File size: 9,790 Bytes
ed5df5b
 
bf5c0d6
ed5df5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f982381
ed5df5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f982381
ed5df5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python3
"""
MAC OS X INSTALL: pip3 install torch==2.1.1 torchvision torchaudio transformers==4.48.0 accelerate==0.28.0 (You must use these versions, higher version have some numerical instability bug on MPS chips) 
Interactive model evaluation script for pretraining experiments.
Automatically discovers and loads all models with /hf subdirectories.
"""

import os
import glob
from pathlib import Path
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import warnings

# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")

MODEL_NAME_FILTER = None

class ModelEvaluator:
    def __init__(self):
        self.models = {}
        self.tokenizers = {}
        self.pipelines = {}
        self.model_names = []
        
    def discover_models(self):
        """Discover all models with /hf subdirectories."""
        print("🔍 Discovering models with /hf subdirectories...")
        
        # Find all directories that contain an /hf subdirectory
        hf_dirs = []
        for item in os.listdir('.'):
            if os.path.isdir(item) and os.path.exists(os.path.join(item, 'hf')):
                if MODEL_NAME_FILTER is None or MODEL_NAME_FILTER in item:
                    hf_dirs.append(item)
        
        if not hf_dirs:
            print("❌ No models with /hf subdirectories found!")
            return False
            
        print(f"✅ Found {len(hf_dirs)} models:")
        for model_dir in hf_dirs:
            print(f"   - {model_dir}")
        return hf_dirs
    
    def load_model(self, model_dir):
        """Load a single model and its tokenizer."""
        try:
            hf_path = os.path.join(model_dir, 'hf')
            print(f"🔄 Loading {model_dir}...")
            
            # Load tokenizer
            tokenizer = AutoTokenizer.from_pretrained(hf_path)
            if tokenizer.pad_token is None:
                tokenizer.pad_token = tokenizer.eos_token
            
            # Load model
            model = AutoModelForCausalLM.from_pretrained(
                hf_path,
                device_map=None,
                torch_dtype=torch.float16,
                trust_remote_code=True
            )
            model = model.to(torch.float16)
            if torch.cuda.is_available():
                model.to("cuda:0")
            else:
                model.to("mps")
            
            # Create pipeline - use conversational for chat models, text-generation for others
            if "chat" in model_dir.lower() or "sft" in model_dir.lower():
                pipe = pipeline(
                    "text-generation",
                    model=model,
                    tokenizer=tokenizer,
                    device_map="auto",
                    torch_dtype=torch.float16
                )
                print(f"   🔄 Using conversational pipeline for chat model")
            else:
                pipe = pipeline(
                    "text-generation",
                    model=model,
                    tokenizer=tokenizer,
                    device_map="auto",
                    torch_dtype=torch.float16
                )
                print(f"   🔄 Using text-generation pipeline")
            
            self.models[model_dir] = model
            self.tokenizers[model_dir] = tokenizer
            self.pipelines[model_dir] = pipe
            self.model_names.append(model_dir)
            
            print(f"   ✅ {model_dir} loaded successfully")
            return True
            
        except Exception as e:
            print(f"   ❌ Failed to load {model_dir}: {str(e)}")
            return False
    
    def load_all_models(self):
        """Load all discovered models."""
        hf_dirs = self.discover_models()
        if not hf_dirs:
            return False
        
        print("\n🚀 Loading models...")
        successful_loads = 0
        
        for model_dir in hf_dirs:
            if self.load_model(model_dir):
                successful_loads += 1
        
        print(f"\n📊 Loaded {successful_loads}/{len(hf_dirs)} models successfully")
        return successful_loads > 0
    
    def generate_response(self, model_name, prompt, max_length=256):
        """Generate response for a specific model."""
        try:
            pipe = self.pipelines[model_name]
            
            # Check if this is a conversational pipeline
            if "chat" in model_name.lower() or "sft" in model_name.lower():
                # For conversational models, use the chat format
                chat_input = [{"role": "user", "content": prompt}]
                outputs = pipe(
                    chat_input,
                    max_new_tokens=max_length,
                    do_sample=True,
                    temperature=0.7,
                    top_p=0.9,
                    repetition_penalty=1.1,
                    pad_token_id=self.tokenizers[model_name].eos_token_id
                )
                # Extract the assistant's response from the conversational output
                if outputs and len(outputs) > 0:
                    # The conversational pipeline returns the full conversation
                    # We need to extract just the assistant's last response
                    conversation = outputs[0]['generated_text']
                    if isinstance(conversation, list) and len(conversation) > 1:
                        # Find the last assistant message
                        for message in reversed(conversation):
                            if message.get('role') == 'assistant':
                                return message.get('content', 'No response generated')
                        # If no assistant message found, return the last message content
                        return conversation[-1].get('content', 'No response generated')
                    else:
                        return str(conversation)
                else:
                    return "No response generated"
            else:
                # For text-generation models, use the original format
                outputs = pipe(
                    prompt,
                    max_new_tokens=max_length,
                    do_sample=True,
                    temperature=0.7,
                    top_p=0.9,
                    pad_token_id=self.tokenizers[model_name].eos_token_id,
                    return_full_text=False
                )
                
                return outputs[0]['generated_text']
            
        except Exception as e:
            return f"❌ Generation failed: {str(e)}"
    
    def evaluate_prompt(self, prompt):
        """Evaluate a prompt across all loaded models."""
        print(f"\n🎯 Evaluating prompt: '{prompt}'")
        print("=" * 80)
        
        for model_name in self.model_names:
            print(f"\n🤖 {model_name}:")
            print("-" * 40)
            
            response = self.generate_response(model_name, prompt)
            print(response)
        
        print("\n" + "=" * 80)
    
    def interactive_loop(self):
        """Main interactive evaluation loop."""
        print("\n🎮 Interactive Evaluation Mode")
        print("Commands:")
        print("  - Type your prompt to evaluate all models")
        print("  - Type 'quit' or 'exit' to end")
        print("  - Type 'help' for this message")
        print("  - Type 'models' to list loaded models")
        print("  - Type 'clear' to clear screen")
        print("\n💡 Note: Models with 'chat' in their name use conversational pipeline,")
        print("   other models use text-generation pipeline.")
        
        while True:
            try:
                user_input = input("\n💬 Enter prompt (or command): ").strip()
                
                if not user_input:
                    continue
                    
                if user_input.lower() in ['quit', 'exit', 'q']:
                    print("👋 Goodbye!")
                    break
                    
                elif user_input.lower() == 'help':
                    print("\n🎮 Interactive Evaluation Mode")
                    print("Commands:")
                    print("  - Type your prompt to evaluate all models")
                    print("  - Type 'quit' or 'exit' to end")
                    print("  - Type 'help' for this message")
                    print("  - Type 'models' to list loaded models")
                    print("  - Type 'clear' to clear screen")
                    print("\n💡 Note: Models with 'chat' in their name use conversational pipeline,")
                    print("   other models use text-generation pipeline.")
                    
                elif user_input.lower() == 'models':
                    print(f"\n📋 Loaded models ({len(self.model_names)}):")
                    for i, model_name in enumerate(self.model_names, 1):
                        print(f"  {i}. {model_name}")
                        
                elif user_input.lower() == 'clear':
                    os.system('clear' if os.name == 'posix' else 'cls')
                    
                else:
                    self.evaluate_prompt(user_input)
                    
            except KeyboardInterrupt:
                print("\n\n👋 Goodbye!")
                break
            except Exception as e:
                print(f"❌ Error: {str(e)}")

def main():
    print("🚀 Model Evaluation Script")
    print("=" * 50)
    
    evaluator = ModelEvaluator()
    
    # Load all models
    if not evaluator.load_all_models():
        print("❌ No models could be loaded. Exiting.")
        return
    
    # Start interactive loop
    evaluator.interactive_loop()

if __name__ == "__main__":
    main()