asi commited on
Commit
29f1567
·
1 Parent(s): e23bd90

:books: add documentation

Browse files
Files changed (1) hide show
  1. README.md +29 -3
README.md CHANGED
@@ -11,7 +11,7 @@ language: en
11
 
12
  The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
13
  contrastive learning objective. We used the pretrained ['mpnet-base'](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a
14
- 700M sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
15
 
16
  We developped this model during the
17
  [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
@@ -60,11 +60,37 @@ a 2e-5 learning rate. The full training script is accessible in this current rep
60
 
61
  ### Training data
62
 
63
- We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 700M sentences.
64
  We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
65
- We only use the first context response when building the dataset.
66
 
67
 
68
  | Dataset | Paper | Number of training tuples |
69
  |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:|
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
 
 
11
 
12
  The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
13
  contrastive learning objective. We used the pretrained ['mpnet-base'](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a
14
+ 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
15
 
16
  We developped this model during the
17
  [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
 
60
 
61
  ### Training data
62
 
63
+ We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
64
  We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
 
65
 
66
 
67
  | Dataset | Paper | Number of training tuples |
68
  |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:|
69
+ | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
70
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_title_body_jsonl) | - | 364,001 |
71
+ | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
72
+ | [COCO 2020](COCO 2020) | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
73
+ | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
74
+ | [TriviaqQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
75
+ | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
76
+ | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
77
+ | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
78
+ | [Quora Question Pairs](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
79
+ | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
80
+ | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
81
+ | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
82
+ | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
83
+ | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
84
+ | [SPECTER](https://github.com/allenai/specter) | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
85
+ | [S2ORC](https://github.com/allenai/s2orc) Title/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
86
+ | [S2ORC](https://github.com/allenai/s2orc) Citation/Citation | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
87
+ | [S2ORC](https://github.com/allenai/s2orc) Citation/Abstract | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
88
+ | [PAQ](https://github.com/facebookresearch/PAQ) | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
89
+ | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
90
+ | SearchQA | - | 582,261 |
91
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
92
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Title/Question | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
93
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) Question/Answer | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
94
+ | [MS MARCO](https://microsoft.github.io/msmarco/) | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
95
  | [Reddit conversationnal](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
96
+ | total | | 1,097,953,922 |