junnan Li
         | 
| 7 | 
            -
             * Based on huggingface code base
         | 
| 8 | 
            -
             * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
         | 
| 9 | 
            -
            '''
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            import math
         | 
| 12 | 
            -
            import os
         | 
| 13 | 
            -
            import warnings
         | 
| 14 | 
            -
            from dataclasses import dataclass
         | 
| 15 | 
            -
            from typing import Optional, Tuple
         | 
| 16 | 
            -
             | 
| 17 | 
            -
            import torch
         | 
| 18 | 
            -
            from torch import Tensor, device, dtype, nn
         | 
| 19 | 
            -
            import torch.utils.checkpoint
         | 
| 20 | 
            -
            from torch import nn
         | 
| 21 | 
            -
            from torch.nn import CrossEntropyLoss
         | 
| 22 | 
            -
            import torch.nn.functional as F
         | 
| 23 | 
            -
             | 
| 24 | 
            -
            from transformers.activations import ACT2FN
         | 
| 25 | 
            -
            from transformers.file_utils import (
         | 
| 26 | 
            -
                ModelOutput,
         | 
| 27 | 
            -
            )
         | 
| 28 | 
            -
            from transformers.modeling_outputs import (
         | 
| 29 | 
            -
                BaseModelOutputWithPastAndCrossAttentions,
         | 
| 30 | 
            -
                BaseModelOutputWithPoolingAndCrossAttentions,
         | 
| 31 | 
            -
                CausalLMOutputWithCrossAttentions,
         | 
| 32 | 
            -
                MaskedLMOutput,
         | 
| 33 | 
            -
                MultipleChoiceModelOutput,
         | 
| 34 | 
            -
                NextSentencePredictorOutput,
         | 
| 35 | 
            -
                QuestionAnsweringModelOutput,
         | 
| 36 | 
            -
                SequenceClassifierOutput,
         | 
| 37 | 
            -
                TokenClassifierOutput,
         | 
| 38 | 
            -
            )
         | 
| 39 | 
            -
            from transformers.modeling_utils import (
         | 
| 40 | 
            -
                PreTrainedModel,
         | 
| 41 | 
            -
                apply_chunking_to_forward,
         | 
| 42 | 
            -
                find_pruneable_heads_and_indices,
         | 
| 43 | 
            -
                prune_linear_layer,
         | 
| 44 | 
            -
            )
         | 
| 45 | 
            -
            from transformers.utils import logging
         | 
| 46 | 
            -
            from transformers.models.bert.configuration_bert import BertConfig
         | 
| 47 | 
            -
             | 
| 48 | 
            -
             | 
| 49 | 
            -
            logger = logging.get_logger(__name__)
         | 
| 50 | 
            -
             | 
| 51 | 
            -
             | 
| 52 | 
            -
            class BertEmbeddings(nn.Module):
         | 
| 53 | 
            -
                """Construct the embeddings from word and position embeddings."""
         | 
| 54 | 
            -
             | 
| 55 | 
            -
                def __init__(self, config):
         | 
| 56 | 
            -
                    super().__init__()
         | 
| 57 | 
            -
                    self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
         | 
| 58 | 
            -
                    self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
         | 
| 59 | 
            -
             | 
| 60 | 
            -
                    # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
         | 
| 61 | 
            -
                    # any TensorFlow checkpoint file
         | 
| 62 | 
            -
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         | 
| 63 | 
            -
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         | 
| 64 | 
            -
             | 
| 65 | 
            -
                    # position_ids (1, len position emb) is contiguous in memory and exported when serialized
         | 
| 66 | 
            -
                    self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
         | 
| 67 | 
            -
                    self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
         | 
| 68 | 
            -
                    
         | 
| 69 | 
            -
                    self.config = config
         | 
| 70 | 
            -
             | 
| 71 | 
            -
                def forward(
         | 
| 72 | 
            -
                    self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
         | 
| 73 | 
            -
                ):
         | 
| 74 | 
            -
                    if input_ids is not None:
         | 
| 75 | 
            -
                        input_shape = input_ids.size()
         | 
| 76 | 
            -
                    else:
         | 
| 77 | 
            -
                        input_shape = inputs_embeds.size()[:-1]
         | 
| 78 | 
            -
             | 
| 79 | 
            -
                    seq_length = input_shape[1]
         | 
| 80 | 
            -
             | 
| 81 | 
            -
                    if position_ids is None:
         | 
| 82 | 
            -
                        position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
         | 
| 83 | 
            -
             | 
| 84 | 
            -
                    if inputs_embeds is None:
         | 
| 85 | 
            -
                        inputs_embeds = self.word_embeddings(input_ids)
         | 
| 86 | 
            -
             | 
| 87 | 
            -
                    embeddings = inputs_embeds
         | 
| 88 | 
            -
             | 
| 89 | 
            -
                    if self.position_embedding_type == "absolute":
         | 
| 90 | 
            -
                        position_embeddings = self.position_embeddings(position_ids)
         | 
| 91 | 
            -
                        embeddings += position_embeddings
         | 
| 92 | 
            -
                    embeddings = self.LayerNorm(embeddings)
         | 
| 93 | 
            -
                    embeddings = self.dropout(embeddings)
         | 
| 94 | 
            -
                    return embeddings
         | 
| 95 | 
            -
             | 
| 96 | 
            -
             | 
| 97 | 
            -
            class BertSelfAttention(nn.Module):
         | 
| 98 | 
            -
                def __init__(self, config, is_cross_attention):
         | 
| 99 | 
            -
                    super().__init__()
         | 
| 100 | 
            -
                    self.config = config
         | 
| 101 | 
            -
                    if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
         | 
| 102 | 
            -
                        raise ValueError(
         | 
| 103 | 
            -
                            "The hidden size (%d) is not a multiple of the number of attention "
         | 
| 104 | 
            -
                            "heads (%d)" % (config.hidden_size, config.num_attention_heads)
         | 
| 105 | 
            -
                        )
         | 
| 106 | 
            -
                    
         | 
| 107 | 
            -
                    self.num_attention_heads = config.num_attention_heads
         | 
| 108 | 
            -
                    self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
         | 
| 109 | 
            -
                    self.all_head_size = self.num_attention_heads * self.attention_head_size
         | 
| 110 | 
            -
             | 
| 111 | 
            -
                    self.query = nn.Linear(config.hidden_size, self.all_head_size)
         | 
| 112 | 
            -
                    if is_cross_attention:
         | 
| 113 | 
            -
                        self.key = nn.Linear(config.encoder_width, self.all_head_size)
         | 
| 114 | 
            -
                        self.value = nn.Linear(config.encoder_width, self.all_head_size)
         | 
| 115 | 
            -
                    else:
         | 
| 116 | 
            -
                        self.key = nn.Linear(config.hidden_size, self.all_head_size)
         | 
| 117 | 
            -
                        self.value = nn.Linear(config.hidden_size, self.all_head_size)
         | 
| 118 | 
            -
             | 
| 119 | 
            -
                    self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
         | 
| 120 | 
            -
                    self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
         | 
| 121 | 
            -
                    if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
         | 
| 122 | 
            -
                        self.max_position_embeddings = config.max_position_embeddings
         | 
| 123 | 
            -
                        self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
         | 
| 124 | 
            -
                    self.save_attention = False   
         | 
| 125 | 
            -
                        
         | 
| 126 | 
            -
                def save_attn_gradients(self, attn_gradients):
         | 
| 127 | 
            -
                    self.attn_gradients = attn_gradients
         | 
| 128 | 
            -
                    
         | 
| 129 | 
            -
                def get_attn_gradients(self):
         | 
| 130 | 
            -
                    return self.attn_gradients
         | 
| 131 | 
            -
                
         | 
| 132 | 
            -
                def save_attention_map(self, attention_map):
         | 
| 133 | 
            -
                    self.attention_map = attention_map
         | 
| 134 | 
            -
                    
         | 
| 135 | 
            -
                def get_attention_map(self):
         | 
| 136 | 
            -
                    return self.attention_map
         | 
| 137 | 
            -
                
         | 
| 138 | 
            -
                def transpose_for_scores(self, x):
         | 
| 139 | 
            -
                    new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
         | 
| 140 | 
            -
                    x = x.view(*new_x_shape)
         | 
| 141 | 
            -
                    return x.permute(0, 2, 1, 3)
         | 
| 142 | 
            -
             | 
| 143 | 
            -
                def forward(
         | 
| 144 | 
            -
                    self,
         | 
| 145 | 
            -
                    hidden_states,
         | 
| 146 | 
            -
                    attention_mask=None,
         | 
| 147 | 
            -
                    head_mask=None,
         | 
| 148 | 
            -
                    encoder_hidden_states=None,
         | 
| 149 | 
            -
                    encoder_attention_mask=None,
         | 
| 150 | 
            -
                    past_key_value=None,
         | 
| 151 | 
            -
                    output_attentions=False,
         | 
| 152 | 
            -
                ):
         | 
| 153 | 
            -
                    mixed_query_layer = self.query(hidden_states)
         | 
| 154 | 
            -
             | 
| 155 | 
            -
                    # If this is instantiated as a cross-attention module, the keys
         | 
| 156 | 
            -
                    # and values come from an encoder; the attention mask needs to be
         | 
| 157 | 
            -
                    # such that the encoder's padding tokens are not attended to.
         | 
| 158 | 
            -
                    is_cross_attention = encoder_hidden_states is not None
         | 
| 159 | 
            -
             | 
| 160 | 
            -
                    if is_cross_attention:
         | 
| 161 | 
            -
                        key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
         | 
| 162 | 
            -
                        value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
         | 
| 163 | 
            -
                        attention_mask = encoder_attention_mask
         | 
| 164 | 
            -
                    elif past_key_value is not None:
         | 
| 165 | 
            -
                        key_layer = self.transpose_for_scores(self.key(hidden_states))
         | 
| 166 | 
            -
                        value_layer = self.transpose_for_scores(self.value(hidden_states))
         | 
| 167 | 
            -
                        key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
         | 
| 168 | 
            -
                        value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
         | 
| 169 | 
            -
                    else:
         | 
| 170 | 
            -
                        key_layer = self.transpose_for_scores(self.key(hidden_states))
         | 
| 171 | 
            -
                        value_layer = self.transpose_for_scores(self.value(hidden_states))
         | 
| 172 | 
            -
             | 
| 173 | 
            -
                    query_layer = self.transpose_for_scores(mixed_query_layer)
         | 
| 174 | 
            -
             | 
| 175 | 
            -
                    past_key_value = (key_layer, value_layer)
         | 
| 176 | 
            -
             | 
| 177 | 
            -
                    # Take the dot product between "query" and "key" to get the raw attention scores.
         | 
| 178 | 
            -
                    attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
         | 
| 179 | 
            -
             | 
| 180 | 
            -
                    if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
         | 
| 181 | 
            -
                        seq_length = hidden_states.size()[1]
         | 
| 182 | 
            -
                        position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
         | 
| 183 | 
            -
                        position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
         | 
| 184 | 
            -
                        distance = position_ids_l - position_ids_r
         | 
| 185 | 
            -
                        positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
         | 
| 186 | 
            -
                        positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility
         | 
| 187 | 
            -
             | 
| 188 | 
            -
                        if self.position_embedding_type == "relative_key":
         | 
| 189 | 
            -
                            relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
         | 
| 190 | 
            -
                            attention_scores = attention_scores + relative_position_scores
         | 
| 191 | 
            -
                        elif self.position_embedding_type == "relative_key_query":
         | 
| 192 | 
            -
                            relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
         | 
| 193 | 
            -
                            relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
         | 
| 194 | 
            -
                            attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
         | 
| 195 | 
            -
             | 
| 196 | 
            -
                    attention_scores = attention_scores / math.sqrt(self.attention_head_size)
         | 
| 197 | 
            -
                    if attention_mask is not None:
         | 
| 198 | 
            -
                        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
         | 
| 199 | 
            -
                        attention_scores = attention_scores + attention_mask
         | 
| 200 | 
            -
             | 
| 201 | 
            -
                    # Normalize the attention scores to probabilities.
         | 
| 202 | 
            -
                    attention_probs = nn.Softmax(dim=-1)(attention_scores)
         | 
| 203 | 
            -
                    
         | 
| 204 | 
            -
                    if is_cross_attention and self.save_attention:
         | 
| 205 | 
            -
                        self.save_attention_map(attention_probs)
         | 
| 206 | 
            -
                        attention_probs.register_hook(self.save_attn_gradients)         
         | 
| 207 | 
            -
             | 
| 208 | 
            -
                    # This is actually dropping out entire tokens to attend to, which might
         | 
| 209 | 
            -
                    # seem a bit unusual, but is taken from the original Transformer paper.
         | 
| 210 | 
            -
                    attention_probs_dropped = self.dropout(attention_probs)
         | 
| 211 | 
            -
             | 
| 212 | 
            -
                    # Mask heads if we want to
         | 
| 213 | 
            -
                    if head_mask is not None:
         | 
| 214 | 
            -
                        attention_probs_dropped = attention_probs_dropped * head_mask
         | 
| 215 | 
            -
             | 
| 216 | 
            -
                    context_layer = torch.matmul(attention_probs_dropped, value_layer)
         | 
| 217 | 
            -
             | 
| 218 | 
            -
                    context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
         | 
| 219 | 
            -
                    new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
         | 
| 220 | 
            -
                    context_layer = context_layer.view(*new_context_layer_shape)
         | 
| 221 | 
            -
             | 
| 222 | 
            -
                    outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
         | 
| 223 | 
            -
             | 
| 224 | 
            -
                    outputs = outputs + (past_key_value,)
         | 
| 225 | 
            -
                    return outputs
         | 
| 226 | 
            -
             | 
| 227 | 
            -
             | 
| 228 | 
            -
            class BertSelfOutput(nn.Module):
         | 
| 229 | 
            -
                def __init__(self, config):
         | 
| 230 | 
            -
                    super().__init__()
         | 
| 231 | 
            -
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         | 
| 232 | 
            -
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         | 
| 233 | 
            -
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         | 
| 234 | 
            -
             | 
| 235 | 
            -
                def forward(self, hidden_states, input_tensor):
         | 
| 236 | 
            -
                    hidden_states = self.dense(hidden_states)
         | 
| 237 | 
            -
                    hidden_states = self.dropout(hidden_states)
         | 
| 238 | 
            -
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         | 
| 239 | 
            -
                    return hidden_states
         | 
| 240 | 
            -
             | 
| 241 | 
            -
             | 
| 242 | 
            -
            class BertAttention(nn.Module):
         | 
| 243 | 
            -
                def __init__(self, config, is_cross_attention=False):
         | 
| 244 | 
            -
                    super().__init__()
         | 
| 245 | 
            -
                    self.self = BertSelfAttention(config, is_cross_attention)
         | 
| 246 | 
            -
                    self.output = BertSelfOutput(config)
         | 
| 247 | 
            -
                    self.pruned_heads = set()
         | 
| 248 | 
            -
             | 
| 249 | 
            -
                def prune_heads(self, heads):
         | 
| 250 | 
            -
                    if len(heads) == 0:
         | 
| 251 | 
            -
                        return
         | 
| 252 | 
            -
                    heads, index = find_pruneable_heads_and_indices(
         | 
| 253 | 
            -
                        heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
         | 
| 254 | 
            -
                    )
         | 
| 255 | 
            -
             | 
| 256 | 
            -
                    # Prune linear layers
         | 
| 257 | 
            -
                    self.self.query = prune_linear_layer(self.self.query, index)
         | 
| 258 | 
            -
                    self.self.key = prune_linear_layer(self.self.key, index)
         | 
| 259 | 
            -
                    self.self.value = prune_linear_layer(self.self.value, index)
         | 
| 260 | 
            -
                    self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
         | 
| 261 | 
            -
             | 
| 262 | 
            -
                    # Update hyper params and store pruned heads
         | 
| 263 | 
            -
                    self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
         | 
| 264 | 
            -
                    self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
         | 
| 265 | 
            -
                    self.pruned_heads = self.pruned_heads.union(heads)
         | 
| 266 | 
            -
             | 
| 267 | 
            -
                def forward(
         | 
| 268 | 
            -
                    self,
         | 
| 269 | 
            -
                    hidden_states,
         | 
| 270 | 
            -
                    attention_mask=None,
         | 
| 271 | 
            -
                    head_mask=None,
         | 
| 272 | 
            -
                    encoder_hidden_states=None,
         | 
| 273 | 
            -
                    encoder_attention_mask=None,
         | 
| 274 | 
            -
                    past_key_value=None,
         | 
| 275 | 
            -
                    output_attentions=False,
         | 
| 276 | 
            -
                ):
         | 
| 277 | 
            -
                    self_outputs = self.self(
         | 
| 278 | 
            -
                        hidden_states,
         | 
| 279 | 
            -
                        attention_mask,
         | 
| 280 | 
            -
                        head_mask,
         | 
| 281 | 
            -
                        encoder_hidden_states,
         | 
| 282 | 
            -
                        encoder_attention_mask,
         | 
| 283 | 
            -
                        past_key_value,
         | 
| 284 | 
            -
                        output_attentions,
         | 
| 285 | 
            -
                    )
         | 
| 286 | 
            -
                    attention_output = self.output(self_outputs[0], hidden_states)
         | 
| 287 | 
            -
                    outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
         | 
| 288 | 
            -
                    return outputs
         | 
| 289 | 
            -
             | 
| 290 | 
            -
             | 
| 291 | 
            -
            class BertIntermediate(nn.Module):
         | 
| 292 | 
            -
                def __init__(self, config):
         | 
| 293 | 
            -
                    super().__init__()
         | 
| 294 | 
            -
                    self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
         | 
| 295 | 
            -
                    if isinstance(config.hidden_act, str):
         | 
| 296 | 
            -
                        self.intermediate_act_fn = ACT2FN[config.hidden_act]
         | 
| 297 | 
            -
                    else:
         | 
| 298 | 
            -
                        self.intermediate_act_fn = config.hidden_act
         | 
| 299 | 
            -
             | 
| 300 | 
            -
                def forward(self, hidden_states):
         | 
| 301 | 
            -
                    hidden_states = self.dense(hidden_states)
         | 
| 302 | 
            -
                    hidden_states = self.intermediate_act_fn(hidden_states)
         | 
| 303 | 
            -
                    return hidden_states
         | 
| 304 | 
            -
             | 
| 305 | 
            -
             | 
| 306 | 
            -
            class BertOutput(nn.Module):
         | 
| 307 | 
            -
                def __init__(self, config):
         | 
| 308 | 
            -
                    super().__init__()
         | 
| 309 | 
            -
                    self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
         | 
| 310 | 
            -
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         | 
| 311 | 
            -
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         | 
| 312 | 
            -
             | 
| 313 | 
            -
                def forward(self, hidden_states, input_tensor):
         | 
| 314 | 
            -
                    hidden_states = self.dense(hidden_states)
         | 
| 315 | 
            -
                    hidden_states = self.dropout(hidden_states)
         | 
| 316 | 
            -
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         | 
| 317 | 
            -
                    return hidden_states
         | 
| 318 | 
            -
             | 
| 319 | 
            -
             | 
| 320 | 
            -
            class BertLayer(nn.Module):
         | 
| 321 | 
            -
                def __init__(self, config, layer_num):
         | 
| 322 | 
            -
                    super().__init__()
         | 
| 323 | 
            -
                    self.config = config
         | 
| 324 | 
            -
                    self.chunk_size_feed_forward = config.chunk_size_feed_forward
         | 
| 325 | 
            -
                    self.seq_len_dim = 1
         | 
| 326 | 
            -
                    self.attention = BertAttention(config)      
         | 
| 327 | 
            -
                    self.layer_num = layer_num          
         | 
| 328 | 
            -
                    if self.config.add_cross_attention:
         | 
| 329 | 
            -
                        self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
         | 
| 330 | 
            -
                    self.intermediate = BertIntermediate(config)
         | 
| 331 | 
            -
                    self.output = BertOutput(config)
         | 
| 332 | 
            -
             | 
| 333 | 
            -
                def forward(
         | 
| 334 | 
            -
                    self,
         | 
| 335 | 
            -
                    hidden_states,
         | 
| 336 | 
            -
                    attention_mask=None,
         | 
| 337 | 
            -
                    head_mask=None,
         | 
| 338 | 
            -
                    encoder_hidden_states=None,
         | 
| 339 | 
            -
                    encoder_attention_mask=None,
         | 
| 340 | 
            -
                    past_key_value=None,
         | 
| 341 | 
            -
                    output_attentions=False,
         | 
| 342 | 
            -
                    mode=None,
         | 
| 343 | 
            -
                ):
         | 
| 344 | 
            -
                    # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
         | 
| 345 | 
            -
                    self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
         | 
| 346 | 
            -
                    self_attention_outputs = self.attention(
         | 
| 347 | 
            -
                        hidden_states,
         | 
| 348 | 
            -
                        attention_mask,
         | 
| 349 | 
            -
                        head_mask,
         | 
| 350 | 
            -
                        output_attentions=output_attentions,
         | 
| 351 | 
            -
                        past_key_value=self_attn_past_key_value,
         | 
| 352 | 
            -
                    )
         | 
| 353 | 
            -
                    attention_output = self_attention_outputs[0]
         | 
| 354 | 
            -
             | 
| 355 | 
            -
                    outputs = self_attention_outputs[1:-1]
         | 
| 356 | 
            -
                    present_key_value = self_attention_outputs[-1]
         | 
| 357 | 
            -
             | 
| 358 | 
            -
                    if mode=='multimodal':
         | 
| 359 | 
            -
                        assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
         | 
| 360 | 
            -
             | 
| 361 | 
            -
                        cross_attention_outputs = self.crossattention(
         | 
| 362 | 
            -
                            attention_output,
         | 
| 363 | 
            -
                            attention_mask,
         | 
| 364 | 
            -
                            head_mask,
         | 
| 365 | 
            -
                            encoder_hidden_states,
         | 
| 366 | 
            -
                            encoder_attention_mask,
         | 
| 367 | 
            -
                            output_attentions=output_attentions,
         | 
| 368 | 
            -
                        )
         | 
| 369 | 
            -
                        attention_output = cross_attention_outputs[0]
         | 
| 370 | 
            -
                        outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights                               
         | 
| 371 | 
            -
                    layer_output = apply_chunking_to_forward(
         | 
| 372 | 
            -
                        self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
         | 
| 373 | 
            -
                    )
         | 
| 374 | 
            -
                    outputs = (layer_output,) + outputs
         | 
| 375 | 
            -
             | 
| 376 | 
            -
                    outputs = outputs + (present_key_value,)
         | 
| 377 | 
            -
             | 
| 378 | 
            -
                    return outputs
         | 
| 379 | 
            -
             | 
| 380 | 
            -
                def feed_forward_chunk(self, attention_output):
         | 
| 381 | 
            -
                    intermediate_output = self.intermediate(attention_output)
         | 
| 382 | 
            -
                    layer_output = self.output(intermediate_output, attention_output)
         | 
| 383 | 
            -
                    return layer_output
         | 
| 384 | 
            -
             | 
| 385 | 
            -
             | 
| 386 | 
            -
            class BertEncoder(nn.Module):
         | 
| 387 | 
            -
                def __init__(self, config):
         | 
| 388 | 
            -
                    super().__init__()
         | 
| 389 | 
            -
                    self.config = config
         | 
| 390 | 
            -
                    self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
         | 
| 391 | 
            -
                    self.gradient_checkpointing = False
         | 
| 392 | 
            -
             | 
| 393 | 
            -
                def forward(
         | 
| 394 | 
            -
                    self,
         | 
| 395 | 
            -
                    hidden_states,
         | 
| 396 | 
            -
                    attention_mask=None,
         | 
| 397 | 
            -
                    head_mask=None,
         | 
| 398 | 
            -
                    encoder_hidden_states=None,
         | 
| 399 | 
            -
                    encoder_attention_mask=None,
         | 
| 400 | 
            -
                    past_key_values=None,
         | 
| 401 | 
            -
                    use_cache=None,
         | 
| 402 | 
            -
                    output_attentions=False,
         | 
| 403 | 
            -
                    output_hidden_states=False,
         | 
| 404 | 
            -
                    return_dict=True,
         | 
| 405 | 
            -
                    mode='multimodal',
         | 
| 406 | 
            -
                ):
         | 
| 407 | 
            -
                    all_hidden_states = () if output_hidden_states else None
         | 
| 408 | 
            -
                    all_self_attentions = () if output_attentions else None
         | 
| 409 | 
            -
                    all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
         | 
| 410 | 
            -
             | 
| 411 | 
            -
                    next_decoder_cache = () if use_cache else None
         | 
| 412 | 
            -
                           
         | 
| 413 | 
            -
                    for i in range(self.config.num_hidden_layers):
         | 
| 414 | 
            -
                        layer_module = self.layer[i]
         | 
| 415 | 
            -
                        if output_hidden_states:
         | 
| 416 | 
            -
                            all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 417 | 
            -
             | 
| 418 | 
            -
                        layer_head_mask = head_mask[i] if head_mask is not None else None
         | 
| 419 | 
            -
                        past_key_value = past_key_values[i] if past_key_values is not None else None
         | 
| 420 | 
            -
             | 
| 421 | 
            -
                        if self.gradient_checkpointing and self.training:
         | 
| 422 | 
            -
             | 
| 423 | 
            -
                            if use_cache:
         | 
| 424 | 
            -
                                logger.warn(
         | 
| 425 | 
            -
                                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 426 | 
            -
                                )
         | 
| 427 | 
            -
                                use_cache = False
         | 
| 428 | 
            -
             | 
| 429 | 
            -
                            def create_custom_forward(module):
         | 
| 430 | 
            -
                                def custom_forward(*inputs):
         | 
| 431 | 
            -
                                    return module(*inputs, past_key_value, output_attentions)
         | 
| 432 | 
            -
             | 
| 433 | 
            -
                                return custom_forward
         | 
| 434 | 
            -
             | 
| 435 | 
            -
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         | 
| 436 | 
            -
                                create_custom_forward(layer_module),
         | 
| 437 | 
            -
                                hidden_states,
         | 
| 438 | 
            -
                                attention_mask,
         | 
| 439 | 
            -
                                layer_head_mask,
         | 
| 440 | 
            -
                                encoder_hidden_states,
         | 
| 441 | 
            -
                                encoder_attention_mask,
         | 
| 442 | 
            -
                                mode=mode,
         | 
| 443 | 
            -
                            )
         | 
| 444 | 
            -
                        else:
         | 
| 445 | 
            -
                            layer_outputs = layer_module(
         | 
| 446 | 
            -
                                hidden_states,
         | 
| 447 | 
            -
                                attention_mask,
         | 
| 448 | 
            -
                                layer_head_mask,
         | 
| 449 | 
            -
                                encoder_hidden_states,
         | 
| 450 | 
            -
                                encoder_attention_mask,
         | 
| 451 | 
            -
                                past_key_value,
         | 
| 452 | 
            -
                                output_attentions,
         | 
| 453 | 
            -
                                mode=mode,
         | 
| 454 | 
            -
                            )
         | 
| 455 | 
            -
             | 
| 456 | 
            -
                        hidden_states = layer_outputs[0]
         | 
| 457 | 
            -
                        if use_cache:
         | 
| 458 | 
            -
                            next_decoder_cache += (layer_outputs[-1],)
         | 
| 459 | 
            -
                        if output_attentions:
         | 
| 460 | 
            -
                            all_self_attentions = all_self_attentions + (layer_outputs[1],)
         | 
| 461 | 
            -
             | 
| 462 | 
            -
                    if output_hidden_states:
         | 
| 463 | 
            -
                        all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 464 | 
            -
             | 
| 465 | 
            -
                    if not return_dict:
         | 
| 466 | 
            -
                        return tuple(
         | 
| 467 | 
            -
                            v
         | 
| 468 | 
            -
                            for v in [
         | 
| 469 | 
            -
                                hidden_states,
         | 
| 470 | 
            -
                                next_decoder_cache,
         | 
| 471 | 
            -
                                all_hidden_states,
         | 
| 472 | 
            -
                                all_self_attentions,
         | 
| 473 | 
            -
                                all_cross_attentions,
         | 
| 474 | 
            -
                            ]
         | 
| 475 | 
            -
                            if v is not None
         | 
| 476 | 
            -
                        )
         | 
| 477 | 
            -
                    return BaseModelOutputWithPastAndCrossAttentions(
         | 
| 478 | 
            -
                        last_hidden_state=hidden_states,
         | 
| 479 | 
            -
                        past_key_values=next_decoder_cache,
         | 
| 480 | 
            -
                        hidden_states=all_hidden_states,
         | 
| 481 | 
            -
                        attentions=all_self_attentions,
         | 
| 482 | 
            -
                        cross_attentions=all_cross_attentions,
         | 
| 483 | 
            -
                    )
         | 
| 484 | 
            -
             | 
| 485 | 
            -
             | 
| 486 | 
            -
            class BertPooler(nn.Module):
         | 
| 487 | 
            -
                def __init__(self, config):
         | 
| 488 | 
            -
                    super().__init__()
         | 
| 489 | 
            -
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         | 
| 490 | 
            -
                    self.activation = nn.Tanh()
         | 
| 491 | 
            -
             | 
| 492 | 
            -
                def forward(self, hidden_states):
         | 
| 493 | 
            -
                    # We "pool" the model by simply taking the hidden state corresponding
         | 
| 494 | 
            -
                    # to the first token.
         | 
| 495 | 
            -
                    first_token_tensor = hidden_states[:, 0]
         | 
| 496 | 
            -
                    pooled_output = self.dense(first_token_tensor)
         | 
| 497 | 
            -
                    pooled_output = self.activation(pooled_output)
         | 
| 498 | 
            -
                    return pooled_output
         | 
| 499 | 
            -
             | 
| 500 | 
            -
             | 
| 501 | 
            -
            class BertPredictionHeadTransform(nn.Module):
         | 
| 502 | 
            -
                def __init__(self, config):
         | 
| 503 | 
            -
                    super().__init__()
         | 
| 504 | 
            -
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         | 
| 505 | 
            -
                    if isinstance(config.hidden_act, str):
         | 
| 506 | 
            -
                        self.transform_act_fn = ACT2FN[config.hidden_act]
         | 
| 507 | 
            -
                    else:
         | 
| 508 | 
            -
                        self.transform_act_fn = config.hidden_act
         | 
| 509 | 
            -
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         | 
| 510 | 
            -
             | 
| 511 | 
            -
                def forward(self, hidden_states):
         | 
| 512 | 
            -
                    hidden_states = self.dense(hidden_states)
         | 
| 513 | 
            -
                    hidden_states = self.transform_act_fn(hidden_states)
         | 
| 514 | 
            -
                    hidden_states = self.LayerNorm(hidden_states)
         | 
| 515 | 
            -
                    return hidden_states
         | 
| 516 | 
            -
             | 
| 517 | 
            -
             | 
| 518 | 
            -
            class BertLMPredictionHead(nn.Module):
         | 
| 519 | 
            -
                def __init__(self, config):
         | 
| 520 | 
            -
                    super().__init__()
         | 
| 521 | 
            -
                    self.transform = BertPredictionHeadTransform(config)
         | 
| 522 | 
            -
             | 
| 523 | 
            -
                    # The output weights are the same as the input embeddings, but there is
         | 
| 524 | 
            -
                    # an output-only bias for each token.
         | 
| 525 | 
            -
                    self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 526 | 
            -
             | 
| 527 | 
            -
                    self.bias = nn.Parameter(torch.zeros(config.vocab_size))
         | 
| 528 | 
            -
             | 
| 529 | 
            -
                    # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
         | 
| 530 | 
            -
                    self.decoder.bias = self.bias
         | 
| 531 | 
            -
             | 
| 532 | 
            -
                def forward(self, hidden_states):
         | 
| 533 | 
            -
                    hidden_states = self.transform(hidden_states)
         | 
| 534 | 
            -
                    hidden_states = self.decoder(hidden_states)
         | 
| 535 | 
            -
                    return hidden_states
         | 
| 536 | 
            -
             | 
| 537 | 
            -
             | 
| 538 | 
            -
            class BertOnlyMLMHead(nn.Module):
         | 
| 539 | 
            -
                def __init__(self, config):
         | 
| 540 | 
            -
                    super().__init__()
         | 
| 541 | 
            -
                    self.predictions = BertLMPredictionHead(config)
         | 
| 542 | 
            -
             | 
| 543 | 
            -
                def forward(self, sequence_output):
         | 
| 544 | 
            -
                    prediction_scores = self.predictions(sequence_output)
         | 
| 545 | 
            -
                    return prediction_scores
         | 
| 546 | 
            -
             | 
| 547 | 
            -
             | 
| 548 | 
            -
            class BertPreTrainedModel(PreTrainedModel):
         | 
| 549 | 
            -
                """
         | 
| 550 | 
            -
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         | 
| 551 | 
            -
                models.
         | 
| 552 | 
            -
                """
         | 
| 553 | 
            -
             | 
| 554 | 
            -
                config_class = BertConfig
         | 
| 555 | 
            -
                base_model_prefix = "bert"
         | 
| 556 | 
            -
                _keys_to_ignore_on_load_missing = [r"position_ids"]
         | 
| 557 | 
            -
             | 
| 558 | 
            -
                def _init_weights(self, module):
         | 
| 559 | 
            -
                    """ Initialize the weights """
         | 
| 560 | 
            -
                    if isinstance(module, (nn.Linear, nn.Embedding)):
         | 
| 561 | 
            -
                        # Slightly different from the TF version which uses truncated_normal for initialization
         | 
| 562 | 
            -
                        # cf https://github.com/pytorch/pytorch/pull/5617
         | 
| 563 | 
            -
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         | 
| 564 | 
            -
                    elif isinstance(module, nn.LayerNorm):
         | 
| 565 | 
            -
                        module.bias.data.zero_()
         | 
| 566 | 
            -
                        module.weight.data.fill_(1.0)
         | 
| 567 | 
            -
                    if isinstance(module, nn.Linear) and module.bias is not None:
         | 
| 568 | 
            -
                        module.bias.data.zero_()
         | 
| 569 | 
            -
             | 
| 570 | 
            -
             | 
| 571 | 
            -
            class BertModel(BertPreTrainedModel):
         | 
| 572 | 
            -
                """
         | 
| 573 | 
            -
                The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
         | 
| 574 | 
            -
                cross-attention is added between the self-attention layers, following the architecture described in `Attention is
         | 
| 575 | 
            -
                all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
         | 
| 576 | 
            -
                Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
         | 
| 577 | 
            -
                argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
         | 
| 578 | 
            -
                input to the forward pass.
         | 
| 579 | 
            -
                """
         | 
| 580 | 
            -
             | 
| 581 | 
            -
                def __init__(self, config, add_pooling_layer=True):
         | 
| 582 | 
            -
                    super().__init__(config)
         | 
| 583 | 
            -
                    self.config = config
         | 
| 584 | 
            -
             | 
| 585 | 
            -
                    self.embeddings = BertEmbeddings(config)
         | 
| 586 | 
            -
                    
         | 
| 587 | 
            -
                    self.encoder = BertEncoder(config)
         | 
| 588 | 
            -
             | 
| 589 | 
            -
                    self.pooler = BertPooler(config) if add_pooling_layer else None
         | 
| 590 | 
            -
             | 
| 591 | 
            -
                    self.init_weights()
         | 
| 592 | 
            -
             
         | 
| 593 | 
            -
             | 
| 594 | 
            -
                def get_input_embeddings(self):
         | 
| 595 | 
            -
                    return self.embeddings.word_embeddings
         | 
| 596 | 
            -
             | 
| 597 | 
            -
                def set_input_embeddings(self, value):
         | 
| 598 | 
            -
                    self.embeddings.word_embeddings = value
         | 
| 599 | 
            -
             | 
| 600 | 
            -
                def _prune_heads(self, heads_to_prune):
         | 
| 601 | 
            -
                    """
         | 
| 602 | 
            -
                    Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
         | 
| 603 | 
            -
                    class PreTrainedModel
         | 
| 604 | 
            -
                    """
         | 
| 605 | 
            -
                    for layer, heads in heads_to_prune.items():
         | 
| 606 | 
            -
                        self.encoder.layer[layer].attention.prune_heads(heads)
         | 
| 607 | 
            -
             | 
| 608 | 
            -
                
         | 
| 609 | 
            -
                def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
         | 
| 610 | 
            -
                    """
         | 
| 611 | 
            -
                    Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
         | 
| 612 | 
            -
                    Arguments:
         | 
| 613 | 
            -
                        attention_mask (:obj:`torch.Tensor`):
         | 
| 614 | 
            -
                            Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
         | 
| 615 | 
            -
                        input_shape (:obj:`Tuple[int]`):
         | 
| 616 | 
            -
                            The shape of the input to the model.
         | 
| 617 | 
            -
                        device: (:obj:`torch.device`):
         | 
| 618 | 
            -
                            The device of the input to the model.
         | 
| 619 | 
            -
                    Returns:
         | 
| 620 | 
            -
                        :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
         | 
| 621 | 
            -
                    """
         | 
| 622 | 
            -
                    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
         | 
| 623 | 
            -
                    # ourselves in which case we just need to make it broadcastable to all heads.
         | 
| 624 | 
            -
                    if attention_mask.dim() == 3:
         | 
| 625 | 
            -
                        extended_attention_mask = attention_mask[:, None, :, :]
         | 
| 626 | 
            -
                    elif attention_mask.dim() == 2:
         | 
| 627 | 
            -
                        # Provided a padding mask of dimensions [batch_size, seq_length]
         | 
| 628 | 
            -
                        # - if the model is a decoder, apply a causal mask in addition to the padding mask
         | 
| 629 | 
            -
                        # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
         | 
| 630 | 
            -
                        if is_decoder:
         | 
| 631 | 
            -
                            batch_size, seq_length = input_shape
         | 
| 632 | 
            -
             | 
| 633 | 
            -
                            seq_ids = torch.arange(seq_length, device=device)
         | 
| 634 | 
            -
                            causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
         | 
| 635 | 
            -
                            # in case past_key_values are used we need to add a prefix ones mask to the causal mask
         | 
| 636 | 
            -
                            # causal and attention masks must have same type with pytorch version < 1.3
         | 
| 637 | 
            -
                            causal_mask = causal_mask.to(attention_mask.dtype)
         | 
| 638 | 
            -
               
         | 
| 639 | 
            -
                            if causal_mask.shape[1] < attention_mask.shape[1]:
         | 
| 640 | 
            -
                                prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
         | 
| 641 | 
            -
                                causal_mask = torch.cat(
         | 
| 642 | 
            -
                                    [
         | 
| 643 | 
            -
                                        torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
         | 
| 644 | 
            -
                                        causal_mask,
         | 
| 645 | 
            -
                                    ],
         | 
| 646 | 
            -
                                    axis=-1,
         | 
| 647 | 
            -
                                )                     
         | 
| 648 | 
            -
             | 
| 649 | 
            -
                            extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
         | 
| 650 | 
            -
                        else:
         | 
| 651 | 
            -
                            extended_attention_mask = attention_mask[:, None, None, :]
         | 
| 652 | 
            -
                    else:
         | 
| 653 | 
            -
                        raise ValueError(
         | 
| 654 | 
            -
                            "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
         | 
| 655 | 
            -
                                input_shape, attention_mask.shape
         | 
| 656 | 
            -
                            )
         | 
| 657 | 
            -
                        )
         | 
| 658 | 
            -
             | 
| 659 | 
            -
                    # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
         | 
| 660 | 
            -
                    # masked positions, this operation will create a tensor which is 0.0 for
         | 
| 661 | 
            -
                    # positions we want to attend and -10000.0 for masked positions.
         | 
| 662 | 
            -
                    # Since we are adding it to the raw scores before the softmax, this is
         | 
| 663 | 
            -
                    # effectively the same as removing these entirely.
         | 
| 664 | 
            -
                    extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
         | 
| 665 | 
            -
                    extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
         | 
| 666 | 
            -
                    return extended_attention_mask
         | 
| 667 | 
            -
                
         | 
| 668 | 
            -
                def forward(
         | 
| 669 | 
            -
                    self,
         | 
| 670 | 
            -
                    input_ids=None,
         | 
| 671 | 
            -
                    attention_mask=None,
         | 
| 672 | 
            -
                    position_ids=None,
         | 
| 673 | 
            -
                    head_mask=None,
         | 
| 674 | 
            -
                    inputs_embeds=None,
         | 
| 675 | 
            -
                    encoder_embeds=None,
         | 
| 676 | 
            -
                    encoder_hidden_states=None,
         | 
| 677 | 
            -
                    encoder_attention_mask=None,
         | 
| 678 | 
            -
                    past_key_values=None,
         | 
| 679 | 
            -
                    use_cache=None,
         | 
| 680 | 
            -
                    output_attentions=None,
         | 
| 681 | 
            -
                    output_hidden_states=None,
         | 
| 682 | 
            -
                    return_dict=None,
         | 
| 683 | 
            -
                    is_decoder=False,
         | 
| 684 | 
            -
                    mode='multimodal',
         | 
| 685 | 
            -
                ):
         | 
| 686 | 
            -
                    r"""
         | 
| 687 | 
            -
                    encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
         | 
| 688 | 
            -
                        Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
         | 
| 689 | 
            -
                        the model is configured as a decoder.
         | 
| 690 | 
            -
                    encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         | 
| 691 | 
            -
                        Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
         | 
| 692 | 
            -
                        the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
         | 
| 693 | 
            -
                        - 1 for tokens that are **not masked**,
         | 
| 694 | 
            -
                        - 0 for tokens that are **masked**.
         | 
| 695 | 
            -
                    past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
         | 
| 696 | 
            -
                        Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
         | 
| 697 | 
            -
                        If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
         | 
| 698 | 
            -
                        (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
         | 
| 699 | 
            -
                        instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
         | 
| 700 | 
            -
                    use_cache (:obj:`bool`, `optional`):
         | 
| 701 | 
            -
                        If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
         | 
| 702 | 
            -
                        decoding (see :obj:`past_key_values`).
         | 
| 703 | 
            -
                    """
         | 
| 704 | 
            -
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 705 | 
            -
                    output_hidden_states = (
         | 
| 706 | 
            -
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 707 | 
            -
                    )
         | 
| 708 | 
            -
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 709 | 
            -
             | 
| 710 | 
            -
                    if is_decoder:
         | 
| 711 | 
            -
                        use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 712 | 
            -
                    else:
         | 
| 713 | 
            -
                        use_cache = False
         | 
| 714 | 
            -
             | 
| 715 | 
            -
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 716 | 
            -
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         | 
| 717 | 
            -
                    elif input_ids is not None:
         | 
| 718 | 
            -
                        input_shape = input_ids.size()
         | 
| 719 | 
            -
                        batch_size, seq_length = input_shape
         | 
| 720 | 
            -
                        device = input_ids.device
         | 
| 721 | 
            -
                    elif inputs_embeds is not None:
         | 
| 722 | 
            -
                        input_shape = inputs_embeds.size()[:-1]
         | 
| 723 | 
            -
                        batch_size, seq_length = input_shape
         | 
| 724 | 
            -
                        device = inputs_embeds.device
         | 
| 725 | 
            -
                    elif encoder_embeds is not None:    
         | 
| 726 | 
            -
                        input_shape = encoder_embeds.size()[:-1]
         | 
| 727 | 
            -
                        batch_size, seq_length = input_shape 
         | 
| 728 | 
            -
                        device = encoder_embeds.device
         | 
| 729 | 
            -
                    else:
         | 
| 730 | 
            -
                        raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
         | 
| 731 | 
            -
             | 
| 732 | 
            -
                    # past_key_values_length
         | 
| 733 | 
            -
                    past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
         | 
| 734 | 
            -
             | 
| 735 | 
            -
                    if attention_mask is None:
         | 
| 736 | 
            -
                        attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
         | 
| 737 | 
            -
                        
         | 
| 738 | 
            -
                    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
         | 
| 739 | 
            -
                    # ourselves in which case we just need to make it broadcastable to all heads.
         | 
| 740 | 
            -
                    extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, 
         | 
| 741 | 
            -
                                                                                             device, is_decoder)
         | 
| 742 | 
            -
             | 
| 743 | 
            -
                    # If a 2D or 3D attention mask is provided for the cross-attention
         | 
| 744 | 
            -
                    # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
         | 
| 745 | 
            -
                    if encoder_hidden_states is not None:
         | 
| 746 | 
            -
                        if type(encoder_hidden_states) == list:
         | 
| 747 | 
            -
                            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
         | 
| 748 | 
            -
                        else:
         | 
| 749 | 
            -
                            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
         | 
| 750 | 
            -
                        encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
         | 
| 751 | 
            -
                        
         | 
| 752 | 
            -
                        if type(encoder_attention_mask) == list:
         | 
| 753 | 
            -
                            encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
         | 
| 754 | 
            -
                        elif encoder_attention_mask is None:
         | 
| 755 | 
            -
                            encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
         | 
| 756 | 
            -
                            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
         | 
| 757 | 
            -
                        else:    
         | 
| 758 | 
            -
                            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
         | 
| 759 | 
            -
                    else:
         | 
| 760 | 
            -
                        encoder_extended_attention_mask = None
         | 
| 761 | 
            -
             | 
| 762 | 
            -
                    # Prepare head mask if needed
         | 
| 763 | 
            -
                    # 1.0 in head_mask indicate we keep the head
         | 
| 764 | 
            -
                    # attention_probs has shape bsz x n_heads x N x N
         | 
| 765 | 
            -
                    # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
         | 
| 766 | 
            -
                    # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
         | 
| 767 | 
            -
                    head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
         | 
| 768 | 
            -
                    
         | 
| 769 | 
            -
                    if encoder_embeds is None:
         | 
| 770 | 
            -
                        embedding_output = self.embeddings(
         | 
| 771 | 
            -
                            input_ids=input_ids,
         | 
| 772 | 
            -
                            position_ids=position_ids,
         | 
| 773 | 
            -
                            inputs_embeds=inputs_embeds,
         | 
| 774 | 
            -
                            past_key_values_length=past_key_values_length,
         | 
| 775 | 
            -
                        )
         | 
| 776 | 
            -
                    else:
         | 
| 777 | 
            -
                        embedding_output = encoder_embeds
         | 
| 778 | 
            -
                        
         | 
| 779 | 
            -
                    encoder_outputs = self.encoder(
         | 
| 780 | 
            -
                        embedding_output,
         | 
| 781 | 
            -
                        attention_mask=extended_attention_mask,
         | 
| 782 | 
            -
                        head_mask=head_mask,
         | 
| 783 | 
            -
                        encoder_hidden_states=encoder_hidden_states,
         | 
| 784 | 
            -
                        encoder_attention_mask=encoder_extended_attention_mask,
         | 
| 785 | 
            -
                        past_key_values=past_key_values,
         | 
| 786 | 
            -
                        use_cache=use_cache,
         | 
| 787 | 
            -
                        output_attentions=output_attentions,
         | 
| 788 | 
            -
                        output_hidden_states=output_hidden_states,
         | 
| 789 | 
            -
                        return_dict=return_dict,
         | 
| 790 | 
            -
                        mode=mode,
         | 
| 791 | 
            -
                    )
         | 
| 792 | 
            -
                    sequence_output = encoder_outputs[0]
         | 
| 793 | 
            -
                    pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
         | 
| 794 | 
            -
             | 
| 795 | 
            -
                    if not return_dict:
         | 
| 796 | 
            -
                        return (sequence_output, pooled_output) + encoder_outputs[1:]
         | 
| 797 | 
            -
             | 
| 798 | 
            -
                    return BaseModelOutputWithPoolingAndCrossAttentions(
         | 
| 799 | 
            -
                        last_hidden_state=sequence_output,
         | 
| 800 | 
            -
                        pooler_output=pooled_output,
         | 
| 801 | 
            -
                        past_key_values=encoder_outputs.past_key_values,
         | 
| 802 | 
            -
                        hidden_states=encoder_outputs.hidden_states,
         | 
| 803 | 
            -
                        attentions=encoder_outputs.attentions,
         | 
| 804 | 
            -
                        cross_attentions=encoder_outputs.cross_attentions,
         | 
| 805 | 
            -
                    )
         | 
| 806 | 
            -
             | 
| 807 | 
            -
             | 
| 808 | 
            -
             | 
| 809 | 
            -
            class BertLMHeadModel(BertPreTrainedModel):
         | 
| 810 | 
            -
             | 
| 811 | 
            -
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         | 
| 812 | 
            -
                _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
         | 
| 813 | 
            -
             | 
| 814 | 
            -
                def __init__(self, config):
         | 
| 815 | 
            -
                    super().__init__(config)
         | 
| 816 | 
            -
             | 
| 817 | 
            -
                    self.bert = BertModel(config, add_pooling_layer=False)
         | 
| 818 | 
            -
                    self.cls = BertOnlyMLMHead(config)
         | 
| 819 | 
            -
             | 
| 820 | 
            -
                    self.init_weights()
         | 
| 821 | 
            -
             | 
| 822 | 
            -
                def get_output_embeddings(self):
         | 
| 823 | 
            -
                    return self.cls.predictions.decoder
         | 
| 824 | 
            -
             | 
| 825 | 
            -
                def set_output_embeddings(self, new_embeddings):
         | 
| 826 | 
            -
                    self.cls.predictions.decoder = new_embeddings
         | 
| 827 | 
            -
             | 
| 828 | 
            -
                def forward(
         | 
| 829 | 
            -
                    self,
         | 
| 830 | 
            -
                    input_ids=None,
         | 
| 831 | 
            -
                    attention_mask=None,
         | 
| 832 | 
            -
                    position_ids=None,
         | 
| 833 | 
            -
                    head_mask=None,
         | 
| 834 | 
            -
                    inputs_embeds=None,
         | 
| 835 | 
            -
                    encoder_hidden_states=None,
         | 
| 836 | 
            -
                    encoder_attention_mask=None,
         | 
| 837 | 
            -
                    labels=None,
         | 
| 838 | 
            -
                    past_key_values=None,
         | 
| 839 | 
            -
                    use_cache=None,
         | 
| 840 | 
            -
                    output_attentions=None,
         | 
| 841 | 
            -
                    output_hidden_states=None,
         | 
| 842 | 
            -
                    return_dict=None,
         | 
| 843 | 
            -
                    return_logits=False,            
         | 
| 844 | 
            -
                    is_decoder=True,
         | 
| 845 | 
            -
                    reduction='mean',
         | 
| 846 | 
            -
                    mode='multimodal', 
         | 
| 847 | 
            -
                ):
         | 
| 848 | 
            -
                    r"""
         | 
| 849 | 
            -
                    encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
         | 
| 850 | 
            -
                        Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
         | 
| 851 | 
            -
                        the model is configured as a decoder.
         | 
| 852 | 
            -
                    encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         | 
| 853 | 
            -
                        Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
         | 
| 854 | 
            -
                        the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
         | 
| 855 | 
            -
                        - 1 for tokens that are **not masked**,
         | 
| 856 | 
            -
                        - 0 for tokens that are **masked**.
         | 
| 857 | 
            -
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         | 
| 858 | 
            -
                        Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
         | 
| 859 | 
            -
                        ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
         | 
| 860 | 
            -
                        ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
         | 
| 861 | 
            -
                    past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
         | 
| 862 | 
            -
                        Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
         | 
| 863 | 
            -
                        If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
         | 
| 864 | 
            -
                        (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
         | 
| 865 | 
            -
                        instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
         | 
| 866 | 
            -
                    use_cache (:obj:`bool`, `optional`):
         | 
| 867 | 
            -
                        If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
         | 
| 868 | 
            -
                        decoding (see :obj:`past_key_values`).
         | 
| 869 | 
            -
                    Returns:
         | 
| 870 | 
            -
                    Example::
         | 
| 871 | 
            -
                        >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
         | 
| 872 | 
            -
                        >>> import torch
         | 
| 873 | 
            -
                        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
         | 
| 874 | 
            -
                        >>> config = BertConfig.from_pretrained("bert-base-cased")
         | 
| 875 | 
            -
                        >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
         | 
| 876 | 
            -
                        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
         | 
| 877 | 
            -
                        >>> outputs = model(**inputs)
         | 
| 878 | 
            -
                        >>> prediction_logits = outputs.logits
         | 
| 879 | 
            -
                    """
         | 
| 880 | 
            -
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 881 | 
            -
                    if labels is not None:
         | 
| 882 | 
            -
                        use_cache = False
         | 
| 883 | 
            -
             | 
| 884 | 
            -
                    outputs = self.bert(
         | 
| 885 | 
            -
                        input_ids,
         | 
| 886 | 
            -
                        attention_mask=attention_mask,
         | 
| 887 | 
            -
                        position_ids=position_ids,
         | 
| 888 | 
            -
                        head_mask=head_mask,
         | 
| 889 | 
            -
                        inputs_embeds=inputs_embeds,
         | 
| 890 | 
            -
                        encoder_hidden_states=encoder_hidden_states,
         | 
| 891 | 
            -
                        encoder_attention_mask=encoder_attention_mask,
         | 
| 892 | 
            -
                        past_key_values=past_key_values,
         | 
| 893 | 
            -
                        use_cache=use_cache,
         | 
| 894 | 
            -
                        output_attentions=output_attentions,
         | 
| 895 | 
            -
                        output_hidden_states=output_hidden_states,
         | 
| 896 | 
            -
                        return_dict=return_dict,
         | 
| 897 | 
            -
                        is_decoder=is_decoder,
         | 
| 898 | 
            -
                        mode=mode,
         | 
| 899 | 
            -
                    )
         | 
| 900 | 
            -
                    
         | 
| 901 | 
            -
                    sequence_output = outputs[0]
         | 
| 902 | 
            -
                    prediction_scores = self.cls(sequence_output)
         | 
| 903 | 
            -
                    
         | 
| 904 | 
            -
                    if return_logits:
         | 
| 905 | 
            -
                        return prediction_scores[:, :-1, :].contiguous()  
         | 
| 906 | 
            -
             | 
| 907 | 
            -
                    lm_loss = None
         | 
| 908 | 
            -
                    if labels is not None:
         | 
| 909 | 
            -
                        # we are doing next-token prediction; shift prediction scores and input ids by one
         | 
| 910 | 
            -
                        shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
         | 
| 911 | 
            -
                        labels = labels[:, 1:].contiguous()
         | 
| 912 | 
            -
                        loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1) 
         | 
| 913 | 
            -
                        lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
         | 
| 914 | 
            -
                        if reduction=='none':
         | 
| 915 | 
            -
                            lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)               
         | 
| 916 | 
            -
             | 
| 917 | 
            -
                    if not return_dict:
         | 
| 918 | 
            -
                        output = (prediction_scores,) + outputs[2:]
         | 
| 919 | 
            -
                        return ((lm_loss,) + output) if lm_loss is not None else output
         | 
| 920 | 
            -
             | 
| 921 | 
            -
                    return CausalLMOutputWithCrossAttentions(
         | 
| 922 | 
            -
                        loss=lm_loss,
         | 
| 923 | 
            -
                        logits=prediction_scores,
         | 
| 924 | 
            -
                        past_key_values=outputs.past_key_values,
         | 
| 925 | 
            -
                        hidden_states=outputs.hidden_states,
         | 
| 926 | 
            -
                        attentions=outputs.attentions,
         | 
| 927 | 
            -
                        cross_attentions=outputs.cross_attentions,
         | 
| 928 | 
            -
                    )
         | 
| 929 | 
            -
             | 
| 930 | 
            -
                def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
         | 
| 931 | 
            -
                    input_shape = input_ids.shape
         | 
| 932 | 
            -
                    # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
         | 
| 933 | 
            -
                    if attention_mask is None:
         | 
| 934 | 
            -
                        attention_mask = input_ids.new_ones(input_shape)
         | 
| 935 | 
            -
             | 
| 936 | 
            -
                    # cut decoder_input_ids if past is used
         | 
| 937 | 
            -
                    if past is not None:
         | 
| 938 | 
            -
                        input_ids = input_ids[:, -1:]
         | 
| 939 | 
            -
             | 
| 940 | 
            -
                    return {
         | 
| 941 | 
            -
                        "input_ids": input_ids, 
         | 
| 942 | 
            -
                        "attention_mask": attention_mask, 
         | 
| 943 | 
            -
                        "past_key_values": past,
         | 
| 944 | 
            -
                        "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
         | 
| 945 | 
            -
                        "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
         | 
| 946 | 
            -
                        "is_decoder": True,
         | 
| 947 | 
            -
                    }
         | 
| 948 | 
            -
             | 
| 949 | 
            -
                def _reorder_cache(self, past, beam_idx):
         | 
| 950 | 
            -
                    reordered_past = ()
         | 
| 951 | 
            -
                    for layer_past in past:
         | 
| 952 | 
            -
                        reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
         | 
| 953 | 
            -
                    return reordered_past
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        models/vit.py
    DELETED
    
    | @@ -1,305 +0,0 @@ | |
| 1 | 
            -
            '''
         | 
| 2 | 
            -
             * Copyright (c) 2022, salesforce.com, inc.
         | 
| 3 | 
            -
             * All rights reserved.
         | 
| 4 | 
            -
             * SPDX-License-Identifier: BSD-3-Clause
         | 
| 5 | 
            -
             * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
         | 
| 6 | 
            -
             * By Junnan Li
         | 
| 7 | 
            -
             * Based on timm code base
         | 
| 8 | 
            -
             * https://github.com/rwightman/pytorch-image-models/tree/master/timm
         | 
| 9 | 
            -
            '''
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            import torch
         | 
| 12 | 
            -
            import torch.nn as nn
         | 
| 13 | 
            -
            import torch.nn.functional as F
         | 
| 14 | 
            -
            from functools import partial
         | 
| 15 | 
            -
             | 
| 16 | 
            -
            from timm.models.vision_transformer import _cfg, PatchEmbed
         | 
| 17 | 
            -
            from timm.models.registry import register_model
         | 
| 18 | 
            -
            from timm.models.layers import trunc_normal_, DropPath
         | 
| 19 | 
            -
            from timm.models.helpers import named_apply, adapt_input_conv
         | 
| 20 | 
            -
             | 
| 21 | 
            -
            from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
         | 
| 22 | 
            -
             | 
| 23 | 
            -
            class Mlp(nn.Module):
         | 
| 24 | 
            -
                """ MLP as used in Vision Transformer, MLP-Mixer and related networks
         | 
| 25 | 
            -
                """
         | 
| 26 | 
            -
                def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
         | 
| 27 | 
            -
                    super().__init__()
         | 
| 28 | 
            -
                    out_features = out_features or in_features
         | 
| 29 | 
            -
                    hidden_features = hidden_features or in_features
         | 
| 30 | 
            -
                    self.fc1 = nn.Linear(in_features, hidden_features)
         | 
| 31 | 
            -
                    self.act = act_layer()
         | 
| 32 | 
            -
                    self.fc2 = nn.Linear(hidden_features, out_features)
         | 
| 33 | 
            -
                    self.drop = nn.Dropout(drop)
         | 
| 34 | 
            -
             | 
| 35 | 
            -
                def forward(self, x):
         | 
| 36 | 
            -
                    x = self.fc1(x)
         | 
| 37 | 
            -
                    x = self.act(x)
         | 
| 38 | 
            -
                    x = self.drop(x)
         | 
| 39 | 
            -
                    x = self.fc2(x)
         | 
| 40 | 
            -
                    x = self.drop(x)
         | 
| 41 | 
            -
                    return x
         | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
            class Attention(nn.Module):
         | 
| 45 | 
            -
                def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
         | 
| 46 | 
            -
                    super().__init__()
         | 
| 47 | 
            -
                    self.num_heads = num_heads
         | 
| 48 | 
            -
                    head_dim = dim // num_heads
         | 
| 49 | 
            -
                    # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
         | 
| 50 | 
            -
                    self.scale = qk_scale or head_dim ** -0.5
         | 
| 51 | 
            -
                    self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
         | 
| 52 | 
            -
                    self.attn_drop = nn.Dropout(attn_drop)
         | 
| 53 | 
            -
                    self.proj = nn.Linear(dim, dim)
         | 
| 54 | 
            -
                    self.proj_drop = nn.Dropout(proj_drop)
         | 
| 55 | 
            -
                    self.attn_gradients = None
         | 
| 56 | 
            -
                    self.attention_map = None
         | 
| 57 | 
            -
                    
         | 
| 58 | 
            -
                def save_attn_gradients(self, attn_gradients):
         | 
| 59 | 
            -
                    self.attn_gradients = attn_gradients
         | 
| 60 | 
            -
                    
         | 
| 61 | 
            -
                def get_attn_gradients(self):
         | 
| 62 | 
            -
                    return self.attn_gradients
         | 
| 63 | 
            -
                
         | 
| 64 | 
            -
                def save_attention_map(self, attention_map):
         | 
| 65 | 
            -
                    self.attention_map = attention_map
         | 
| 66 | 
            -
                    
         | 
| 67 | 
            -
                def get_attention_map(self):
         | 
| 68 | 
            -
                    return self.attention_map
         | 
| 69 | 
            -
                
         | 
| 70 | 
            -
                def forward(self, x, register_hook=False):
         | 
| 71 | 
            -
                    B, N, C = x.shape
         | 
| 72 | 
            -
                    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         | 
| 73 | 
            -
                    q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)
         | 
| 74 | 
            -
             | 
| 75 | 
            -
                    attn = (q @ k.transpose(-2, -1)) * self.scale
         | 
| 76 | 
            -
                    attn = attn.softmax(dim=-1)
         | 
| 77 | 
            -
                    attn = self.attn_drop(attn)
         | 
| 78 | 
            -
                            
         | 
| 79 | 
            -
                    if register_hook:
         | 
| 80 | 
            -
                        self.save_attention_map(attn)
         | 
| 81 | 
            -
                        attn.register_hook(self.save_attn_gradients)        
         | 
| 82 | 
            -
             | 
| 83 | 
            -
                    x = (attn @ v).transpose(1, 2).reshape(B, N, C)
         | 
| 84 | 
            -
                    x = self.proj(x)
         | 
| 85 | 
            -
                    x = self.proj_drop(x)
         | 
| 86 | 
            -
                    return x
         | 
| 87 | 
            -
             | 
| 88 | 
            -
             | 
| 89 | 
            -
            class Block(nn.Module):
         | 
| 90 | 
            -
             | 
| 91 | 
            -
                def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
         | 
| 92 | 
            -
                             drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
         | 
| 93 | 
            -
                    super().__init__()
         | 
| 94 | 
            -
                    self.norm1 = norm_layer(dim)
         | 
| 95 | 
            -
                    self.attn = Attention(
         | 
| 96 | 
            -
                        dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
         | 
| 97 | 
            -
                    # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
         | 
| 98 | 
            -
                    self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
         | 
| 99 | 
            -
                    self.norm2 = norm_layer(dim)
         | 
| 100 | 
            -
                    mlp_hidden_dim = int(dim * mlp_ratio)
         | 
| 101 | 
            -
                    self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
         | 
| 102 | 
            -
             | 
| 103 | 
            -
                    if use_grad_checkpointing:
         | 
| 104 | 
            -
                        self.attn = checkpoint_wrapper(self.attn)
         | 
| 105 | 
            -
                        self.mlp = checkpoint_wrapper(self.mlp)
         | 
| 106 | 
            -
             | 
| 107 | 
            -
                def forward(self, x, register_hook=False):
         | 
| 108 | 
            -
                    x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
         | 
| 109 | 
            -
                    x = x + self.drop_path(self.mlp(self.norm2(x)))
         | 
| 110 | 
            -
                    return x
         | 
| 111 | 
            -
             | 
| 112 | 
            -
                
         | 
| 113 | 
            -
            class VisionTransformer(nn.Module):
         | 
| 114 | 
            -
                """ Vision Transformer
         | 
| 115 | 
            -
                A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`  -
         | 
| 116 | 
            -
                    https://arxiv.org/abs/2010.11929
         | 
| 117 | 
            -
                """
         | 
| 118 | 
            -
                def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
         | 
| 119 | 
            -
                             num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
         | 
| 120 | 
            -
                             drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, 
         | 
| 121 | 
            -
                             use_grad_checkpointing=False, ckpt_layer=0):
         | 
| 122 | 
            -
                    """
         | 
| 123 | 
            -
                    Args:
         | 
| 124 | 
            -
                        img_size (int, tuple): input image size
         | 
| 125 | 
            -
                        patch_size (int, tuple): patch size
         | 
| 126 | 
            -
                        in_chans (int): number of input channels
         | 
| 127 | 
            -
                        num_classes (int): number of classes for classification head
         | 
| 128 | 
            -
                        embed_dim (int): embedding dimension
         | 
| 129 | 
            -
                        depth (int): depth of transformer
         | 
| 130 | 
            -
                        num_heads (int): number of attention heads
         | 
| 131 | 
            -
                        mlp_ratio (int): ratio of mlp hidden dim to embedding dim
         | 
| 132 | 
            -
                        qkv_bias (bool): enable bias for qkv if True
         | 
| 133 | 
            -
                        qk_scale (float): override default qk scale of head_dim ** -0.5 if set
         | 
| 134 | 
            -
                        representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
         | 
| 135 | 
            -
                        drop_rate (float): dropout rate
         | 
| 136 | 
            -
                        attn_drop_rate (float): attention dropout rate
         | 
| 137 | 
            -
                        drop_path_rate (float): stochastic depth rate
         | 
| 138 | 
            -
                        norm_layer: (nn.Module): normalization layer
         | 
| 139 | 
            -
                    """
         | 
| 140 | 
            -
                    super().__init__()
         | 
| 141 | 
            -
                    self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
         | 
| 142 | 
            -
                    norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
         | 
| 143 | 
            -
             | 
| 144 | 
            -
                    self.patch_embed = PatchEmbed(
         | 
| 145 | 
            -
                        img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
         | 
| 146 | 
            -
             | 
| 147 | 
            -
                    num_patches = self.patch_embed.num_patches
         | 
| 148 | 
            -
             | 
| 149 | 
            -
                    self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
         | 
| 150 | 
            -
                    self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
         | 
| 151 | 
            -
                    self.pos_drop = nn.Dropout(p=drop_rate)
         | 
| 152 | 
            -
             | 
| 153 | 
            -
                    dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
         | 
| 154 | 
            -
                    self.blocks = nn.ModuleList([
         | 
| 155 | 
            -
                        Block(
         | 
| 156 | 
            -
                            dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
         | 
| 157 | 
            -
                            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
         | 
| 158 | 
            -
                            use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
         | 
| 159 | 
            -
                        )
         | 
| 160 | 
            -
                        for i in range(depth)])
         | 
| 161 | 
            -
                    self.norm = norm_layer(embed_dim)
         | 
| 162 | 
            -
             | 
| 163 | 
            -
                    trunc_normal_(self.pos_embed, std=.02)
         | 
| 164 | 
            -
                    trunc_normal_(self.cls_token, std=.02)
         | 
| 165 | 
            -
                    self.apply(self._init_weights)
         | 
| 166 | 
            -
             | 
| 167 | 
            -
                def _init_weights(self, m):
         | 
| 168 | 
            -
                    if isinstance(m, nn.Linear):
         | 
| 169 | 
            -
                        trunc_normal_(m.weight, std=.02)
         | 
| 170 | 
            -
                        if isinstance(m, nn.Linear) and m.bias is not None:
         | 
| 171 | 
            -
                            nn.init.constant_(m.bias, 0)
         | 
| 172 | 
            -
                    elif isinstance(m, nn.LayerNorm):
         | 
| 173 | 
            -
                        nn.init.constant_(m.bias, 0)
         | 
| 174 | 
            -
                        nn.init.constant_(m.weight, 1.0)
         | 
| 175 | 
            -
             | 
| 176 | 
            -
                @torch.jit.ignore
         | 
| 177 | 
            -
                def no_weight_decay(self):
         | 
| 178 | 
            -
                    return {'pos_embed', 'cls_token'}
         | 
| 179 | 
            -
             | 
| 180 | 
            -
                def forward(self, x, register_blk=-1):
         | 
| 181 | 
            -
                    B = x.shape[0]
         | 
| 182 | 
            -
                    x = self.patch_embed(x)
         | 
| 183 | 
            -
             | 
| 184 | 
            -
                    cls_tokens = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
         | 
| 185 | 
            -
                    x = torch.cat((cls_tokens, x), dim=1)
         | 
| 186 | 
            -
              
         | 
| 187 | 
            -
                    x = x + self.pos_embed[:,:x.size(1),:]
         | 
| 188 | 
            -
                    x = self.pos_drop(x)
         | 
| 189 | 
            -
             | 
| 190 | 
            -
                    for i,blk in enumerate(self.blocks):
         | 
| 191 | 
            -
                        x = blk(x, register_blk==i)
         | 
| 192 | 
            -
                    x = self.norm(x)
         | 
| 193 | 
            -
                    
         | 
| 194 | 
            -
                    return x
         | 
| 195 | 
            -
             | 
| 196 | 
            -
                @torch.jit.ignore()
         | 
| 197 | 
            -
                def load_pretrained(self, checkpoint_path, prefix=''):
         | 
| 198 | 
            -
                    _load_weights(self, checkpoint_path, prefix)
         | 
| 199 | 
            -
                    
         | 
| 200 | 
            -
             | 
| 201 | 
            -
            @torch.no_grad()
         | 
| 202 | 
            -
            def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
         | 
| 203 | 
            -
                """ Load weights from .npz checkpoints for official Google Brain Flax implementation
         | 
| 204 | 
            -
                """
         | 
| 205 | 
            -
                import numpy as np
         | 
| 206 | 
            -
             | 
| 207 | 
            -
                def _n2p(w, t=True):
         | 
| 208 | 
            -
                    if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
         | 
| 209 | 
            -
                        w = w.flatten()
         | 
| 210 | 
            -
                    if t:
         | 
| 211 | 
            -
                        if w.ndim == 4:
         | 
| 212 | 
            -
                            w = w.transpose([3, 2, 0, 1])
         | 
| 213 | 
            -
                        elif w.ndim == 3:
         | 
| 214 | 
            -
                            w = w.transpose([2, 0, 1])
         | 
| 215 | 
            -
                        elif w.ndim == 2:
         | 
| 216 | 
            -
                            w = w.transpose([1, 0])
         | 
| 217 | 
            -
                    return torch.from_numpy(w)
         | 
| 218 | 
            -
             | 
| 219 | 
            -
                w = np.load(checkpoint_path)
         | 
| 220 | 
            -
                if not prefix and 'opt/target/embedding/kernel' in w:
         | 
| 221 | 
            -
                    prefix = 'opt/target/'
         | 
| 222 | 
            -
             | 
| 223 | 
            -
                if hasattr(model.patch_embed, 'backbone'):
         | 
| 224 | 
            -
                    # hybrid
         | 
| 225 | 
            -
                    backbone = model.patch_embed.backbone
         | 
| 226 | 
            -
                    stem_only = not hasattr(backbone, 'stem')
         | 
| 227 | 
            -
                    stem = backbone if stem_only else backbone.stem
         | 
| 228 | 
            -
                    stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
         | 
| 229 | 
            -
                    stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
         | 
| 230 | 
            -
                    stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
         | 
| 231 | 
            -
                    if not stem_only:
         | 
| 232 | 
            -
                        for i, stage in enumerate(backbone.stages):
         | 
| 233 | 
            -
                            for j, block in enumerate(stage.blocks):
         | 
| 234 | 
            -
                                bp = f'{prefix}block{i + 1}/unit{j + 1}/'
         | 
| 235 | 
            -
                                for r in range(3):
         | 
| 236 | 
            -
                                    getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
         | 
| 237 | 
            -
                                    getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
         | 
| 238 | 
            -
                                    getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
         | 
| 239 | 
            -
                                if block.downsample is not None:
         | 
| 240 | 
            -
                                    block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
         | 
| 241 | 
            -
                                    block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
         | 
| 242 | 
            -
                                    block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
         | 
| 243 | 
            -
                    embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
         | 
| 244 | 
            -
                else:
         | 
| 245 | 
            -
                    embed_conv_w = adapt_input_conv(
         | 
| 246 | 
            -
                        model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
         | 
| 247 | 
            -
                model.patch_embed.proj.weight.copy_(embed_conv_w)
         | 
| 248 | 
            -
                model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
         | 
| 249 | 
            -
                model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
         | 
| 250 | 
            -
                pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
         | 
| 251 | 
            -
                if pos_embed_w.shape != model.pos_embed.shape:
         | 
| 252 | 
            -
                    pos_embed_w = resize_pos_embed(  # resize pos embedding when different size from pretrained weights
         | 
| 253 | 
            -
                        pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
         | 
| 254 | 
            -
                model.pos_embed.copy_(pos_embed_w)
         | 
| 255 | 
            -
                model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
         | 
| 256 | 
            -
                model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
         | 
| 257 | 
            -
            #     if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
         | 
| 258 | 
            -
            #         model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
         | 
| 259 | 
            -
            #         model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
         | 
| 260 | 
            -
            #     if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
         | 
| 261 | 
            -
            #         model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
         | 
| 262 | 
            -
            #         model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
         | 
| 263 | 
            -
                for i, block in enumerate(model.blocks.children()):
         | 
| 264 | 
            -
                    block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
         | 
| 265 | 
            -
                    mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
         | 
| 266 | 
            -
                    block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
         | 
| 267 | 
            -
                    block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
         | 
| 268 | 
            -
                    block.attn.qkv.weight.copy_(torch.cat([
         | 
| 269 | 
            -
                        _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
         | 
| 270 | 
            -
                    block.attn.qkv.bias.copy_(torch.cat([
         | 
| 271 | 
            -
                        _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
         | 
| 272 | 
            -
                    block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
         | 
| 273 | 
            -
                    block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
         | 
| 274 | 
            -
                    for r in range(2):
         | 
| 275 | 
            -
                        getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
         | 
| 276 | 
            -
                        getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
         | 
| 277 | 
            -
                    block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
         | 
| 278 | 
            -
                    block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
         | 
| 279 | 
            -
             | 
| 280 | 
            -
                        
         | 
| 281 | 
            -
            def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):        
         | 
| 282 | 
            -
                # interpolate position embedding
         | 
| 283 | 
            -
                embedding_size = pos_embed_checkpoint.shape[-1]
         | 
| 284 | 
            -
                num_patches = visual_encoder.patch_embed.num_patches
         | 
| 285 | 
            -
                num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
         | 
| 286 | 
            -
                # height (== width) for the checkpoint position embedding
         | 
| 287 | 
            -
                orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
         | 
| 288 | 
            -
                # height (== width) for the new position embedding
         | 
| 289 | 
            -
                new_size = int(num_patches ** 0.5)
         | 
| 290 | 
            -
             | 
| 291 | 
            -
                if orig_size!=new_size:
         | 
| 292 | 
            -
                    # class_token and dist_token are kept unchanged
         | 
| 293 | 
            -
                    extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
         | 
| 294 | 
            -
                    # only the position tokens are interpolated
         | 
| 295 | 
            -
                    pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
         | 
| 296 | 
            -
                    pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
         | 
| 297 | 
            -
                    pos_tokens = torch.nn.functional.interpolate(
         | 
| 298 | 
            -
                        pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
         | 
| 299 | 
            -
                    pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
         | 
| 300 | 
            -
                    new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
         | 
| 301 | 
            -
                    print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
         | 
| 302 | 
            -
                    
         | 
| 303 | 
            -
                    return new_pos_embed    
         | 
| 304 | 
            -
                else:
         | 
| 305 | 
            -
                    return pos_embed_checkpoint
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
