initial model commit
Browse files
README.md
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- flair
|
| 4 |
+
- token-classification
|
| 5 |
+
- sequence-tagger-model
|
| 6 |
+
language: en de nl es
|
| 7 |
+
datasets:
|
| 8 |
+
- conll2003
|
| 9 |
+
inference: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
## 4-Language NER in Flair (English, German, Dutch and Spanish)
|
| 13 |
+
|
| 14 |
+
This is the standard 4-class NER model for 4 CoNLL-03 languages that ships with [Flair](https://github.com/flairNLP/flair/). Also kind of works for related languages like French.
|
| 15 |
+
|
| 16 |
+
F1-Score: **92,16** (CoNLL-03 English), **87,33** (CoNLL-03 German revised), **88,96** (CoNLL-03 Dutch), **86,65** (CoNLL-03 Spanish)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
Predicts 4 tags:
|
| 20 |
+
|
| 21 |
+
| **tag** | **meaning** |
|
| 22 |
+
|---------------------------------|-----------|
|
| 23 |
+
| PER | person name |
|
| 24 |
+
| LOC | location name |
|
| 25 |
+
| ORG | organization name |
|
| 26 |
+
| MISC | other name |
|
| 27 |
+
|
| 28 |
+
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
|
| 29 |
+
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
### Demo: How to use in Flair
|
| 33 |
+
|
| 34 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
| 35 |
+
|
| 36 |
+
```python
|
| 37 |
+
from flair.data import Sentence
|
| 38 |
+
from flair.models import SequenceTagger
|
| 39 |
+
|
| 40 |
+
# load tagger
|
| 41 |
+
tagger = SequenceTagger.load("flair/ner-multi")
|
| 42 |
+
|
| 43 |
+
# make example sentence in any of the four languages
|
| 44 |
+
sentence = Sentence("George Washington ging nach Washington")
|
| 45 |
+
|
| 46 |
+
# predict NER tags
|
| 47 |
+
tagger.predict(sentence)
|
| 48 |
+
|
| 49 |
+
# print sentence
|
| 50 |
+
print(sentence)
|
| 51 |
+
|
| 52 |
+
# print predicted NER spans
|
| 53 |
+
print('The following NER tags are found:')
|
| 54 |
+
# iterate over entities and print
|
| 55 |
+
for entity in sentence.get_spans('ner'):
|
| 56 |
+
print(entity)
|
| 57 |
+
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
This yields the following output:
|
| 61 |
+
```
|
| 62 |
+
Span [1,2]: "George Washington" [− Labels: PER (0.9977)]
|
| 63 |
+
Span [5]: "Washington" [− Labels: LOC (0.9895)]
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*".
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
---
|
| 70 |
+
|
| 71 |
+
### Training: Script to train this model
|
| 72 |
+
|
| 73 |
+
The following Flair script was used to train this model:
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
from flair.data import Corpus
|
| 77 |
+
from flair.datasets import CONLL_03, CONLL_03_GERMAN, CONLL_03_DUTCH, CONLL_03_SPANISH
|
| 78 |
+
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
|
| 79 |
+
|
| 80 |
+
# 1. get the multi-language corpus
|
| 81 |
+
corpus: Corpus = MultiCorpus([
|
| 82 |
+
CONLL_03(), # English corpus
|
| 83 |
+
CONLL_03_GERMAN(), # German corpus
|
| 84 |
+
CONLL_03_DUTCH(), # Dutch corpus
|
| 85 |
+
CONLL_03_SPANISH(), # Spanish corpus
|
| 86 |
+
])
|
| 87 |
+
|
| 88 |
+
# 2. what tag do we want to predict?
|
| 89 |
+
tag_type = 'ner'
|
| 90 |
+
|
| 91 |
+
# 3. make the tag dictionary from the corpus
|
| 92 |
+
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
| 93 |
+
|
| 94 |
+
# 4. initialize each embedding we use
|
| 95 |
+
embedding_types = [
|
| 96 |
+
|
| 97 |
+
# GloVe embeddings
|
| 98 |
+
WordEmbeddings('glove'),
|
| 99 |
+
|
| 100 |
+
# FastText embeddings
|
| 101 |
+
WordEmbeddings('de'),
|
| 102 |
+
|
| 103 |
+
# contextual string embeddings, forward
|
| 104 |
+
FlairEmbeddings('multi-forward'),
|
| 105 |
+
|
| 106 |
+
# contextual string embeddings, backward
|
| 107 |
+
FlairEmbeddings('multi-backward'),
|
| 108 |
+
]
|
| 109 |
+
|
| 110 |
+
# embedding stack consists of Flair and GloVe embeddings
|
| 111 |
+
embeddings = StackedEmbeddings(embeddings=embedding_types)
|
| 112 |
+
|
| 113 |
+
# 5. initialize sequence tagger
|
| 114 |
+
from flair.models import SequenceTagger
|
| 115 |
+
|
| 116 |
+
tagger = SequenceTagger(hidden_size=256,
|
| 117 |
+
embeddings=embeddings,
|
| 118 |
+
tag_dictionary=tag_dictionary,
|
| 119 |
+
tag_type=tag_type)
|
| 120 |
+
|
| 121 |
+
# 6. initialize trainer
|
| 122 |
+
from flair.trainers import ModelTrainer
|
| 123 |
+
|
| 124 |
+
trainer = ModelTrainer(tagger, corpus)
|
| 125 |
+
|
| 126 |
+
# 7. run training
|
| 127 |
+
trainer.train('resources/taggers/ner-multi',
|
| 128 |
+
train_with_dev=True,
|
| 129 |
+
max_epochs=150)
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
---
|
| 135 |
+
|
| 136 |
+
### Cite
|
| 137 |
+
|
| 138 |
+
Please cite the following paper when using this model.
|
| 139 |
+
|
| 140 |
+
```
|
| 141 |
+
@inproceedings{akbik2018coling,
|
| 142 |
+
title={Contextual String Embeddings for Sequence Labeling},
|
| 143 |
+
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
|
| 144 |
+
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
|
| 145 |
+
pages = {1638--1649},
|
| 146 |
+
year = {2018}
|
| 147 |
+
}
|
| 148 |
+
```
|