flexthink
commited on
Commit
·
380887d
1
Parent(s):
2b84978
Modified it to create as "lite" version for cases where you only need speaker embeddings
Browse files- README.md +6 -39
- custom_interface.py +33 -115
- hyperparams.yaml +3 -48
README.md
CHANGED
|
@@ -26,12 +26,13 @@ widget:
|
|
| 26 |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
| 27 |
<br/><br/>
|
| 28 |
|
| 29 |
-
#
|
| 30 |
|
| 31 |
-
This repository provides all the necessary tools to
|
| 32 |
-
The system can be used to extract speaker embeddings as well.
|
| 33 |
It is trained on Voxceleb 1 training data.
|
| 34 |
|
|
|
|
|
|
|
| 35 |
For a better experience, we encourage you to learn more about
|
| 36 |
[SpeechBrain](https://speechbrain.github.io). The model performance on Voxceleb1-test set(Cleaned) is:
|
| 37 |
|
|
@@ -58,50 +59,16 @@ Please notice that we encourage you to read our tutorials and learn more about
|
|
| 58 |
import torchaudio
|
| 59 |
from speechbrain.inference.interfaces import foreign_class
|
| 60 |
|
| 61 |
-
classifier = foreign_class(source="
|
| 62 |
|
| 63 |
-
|
| 64 |
embeddings = classifier.encode_batch(signal)
|
| 65 |
print(embeddings.shape)
|
| 66 |
```
|
| 67 |
The system is trained with recordings sampled at 16kHz (single channel).
|
| 68 |
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*.
|
| 69 |
|
| 70 |
-
<!-- ### Perform Speaker Verification
|
| 71 |
-
|
| 72 |
-
```python
|
| 73 |
-
from speechbrain.inference.speaker import SpeakerRecognition
|
| 74 |
-
verification = SpeakerRecognition.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb", savedir="pretrained_models/spkrec-ecapa-voxceleb")
|
| 75 |
-
score, prediction = verification.verify_files("tests/samples/ASR/spk1_snt1.wav", "tests/samples/ASR/spk2_snt1.wav") # Different Speakers
|
| 76 |
-
score, prediction = verification.verify_files("tests/samples/ASR/spk1_snt1.wav", "tests/samples/ASR/spk1_snt2.wav") # Same Speaker
|
| 77 |
-
```
|
| 78 |
-
The prediction is 1 if the two signals in input are from the same speaker and 0 otherwise. -->
|
| 79 |
-
|
| 80 |
-
<!-- ### Inference on GPU
|
| 81 |
-
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
|
| 82 |
-
|
| 83 |
-
### Training
|
| 84 |
-
The model was trained with SpeechBrain (aa018540).
|
| 85 |
-
To train it from scratch follows these steps:
|
| 86 |
-
1. Clone SpeechBrain:
|
| 87 |
-
```bash
|
| 88 |
-
git clone https://github.com/speechbrain/speechbrain/
|
| 89 |
-
```
|
| 90 |
-
2. Install it:
|
| 91 |
-
```
|
| 92 |
-
cd speechbrain
|
| 93 |
-
pip install -r requirements.txt
|
| 94 |
-
pip install -e .
|
| 95 |
-
```
|
| 96 |
-
|
| 97 |
-
3. Run Training:
|
| 98 |
-
```
|
| 99 |
-
cd recipes/VoxCeleb/SpeakerRec
|
| 100 |
-
python train_speaker_embeddings.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder
|
| 101 |
-
```
|
| 102 |
|
| 103 |
-
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1-ahC1xeyPinAHp2oAohL-02smNWO41Cc?usp=sharing).
|
| 104 |
-
-->
|
| 105 |
### Limitations
|
| 106 |
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
| 107 |
|
|
|
|
| 26 |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
| 27 |
<br/><br/>
|
| 28 |
|
| 29 |
+
# Standalone ECAPA-TDNN embeddings with discrete_ssl input on Voxceleb
|
| 30 |
|
| 31 |
+
This repository provides all the necessary tools to obtain speaker embeddings with a pretrained ECAPA-TDNN model and discrete audio input using SpeechBrain.
|
|
|
|
| 32 |
It is trained on Voxceleb 1 training data.
|
| 33 |
|
| 34 |
+
Adopted from poonehmousavi/discrete_wavlm_spk_rec_ecapatdn
|
| 35 |
+
|
| 36 |
For a better experience, we encourage you to learn more about
|
| 37 |
[SpeechBrain](https://speechbrain.github.io). The model performance on Voxceleb1-test set(Cleaned) is:
|
| 38 |
|
|
|
|
| 59 |
import torchaudio
|
| 60 |
from speechbrain.inference.interfaces import foreign_class
|
| 61 |
|
| 62 |
+
classifier = foreign_class(source="flexthink/discrete_wavlm_spk_rec_ecapatdn", pymodule_file="custom_interface.py", classname="DiscreteSpkEmb")
|
| 63 |
|
| 64 |
+
tokens = torch.randint(4, 100, 4)
|
| 65 |
embeddings = classifier.encode_batch(signal)
|
| 66 |
print(embeddings.shape)
|
| 67 |
```
|
| 68 |
The system is trained with recordings sampled at 16kHz (single channel).
|
| 69 |
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*.
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
|
|
|
|
|
|
| 72 |
### Limitations
|
| 73 |
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
| 74 |
|
custom_interface.py
CHANGED
|
@@ -60,6 +60,8 @@ class Discrete_EmbeddingLayer(torch.nn.Module):
|
|
| 60 |
pad_index=0,
|
| 61 |
init=False,
|
| 62 |
freeze=False,
|
|
|
|
|
|
|
| 63 |
):
|
| 64 |
super(Discrete_EmbeddingLayer, self).__init__()
|
| 65 |
self.vocab_size = vocab_size
|
|
@@ -69,11 +71,26 @@ class Discrete_EmbeddingLayer(torch.nn.Module):
|
|
| 69 |
num_codebooks * vocab_size, emb_dim
|
| 70 |
).requires_grad_(not self.freeze)
|
| 71 |
self.init = init
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
def init_embedding(self, weights):
|
| 74 |
with torch.no_grad():
|
| 75 |
self.embedding.weight = torch.nn.Parameter(weights)
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
def forward(self, in_tokens):
|
| 78 |
"""Computes the embedding for discrete tokens.
|
| 79 |
a sample.
|
|
@@ -89,17 +106,13 @@ class Discrete_EmbeddingLayer(torch.nn.Module):
|
|
| 89 |
"""
|
| 90 |
with torch.set_grad_enabled(not self.freeze):
|
| 91 |
# Add unique token IDs across diffrent codebooks by adding num_codebooks * vocab_size
|
| 92 |
-
in_tokens
|
| 93 |
-
0,
|
| 94 |
-
self.num_codebooks * self.vocab_size,
|
| 95 |
-
self.vocab_size,
|
| 96 |
-
device=in_tokens.device,
|
| 97 |
-
)
|
| 98 |
# Forward Pass to embedding and
|
| 99 |
-
in_embs = self.embedding(
|
| 100 |
return in_embs
|
| 101 |
|
| 102 |
-
|
|
|
|
| 103 |
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|
| 104 |
language-id, emotion recognition, keyword spotting, etc).
|
| 105 |
The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model
|
|
@@ -129,126 +142,31 @@ class CustomEncoderClassifier(Pretrained):
|
|
| 129 |
|
| 130 |
def __init__(self, *args, **kwargs):
|
| 131 |
super().__init__(*args, **kwargs)
|
| 132 |
-
self.similarity = torch.nn.CosineSimilarity(dim=-1, eps=1e-6)
|
| 133 |
|
| 134 |
-
def encode_batch(self,
|
| 135 |
"""Encodes the input audio into a single vector embedding.
|
| 136 |
The waveforms should already be in the model's desired format.
|
| 137 |
-
You can call:
|
| 138 |
-
``normalized = <this>.normalizer(signal, sample_rate)``
|
| 139 |
-
to get a correctly converted signal in most cases.
|
| 140 |
Arguments
|
| 141 |
---------
|
| 142 |
-
|
| 143 |
-
Batch of
|
| 144 |
-
|
| 145 |
-
wav_lens : torch.tensor
|
| 146 |
Lengths of the waveforms relative to the longest one in the
|
| 147 |
batch, tensor of shape [batch]. The longest one should have
|
| 148 |
relative length 1.0 and others len(waveform) / max_length.
|
| 149 |
Used for ignoring padding.
|
| 150 |
-
|
| 151 |
-
If True, it normalizes the embeddings with the statistics
|
| 152 |
-
contained in mean_var_norm_emb.
|
| 153 |
Returns
|
| 154 |
-------
|
| 155 |
torch.tensor
|
| 156 |
The encoded batch
|
| 157 |
"""
|
| 158 |
# Manage single waveforms in input
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
if wav_lens is None:
|
| 164 |
-
wav_lens = torch.ones(wavs.shape[0], device=self.device)
|
| 165 |
-
|
| 166 |
-
# Storing waveform in the specified device
|
| 167 |
-
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
| 168 |
-
wavs = wavs.float()
|
| 169 |
-
|
| 170 |
-
with torch.no_grad():
|
| 171 |
-
self.hparams.codec.to(self.device).eval()
|
| 172 |
-
tokens, _, _ = self.hparams.codec(
|
| 173 |
-
wavs, wav_lens, **self.hparams.tokenizer_config
|
| 174 |
-
)
|
| 175 |
-
embeddings = self.mods.discrete_embedding_layer(tokens)
|
| 176 |
-
att_w = self.mods.attention_mlp(embeddings)
|
| 177 |
-
feats = torch.matmul(att_w.transpose(2, -1), embeddings).squeeze(-2)
|
| 178 |
-
embeddings = self.mods.embedding_model(feats, wav_lens)
|
| 179 |
return embeddings.squeeze(1)
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
self, wavs1, wavs2, wav1_lens=None, wav2_lens=None, threshold=0.25
|
| 184 |
-
):
|
| 185 |
-
"""Performs speaker verification with cosine distance.
|
| 186 |
-
|
| 187 |
-
It returns the score and the decision (0 different speakers,
|
| 188 |
-
1 same speakers).
|
| 189 |
-
|
| 190 |
-
Arguments
|
| 191 |
-
---------
|
| 192 |
-
wavs1 : Torch.Tensor
|
| 193 |
-
torch.Tensor containing the speech waveform1 (batch, time).
|
| 194 |
-
Make sure the sample rate is fs=16000 Hz.
|
| 195 |
-
wavs2 : Torch.Tensor
|
| 196 |
-
torch.Tensor containing the speech waveform2 (batch, time).
|
| 197 |
-
Make sure the sample rate is fs=16000 Hz.
|
| 198 |
-
wav1_lens : Torch.Tensor
|
| 199 |
-
torch.Tensor containing the relative length for each sentence
|
| 200 |
-
in the length (e.g., [0.8 0.6 1.0])
|
| 201 |
-
wav2_lens : Torch.Tensor
|
| 202 |
-
torch.Tensor containing the relative length for each sentence
|
| 203 |
-
in the length (e.g., [0.8 0.6 1.0])
|
| 204 |
-
threshold : Float
|
| 205 |
-
Threshold applied to the cosine distance to decide if the
|
| 206 |
-
speaker is different (0) or the same (1).
|
| 207 |
-
|
| 208 |
-
Returns
|
| 209 |
-
-------
|
| 210 |
-
score
|
| 211 |
-
The score associated to the binary verification output
|
| 212 |
-
(cosine distance).
|
| 213 |
-
prediction
|
| 214 |
-
The prediction is 1 if the two signals in input are from the same
|
| 215 |
-
speaker and 0 otherwise.
|
| 216 |
-
"""
|
| 217 |
-
emb1 = self.encode_batch(wavs1, wav1_lens, normalize=False)
|
| 218 |
-
emb2 = self.encode_batch(wavs2, wav2_lens, normalize=False)
|
| 219 |
-
score = self.similarity(emb1, emb2)
|
| 220 |
-
return score, score > threshold
|
| 221 |
-
|
| 222 |
-
def verify_files(self, path_x, path_y, **kwargs):
|
| 223 |
-
"""Speaker verification with cosine distance
|
| 224 |
-
|
| 225 |
-
Returns the score and the decision (0 different speakers,
|
| 226 |
-
1 same speakers).
|
| 227 |
-
|
| 228 |
-
Arguments
|
| 229 |
-
---------
|
| 230 |
-
path_x : str
|
| 231 |
-
Path to file x
|
| 232 |
-
path_y : str
|
| 233 |
-
Path to file y
|
| 234 |
-
**kwargs : dict
|
| 235 |
-
Arguments to ``load_audio``
|
| 236 |
-
|
| 237 |
-
Returns
|
| 238 |
-
-------
|
| 239 |
-
score
|
| 240 |
-
The score associated to the binary verification output
|
| 241 |
-
(cosine distance).
|
| 242 |
-
prediction
|
| 243 |
-
The prediction is 1 if the two signals in input are from the same
|
| 244 |
-
speaker and 0 otherwise.
|
| 245 |
-
"""
|
| 246 |
-
waveform_x = self.load_audio(path_x, **kwargs)
|
| 247 |
-
waveform_y = self.load_audio(path_y, **kwargs)
|
| 248 |
-
# Fake batches:
|
| 249 |
-
batch_x = waveform_x.unsqueeze(0)
|
| 250 |
-
batch_y = waveform_y.unsqueeze(0)
|
| 251 |
-
# Verify:
|
| 252 |
-
score, decision = self.verify_batch(batch_x, batch_y)
|
| 253 |
-
# Squeeze:
|
| 254 |
-
return score[0], decision[0]
|
|
|
|
| 60 |
pad_index=0,
|
| 61 |
init=False,
|
| 62 |
freeze=False,
|
| 63 |
+
available_layers=None,
|
| 64 |
+
layers=None,
|
| 65 |
):
|
| 66 |
super(Discrete_EmbeddingLayer, self).__init__()
|
| 67 |
self.vocab_size = vocab_size
|
|
|
|
| 71 |
num_codebooks * vocab_size, emb_dim
|
| 72 |
).requires_grad_(not self.freeze)
|
| 73 |
self.init = init
|
| 74 |
+
self.layers = layers
|
| 75 |
+
self.available_layers = available_layers
|
| 76 |
+
self.offsets = self.build_offsets()
|
| 77 |
|
| 78 |
def init_embedding(self, weights):
|
| 79 |
with torch.no_grad():
|
| 80 |
self.embedding.weight = torch.nn.Parameter(weights)
|
| 81 |
|
| 82 |
+
def build_offsets(self):
|
| 83 |
+
offsets = torch.arange(
|
| 84 |
+
0,
|
| 85 |
+
self.num_codebooks * self.vocab_size,
|
| 86 |
+
self.vocab_size,
|
| 87 |
+
)
|
| 88 |
+
if self.layers:
|
| 89 |
+
selected_layers = set(self.layers)
|
| 90 |
+
indexes = [idx for idx, layer in enumerate(self.layers) if layer in selected_layers]
|
| 91 |
+
offsets = offsets[indexes]
|
| 92 |
+
return offsets
|
| 93 |
+
|
| 94 |
def forward(self, in_tokens):
|
| 95 |
"""Computes the embedding for discrete tokens.
|
| 96 |
a sample.
|
|
|
|
| 106 |
"""
|
| 107 |
with torch.set_grad_enabled(not self.freeze):
|
| 108 |
# Add unique token IDs across diffrent codebooks by adding num_codebooks * vocab_size
|
| 109 |
+
in_tokens_offset = in_tokens + self.offsets.to(in_tokens.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
# Forward Pass to embedding and
|
| 111 |
+
in_embs = self.embedding(in_tokens_offset.int())
|
| 112 |
return in_embs
|
| 113 |
|
| 114 |
+
|
| 115 |
+
class DiscreteSpkEmb(Pretrained):
|
| 116 |
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|
| 117 |
language-id, emotion recognition, keyword spotting, etc).
|
| 118 |
The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model
|
|
|
|
| 142 |
|
| 143 |
def __init__(self, *args, **kwargs):
|
| 144 |
super().__init__(*args, **kwargs)
|
|
|
|
| 145 |
|
| 146 |
+
def encode_batch(self, audio, length=None):
|
| 147 |
"""Encodes the input audio into a single vector embedding.
|
| 148 |
The waveforms should already be in the model's desired format.
|
|
|
|
|
|
|
|
|
|
| 149 |
Arguments
|
| 150 |
---------
|
| 151 |
+
audio : torch.tensor
|
| 152 |
+
Batch of tokenized audio [batch, time, heads]
|
| 153 |
+
length : torch.tensor
|
|
|
|
| 154 |
Lengths of the waveforms relative to the longest one in the
|
| 155 |
batch, tensor of shape [batch]. The longest one should have
|
| 156 |
relative length 1.0 and others len(waveform) / max_length.
|
| 157 |
Used for ignoring padding.
|
| 158 |
+
|
|
|
|
|
|
|
| 159 |
Returns
|
| 160 |
-------
|
| 161 |
torch.tensor
|
| 162 |
The encoded batch
|
| 163 |
"""
|
| 164 |
# Manage single waveforms in input
|
| 165 |
+
embeddings = self.mods.discrete_embedding_layer(audio)
|
| 166 |
+
att_w = self.mods.attention_mlp(embeddings)
|
| 167 |
+
feats = torch.matmul(att_w.transpose(2, -1), embeddings).squeeze(-2)
|
| 168 |
+
embeddings = self.mods.embedding_model(feats, length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
return embeddings.squeeze(1)
|
| 170 |
+
|
| 171 |
+
def forward(self, audio, length=None):
|
| 172 |
+
return self.encode_batch(audio, length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hyperparams.yaml
CHANGED
|
@@ -8,7 +8,6 @@ n_mels: 80
|
|
| 8 |
# Pretrain folder (HuggingFace)
|
| 9 |
pretrained_path: poonehmousavi/discrete_wavlm_spk_rec_ecapatdn
|
| 10 |
# Output parameters
|
| 11 |
-
out_n_neurons: 1211
|
| 12 |
save_folder: tmp
|
| 13 |
|
| 14 |
### Configuration for discrete SSL model
|
|
@@ -30,6 +29,7 @@ num_clusters: 1000
|
|
| 30 |
# deduplicate: [False, False, False, False]
|
| 31 |
# bpe_tokenizer_path: [null , null, null, null]
|
| 32 |
ssl_layer_num: [1, 3, 7, 12, 18, 23]
|
|
|
|
| 33 |
num_codebooks: 6
|
| 34 |
deduplicate: [False, False, False, False, False, False]
|
| 35 |
bpe_tokenizer_path: [null, null, null, null, null, null]
|
|
@@ -43,42 +43,12 @@ tokenizer_config:
|
|
| 43 |
deduplicates: !ref <deduplicate>
|
| 44 |
bpe_tokenizers: !ref <bpe_tokenizer_path>
|
| 45 |
|
| 46 |
-
ssl_model: !apply:speechbrain.utils.hparams.choice
|
| 47 |
-
value: !ref <ssl_model_type>
|
| 48 |
-
choices:
|
| 49 |
-
wavlm: !new:speechbrain.lobes.models.huggingface_transformers.wavlm.WavLM
|
| 50 |
-
source: !ref <ssl_hub>
|
| 51 |
-
output_norm: False
|
| 52 |
-
freeze: !ref <freeze_ssl>
|
| 53 |
-
freeze_feature_extractor: !ref <freeze_feature_extractor>
|
| 54 |
-
output_all_hiddens: True
|
| 55 |
-
save_path: !ref <ssl_folder>
|
| 56 |
-
hubert: !new:speechbrain.lobes.models.huggingface_transformers.hubert.HuBERT
|
| 57 |
-
source: !ref <ssl_hub>
|
| 58 |
-
output_norm: False
|
| 59 |
-
freeze: !ref <freeze_ssl>
|
| 60 |
-
freeze_feature_extractor: !ref <freeze_feature_extractor>
|
| 61 |
-
output_all_hiddens: True
|
| 62 |
-
save_path: !ref <ssl_folder>
|
| 63 |
-
wav2vec2: !new:speechbrain.lobes.models.huggingface_transformers.wav2vec2.Wav2Vec2
|
| 64 |
-
source: !ref <ssl_hub>
|
| 65 |
-
output_norm: False
|
| 66 |
-
freeze: !ref <freeze_ssl>
|
| 67 |
-
freeze_feature_extractor: !ref <freeze_feature_extractor>
|
| 68 |
-
output_all_hiddens: True
|
| 69 |
-
save_path: !ref <ssl_folder>
|
| 70 |
-
|
| 71 |
-
codec: !new:speechbrain.lobes.models.huggingface_transformers.discrete_ssl.DiscreteSSL
|
| 72 |
-
save_path: !ref <kmeans_cache_dir>
|
| 73 |
-
ssl_model: !ref <ssl_model>
|
| 74 |
-
kmeans_dataset: !ref <kmeans_dataset>
|
| 75 |
-
kmeans_repo_id: !ref <kmeans_repo_id>
|
| 76 |
-
num_clusters: !ref <num_clusters>
|
| 77 |
-
|
| 78 |
discrete_embedding_layer: !new:custom_interface.Discrete_EmbeddingLayer
|
| 79 |
num_codebooks: !ref <num_codebooks>
|
| 80 |
vocab_size: !ref <num_clusters>
|
| 81 |
emb_dim: !ref <encoder_dim>
|
|
|
|
|
|
|
| 82 |
|
| 83 |
attention_mlp: !new:custom_interface.AttentionMLP
|
| 84 |
input_dim: !ref <encoder_dim>
|
|
@@ -93,36 +63,21 @@ embedding_model: !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
|
|
| 93 |
attention_channels: 128
|
| 94 |
lin_neurons: 192
|
| 95 |
|
| 96 |
-
classifier: !new:speechbrain.lobes.models.ECAPA_TDNN.Classifier
|
| 97 |
-
input_size: 192
|
| 98 |
-
out_neurons: !ref <out_n_neurons>
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
modules:
|
| 103 |
embedding_model: !ref <embedding_model>
|
| 104 |
-
classifier: !ref <classifier>
|
| 105 |
attention_mlp: !ref <attention_mlp>
|
| 106 |
-
codec: !ref <codec>
|
| 107 |
discrete_embedding_layer: !ref <discrete_embedding_layer>
|
| 108 |
|
| 109 |
|
| 110 |
-
label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder
|
| 111 |
-
|
| 112 |
-
|
| 113 |
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
| 114 |
loadables:
|
| 115 |
embedding_model: !ref <embedding_model>
|
| 116 |
-
classifier: !ref <classifier>
|
| 117 |
attention_mlp: !ref <attention_mlp>
|
| 118 |
discrete_embedding_layer: !ref <discrete_embedding_layer>
|
| 119 |
-
label_encoder: !ref <label_encoder>
|
| 120 |
|
| 121 |
paths:
|
| 122 |
embedding_model: !ref <pretrained_path>/embedding_model.ckpt
|
| 123 |
-
classifier: !ref <pretrained_path>/classifier.ckpt
|
| 124 |
attention_mlp: !ref <pretrained_path>/attention_mlp.ckpt
|
| 125 |
-
label_encoder: !ref <pretrained_path>/label_encoder.txt
|
| 126 |
discrete_embedding_layer: !ref <pretrained_path>/discrete_embedding_layer.ckpt
|
| 127 |
|
| 128 |
|
|
|
|
| 8 |
# Pretrain folder (HuggingFace)
|
| 9 |
pretrained_path: poonehmousavi/discrete_wavlm_spk_rec_ecapatdn
|
| 10 |
# Output parameters
|
|
|
|
| 11 |
save_folder: tmp
|
| 12 |
|
| 13 |
### Configuration for discrete SSL model
|
|
|
|
| 29 |
# deduplicate: [False, False, False, False]
|
| 30 |
# bpe_tokenizer_path: [null , null, null, null]
|
| 31 |
ssl_layer_num: [1, 3, 7, 12, 18, 23]
|
| 32 |
+
ssl_layer_num_selected: [1, 3, 7, 12, 18, 23]
|
| 33 |
num_codebooks: 6
|
| 34 |
deduplicate: [False, False, False, False, False, False]
|
| 35 |
bpe_tokenizer_path: [null, null, null, null, null, null]
|
|
|
|
| 43 |
deduplicates: !ref <deduplicate>
|
| 44 |
bpe_tokenizers: !ref <bpe_tokenizer_path>
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
discrete_embedding_layer: !new:custom_interface.Discrete_EmbeddingLayer
|
| 47 |
num_codebooks: !ref <num_codebooks>
|
| 48 |
vocab_size: !ref <num_clusters>
|
| 49 |
emb_dim: !ref <encoder_dim>
|
| 50 |
+
available_layers: !ref <ssl_layer_num>
|
| 51 |
+
layers: !ref <ssl_layer_num_selected>
|
| 52 |
|
| 53 |
attention_mlp: !new:custom_interface.AttentionMLP
|
| 54 |
input_dim: !ref <encoder_dim>
|
|
|
|
| 63 |
attention_channels: 128
|
| 64 |
lin_neurons: 192
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
modules:
|
| 67 |
embedding_model: !ref <embedding_model>
|
|
|
|
| 68 |
attention_mlp: !ref <attention_mlp>
|
|
|
|
| 69 |
discrete_embedding_layer: !ref <discrete_embedding_layer>
|
| 70 |
|
| 71 |
|
|
|
|
|
|
|
|
|
|
| 72 |
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
| 73 |
loadables:
|
| 74 |
embedding_model: !ref <embedding_model>
|
|
|
|
| 75 |
attention_mlp: !ref <attention_mlp>
|
| 76 |
discrete_embedding_layer: !ref <discrete_embedding_layer>
|
|
|
|
| 77 |
|
| 78 |
paths:
|
| 79 |
embedding_model: !ref <pretrained_path>/embedding_model.ckpt
|
|
|
|
| 80 |
attention_mlp: !ref <pretrained_path>/attention_mlp.ckpt
|
|
|
|
| 81 |
discrete_embedding_layer: !ref <pretrained_path>/discrete_embedding_layer.ckpt
|
| 82 |
|
| 83 |
|