Upload folder using huggingface_hub
Browse files- README.md +209 -0
- adapter_config.json +42 -0
- adapter_model.safetensors +3 -0
- chat_template.jinja +87 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +0 -0
- trainer_state.json +831 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.3
|
3 |
+
library_name: peft
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
tags:
|
6 |
+
- base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3
|
7 |
+
- lora
|
8 |
+
- sft
|
9 |
+
- transformers
|
10 |
+
- trl
|
11 |
+
---
|
12 |
+
|
13 |
+
# Model Card for Model ID
|
14 |
+
|
15 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
## Model Details
|
20 |
+
|
21 |
+
### Model Description
|
22 |
+
|
23 |
+
<!-- Provide a longer summary of what this model is. -->
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
- **Developed by:** [More Information Needed]
|
28 |
+
- **Funded by [optional]:** [More Information Needed]
|
29 |
+
- **Shared by [optional]:** [More Information Needed]
|
30 |
+
- **Model type:** [More Information Needed]
|
31 |
+
- **Language(s) (NLP):** [More Information Needed]
|
32 |
+
- **License:** [More Information Needed]
|
33 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
### Model Sources [optional]
|
36 |
+
|
37 |
+
<!-- Provide the basic links for the model. -->
|
38 |
+
|
39 |
+
- **Repository:** [More Information Needed]
|
40 |
+
- **Paper [optional]:** [More Information Needed]
|
41 |
+
- **Demo [optional]:** [More Information Needed]
|
42 |
+
|
43 |
+
## Uses
|
44 |
+
|
45 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
46 |
+
|
47 |
+
### Direct Use
|
48 |
+
|
49 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
50 |
+
|
51 |
+
[More Information Needed]
|
52 |
+
|
53 |
+
### Downstream Use [optional]
|
54 |
+
|
55 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
56 |
+
|
57 |
+
[More Information Needed]
|
58 |
+
|
59 |
+
### Out-of-Scope Use
|
60 |
+
|
61 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
62 |
+
|
63 |
+
[More Information Needed]
|
64 |
+
|
65 |
+
## Bias, Risks, and Limitations
|
66 |
+
|
67 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
68 |
+
|
69 |
+
[More Information Needed]
|
70 |
+
|
71 |
+
### Recommendations
|
72 |
+
|
73 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
74 |
+
|
75 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
76 |
+
|
77 |
+
## How to Get Started with the Model
|
78 |
+
|
79 |
+
Use the code below to get started with the model.
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
## Training Details
|
84 |
+
|
85 |
+
### Training Data
|
86 |
+
|
87 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
### Training Procedure
|
92 |
+
|
93 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
94 |
+
|
95 |
+
#### Preprocessing [optional]
|
96 |
+
|
97 |
+
[More Information Needed]
|
98 |
+
|
99 |
+
|
100 |
+
#### Training Hyperparameters
|
101 |
+
|
102 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
103 |
+
|
104 |
+
#### Speeds, Sizes, Times [optional]
|
105 |
+
|
106 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
107 |
+
|
108 |
+
[More Information Needed]
|
109 |
+
|
110 |
+
## Evaluation
|
111 |
+
|
112 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
113 |
+
|
114 |
+
### Testing Data, Factors & Metrics
|
115 |
+
|
116 |
+
#### Testing Data
|
117 |
+
|
118 |
+
<!-- This should link to a Dataset Card if possible. -->
|
119 |
+
|
120 |
+
[More Information Needed]
|
121 |
+
|
122 |
+
#### Factors
|
123 |
+
|
124 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
125 |
+
|
126 |
+
[More Information Needed]
|
127 |
+
|
128 |
+
#### Metrics
|
129 |
+
|
130 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
131 |
+
|
132 |
+
[More Information Needed]
|
133 |
+
|
134 |
+
### Results
|
135 |
+
|
136 |
+
[More Information Needed]
|
137 |
+
|
138 |
+
#### Summary
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
## Model Examination [optional]
|
143 |
+
|
144 |
+
<!-- Relevant interpretability work for the model goes here -->
|
145 |
+
|
146 |
+
[More Information Needed]
|
147 |
+
|
148 |
+
## Environmental Impact
|
149 |
+
|
150 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
151 |
+
|
152 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
153 |
+
|
154 |
+
- **Hardware Type:** [More Information Needed]
|
155 |
+
- **Hours used:** [More Information Needed]
|
156 |
+
- **Cloud Provider:** [More Information Needed]
|
157 |
+
- **Compute Region:** [More Information Needed]
|
158 |
+
- **Carbon Emitted:** [More Information Needed]
|
159 |
+
|
160 |
+
## Technical Specifications [optional]
|
161 |
+
|
162 |
+
### Model Architecture and Objective
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
### Compute Infrastructure
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
#### Hardware
|
171 |
+
|
172 |
+
[More Information Needed]
|
173 |
+
|
174 |
+
#### Software
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
## Citation [optional]
|
179 |
+
|
180 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
181 |
+
|
182 |
+
**BibTeX:**
|
183 |
+
|
184 |
+
[More Information Needed]
|
185 |
+
|
186 |
+
**APA:**
|
187 |
+
|
188 |
+
[More Information Needed]
|
189 |
+
|
190 |
+
## Glossary [optional]
|
191 |
+
|
192 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## More Information [optional]
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
## Model Card Authors [optional]
|
201 |
+
|
202 |
+
[More Information Needed]
|
203 |
+
|
204 |
+
## Model Card Contact
|
205 |
+
|
206 |
+
[More Information Needed]
|
207 |
+
### Framework versions
|
208 |
+
|
209 |
+
- PEFT 0.17.0
|
adapter_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 16,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.1,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"qalora_group_size": 16,
|
24 |
+
"r": 32,
|
25 |
+
"rank_pattern": {},
|
26 |
+
"revision": null,
|
27 |
+
"target_modules": [
|
28 |
+
"o_proj",
|
29 |
+
"k_proj",
|
30 |
+
"down_proj",
|
31 |
+
"q_proj",
|
32 |
+
"up_proj",
|
33 |
+
"gate_proj",
|
34 |
+
"v_proj"
|
35 |
+
],
|
36 |
+
"target_parameters": null,
|
37 |
+
"task_type": "CAUSAL_LM",
|
38 |
+
"trainable_token_indices": null,
|
39 |
+
"use_dora": false,
|
40 |
+
"use_qalora": false,
|
41 |
+
"use_rslora": false
|
42 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0c07f5121879c4cadaec404d3b23f7a9725dc290d43d72b27b3ed83c91425f8
|
3 |
+
size 335604696
|
chat_template.jinja
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if messages[0]["role"] == "system" %}
|
2 |
+
{%- set system_message = messages[0]["content"] %}
|
3 |
+
{%- set loop_messages = messages[1:] %}
|
4 |
+
{%- else %}
|
5 |
+
{%- set loop_messages = messages %}
|
6 |
+
{%- endif %}
|
7 |
+
{%- if not tools is defined %}
|
8 |
+
{%- set tools = none %}
|
9 |
+
{%- endif %}
|
10 |
+
{%- set user_messages = loop_messages | selectattr("role", "equalto", "user") | list %}
|
11 |
+
|
12 |
+
{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}
|
13 |
+
{%- set ns = namespace() %}
|
14 |
+
{%- set ns.index = 0 %}
|
15 |
+
{%- for message in loop_messages %}
|
16 |
+
{%- if not (message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
|
17 |
+
{%- if (message["role"] == "user") != (ns.index % 2 == 0) %}
|
18 |
+
{{- raise_exception("After the optional system message, conversation roles must alternate user/assistant/user/assistant/...") }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- set ns.index = ns.index + 1 %}
|
21 |
+
{%- endif %}
|
22 |
+
{%- endfor %}
|
23 |
+
|
24 |
+
{{- bos_token }}
|
25 |
+
{%- for message in loop_messages %}
|
26 |
+
{%- if message["role"] == "user" %}
|
27 |
+
{%- if tools is not none and (message == user_messages[-1]) %}
|
28 |
+
{{- "[AVAILABLE_TOOLS] [" }}
|
29 |
+
{%- for tool in tools %}
|
30 |
+
{%- set tool = tool.function %}
|
31 |
+
{{- '{"type": "function", "function": {' }}
|
32 |
+
{%- for key, val in tool.items() if key != "return" %}
|
33 |
+
{%- if val is string %}
|
34 |
+
{{- '"' + key + '": "' + val + '"' }}
|
35 |
+
{%- else %}
|
36 |
+
{{- '"' + key + '": ' + val|tojson }}
|
37 |
+
{%- endif %}
|
38 |
+
{%- if not loop.last %}
|
39 |
+
{{- ", " }}
|
40 |
+
{%- endif %}
|
41 |
+
{%- endfor %}
|
42 |
+
{{- "}}" }}
|
43 |
+
{%- if not loop.last %}
|
44 |
+
{{- ", " }}
|
45 |
+
{%- else %}
|
46 |
+
{{- "]" }}
|
47 |
+
{%- endif %}
|
48 |
+
{%- endfor %}
|
49 |
+
{{- "[/AVAILABLE_TOOLS]" }}
|
50 |
+
{%- endif %}
|
51 |
+
{%- if loop.last and system_message is defined %}
|
52 |
+
{{- "[INST] " + system_message + "\n\n" + message["content"] + "[/INST]" }}
|
53 |
+
{%- else %}
|
54 |
+
{{- "[INST] " + message["content"] + "[/INST]" }}
|
55 |
+
{%- endif %}
|
56 |
+
{%- elif message.tool_calls is defined and message.tool_calls is not none %}
|
57 |
+
{{- "[TOOL_CALLS] [" }}
|
58 |
+
{%- for tool_call in message.tool_calls %}
|
59 |
+
{%- set out = tool_call.function|tojson %}
|
60 |
+
{{- out[:-1] }}
|
61 |
+
{%- if not tool_call.id is defined or tool_call.id|length != 9 %}
|
62 |
+
{{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
|
63 |
+
{%- endif %}
|
64 |
+
{{- ', "id": "' + tool_call.id + '"}' }}
|
65 |
+
{%- if not loop.last %}
|
66 |
+
{{- ", " }}
|
67 |
+
{%- else %}
|
68 |
+
{{- "]" + eos_token }}
|
69 |
+
{%- endif %}
|
70 |
+
{%- endfor %}
|
71 |
+
{%- elif message["role"] == "assistant" %}
|
72 |
+
{{- " " + message["content"]|trim + eos_token}}
|
73 |
+
{%- elif message["role"] == "tool_results" or message["role"] == "tool" %}
|
74 |
+
{%- if message.content is defined and message.content.content is defined %}
|
75 |
+
{%- set content = message.content.content %}
|
76 |
+
{%- else %}
|
77 |
+
{%- set content = message.content %}
|
78 |
+
{%- endif %}
|
79 |
+
{{- '[TOOL_RESULTS] {"content": ' + content|string + ", " }}
|
80 |
+
{%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}
|
81 |
+
{{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
|
82 |
+
{%- endif %}
|
83 |
+
{{- '"call_id": "' + message.tool_call_id + '"}[/TOOL_RESULTS]' }}
|
84 |
+
{%- else %}
|
85 |
+
{{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}
|
86 |
+
{%- endif %}
|
87 |
+
{%- endfor %}
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e18e1dc6c698b77ed15080de0981c7e22e0359d8e62e31896792a69006bbbcb
|
3 |
+
size 671365003
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1d1105d42c57a99667ef8275ff47ca54315e8a9807d2b17d4c6cdc6ecb9e6cc
|
3 |
+
size 14645
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdeac6d1a7910e1e533a39a2d59ab67f6fb22254f41224ded16d311412dbc0b1
|
3 |
+
size 1465
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
|
3 |
+
size 587404
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
@@ -0,0 +1,831 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 5.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 2075,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.060350030175015085,
|
14 |
+
"grad_norm": 0.8775522708892822,
|
15 |
+
"learning_rate": 8.18181818181818e-05,
|
16 |
+
"loss": 1.5879,
|
17 |
+
"mean_token_accuracy": 0.6690774387121201,
|
18 |
+
"num_tokens": 155085.0,
|
19 |
+
"step": 25
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"epoch": 0.12070006035003017,
|
23 |
+
"grad_norm": 0.9928436279296875,
|
24 |
+
"learning_rate": 0.00016704545454545452,
|
25 |
+
"loss": 0.882,
|
26 |
+
"mean_token_accuracy": 0.7819808393716812,
|
27 |
+
"num_tokens": 272168.0,
|
28 |
+
"step": 50
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 0.18105009052504525,
|
32 |
+
"grad_norm": 0.6491063237190247,
|
33 |
+
"learning_rate": 0.0002522727272727273,
|
34 |
+
"loss": 0.5779,
|
35 |
+
"mean_token_accuracy": 0.8428267538547516,
|
36 |
+
"num_tokens": 424672.0,
|
37 |
+
"step": 75
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.24140012070006034,
|
41 |
+
"grad_norm": 0.8907634615898132,
|
42 |
+
"learning_rate": 0.0002999887132933212,
|
43 |
+
"loss": 0.5317,
|
44 |
+
"mean_token_accuracy": 0.8538330507278442,
|
45 |
+
"num_tokens": 538458.0,
|
46 |
+
"step": 100
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.30175015087507545,
|
50 |
+
"grad_norm": 0.9097657203674316,
|
51 |
+
"learning_rate": 0.0002998791256978121,
|
52 |
+
"loss": 0.3574,
|
53 |
+
"mean_token_accuracy": 0.8985000151395798,
|
54 |
+
"num_tokens": 689411.0,
|
55 |
+
"step": 125
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.3621001810500905,
|
59 |
+
"grad_norm": 0.6912802457809448,
|
60 |
+
"learning_rate": 0.0002996530399366737,
|
61 |
+
"loss": 0.3448,
|
62 |
+
"mean_token_accuracy": 0.9023130792379379,
|
63 |
+
"num_tokens": 804866.0,
|
64 |
+
"step": 150
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 0.4224502112251056,
|
68 |
+
"grad_norm": 0.5329523682594299,
|
69 |
+
"learning_rate": 0.00029931063174202567,
|
70 |
+
"loss": 0.2315,
|
71 |
+
"mean_token_accuracy": 0.9339979404211044,
|
72 |
+
"num_tokens": 957115.0,
|
73 |
+
"step": 175
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.4828002414001207,
|
77 |
+
"grad_norm": 0.759782075881958,
|
78 |
+
"learning_rate": 0.00029885216726118104,
|
79 |
+
"loss": 0.2336,
|
80 |
+
"mean_token_accuracy": 0.9350438743829728,
|
81 |
+
"num_tokens": 1073977.0,
|
82 |
+
"step": 200
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.5431502715751357,
|
86 |
+
"grad_norm": 0.3837663531303406,
|
87 |
+
"learning_rate": 0.00029827800284977474,
|
88 |
+
"loss": 0.189,
|
89 |
+
"mean_token_accuracy": 0.9478910142183303,
|
90 |
+
"num_tokens": 1225658.0,
|
91 |
+
"step": 225
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.6035003017501509,
|
95 |
+
"grad_norm": 0.7154819369316101,
|
96 |
+
"learning_rate": 0.00029758858479477575,
|
97 |
+
"loss": 0.192,
|
98 |
+
"mean_token_accuracy": 0.9470360428094864,
|
99 |
+
"num_tokens": 1340933.0,
|
100 |
+
"step": 250
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.663850331925166,
|
104 |
+
"grad_norm": 0.32724520564079285,
|
105 |
+
"learning_rate": 0.0002967844489675963,
|
106 |
+
"loss": 0.1544,
|
107 |
+
"mean_token_accuracy": 0.9575115633010864,
|
108 |
+
"num_tokens": 1492525.0,
|
109 |
+
"step": 275
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.724200362100181,
|
113 |
+
"grad_norm": 0.7199254035949707,
|
114 |
+
"learning_rate": 0.00029586622040756957,
|
115 |
+
"loss": 0.1512,
|
116 |
+
"mean_token_accuracy": 0.9590712755918502,
|
117 |
+
"num_tokens": 1609549.0,
|
118 |
+
"step": 300
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 0.7845503922751962,
|
122 |
+
"grad_norm": 0.5064759850502014,
|
123 |
+
"learning_rate": 0.0002948346128361186,
|
124 |
+
"loss": 0.127,
|
125 |
+
"mean_token_accuracy": 0.9652698183059693,
|
126 |
+
"num_tokens": 1760812.0,
|
127 |
+
"step": 325
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 0.8449004224502112,
|
131 |
+
"grad_norm": 0.9060899615287781,
|
132 |
+
"learning_rate": 0.00029369042810199416,
|
133 |
+
"loss": 0.1295,
|
134 |
+
"mean_token_accuracy": 0.9658441722393036,
|
135 |
+
"num_tokens": 1878082.0,
|
136 |
+
"step": 350
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.9052504526252263,
|
140 |
+
"grad_norm": 0.39403802156448364,
|
141 |
+
"learning_rate": 0.0002924345555580135,
|
142 |
+
"loss": 0.124,
|
143 |
+
"mean_token_accuracy": 0.96674849152565,
|
144 |
+
"num_tokens": 2030379.0,
|
145 |
+
"step": 375
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.9656004828002414,
|
149 |
+
"grad_norm": 0.510175347328186,
|
150 |
+
"learning_rate": 0.000291067971369783,
|
151 |
+
"loss": 0.1175,
|
152 |
+
"mean_token_accuracy": 0.9700243002176285,
|
153 |
+
"num_tokens": 2145568.0,
|
154 |
+
"step": 400
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 1.0,
|
158 |
+
"eval_loss": 0.12158163636922836,
|
159 |
+
"eval_mean_token_accuracy": 0.9679943664653882,
|
160 |
+
"eval_num_tokens": 2223513.0,
|
161 |
+
"eval_runtime": 60.3991,
|
162 |
+
"eval_samples_per_second": 6.109,
|
163 |
+
"eval_steps_per_second": 3.063,
|
164 |
+
"step": 415
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 1.024140012070006,
|
168 |
+
"grad_norm": 0.406086802482605,
|
169 |
+
"learning_rate": 0.0002895917377569438,
|
170 |
+
"loss": 0.1273,
|
171 |
+
"mean_token_accuracy": 0.9658442354693855,
|
172 |
+
"num_tokens": 2291474.0,
|
173 |
+
"step": 425
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 1.0844900422450212,
|
177 |
+
"grad_norm": 0.5659676790237427,
|
178 |
+
"learning_rate": 0.00028800700216752875,
|
179 |
+
"loss": 0.0838,
|
180 |
+
"mean_token_accuracy": 0.9784896957874298,
|
181 |
+
"num_tokens": 2426520.0,
|
182 |
+
"step": 450
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 1.1448400724200363,
|
186 |
+
"grad_norm": 0.35416120290756226,
|
187 |
+
"learning_rate": 0.00028631499638607285,
|
188 |
+
"loss": 0.1106,
|
189 |
+
"mean_token_accuracy": 0.9712809121608734,
|
190 |
+
"num_tokens": 2559490.0,
|
191 |
+
"step": 475
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 1.2051901025950513,
|
195 |
+
"grad_norm": 0.4320279657840729,
|
196 |
+
"learning_rate": 0.0002845170355761712,
|
197 |
+
"loss": 0.0828,
|
198 |
+
"mean_token_accuracy": 0.9781204652786255,
|
199 |
+
"num_tokens": 2692836.0,
|
200 |
+
"step": 500
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 1.2655401327700664,
|
204 |
+
"grad_norm": 0.2252548485994339,
|
205 |
+
"learning_rate": 0.0002826145172582274,
|
206 |
+
"loss": 0.1078,
|
207 |
+
"mean_token_accuracy": 0.972182622551918,
|
208 |
+
"num_tokens": 2824220.0,
|
209 |
+
"step": 525
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 1.3258901629450814,
|
213 |
+
"grad_norm": 0.5526081323623657,
|
214 |
+
"learning_rate": 0.00028060892022318764,
|
215 |
+
"loss": 0.0859,
|
216 |
+
"mean_token_accuracy": 0.9773634171485901,
|
217 |
+
"num_tokens": 2957350.0,
|
218 |
+
"step": 550
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 1.3862401931200965,
|
222 |
+
"grad_norm": 0.28977397084236145,
|
223 |
+
"learning_rate": 0.0002785018033831051,
|
224 |
+
"loss": 0.1003,
|
225 |
+
"mean_token_accuracy": 0.9744341260194779,
|
226 |
+
"num_tokens": 3089488.0,
|
227 |
+
"step": 575
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 1.4465902232951118,
|
231 |
+
"grad_norm": 0.3141675591468811,
|
232 |
+
"learning_rate": 0.0002762948045594276,
|
233 |
+
"loss": 0.0791,
|
234 |
+
"mean_token_accuracy": 0.9794832402467728,
|
235 |
+
"num_tokens": 3223359.0,
|
236 |
+
"step": 600
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 1.5069402534701268,
|
240 |
+
"grad_norm": 0.2956194579601288,
|
241 |
+
"learning_rate": 0.0002739896392099502,
|
242 |
+
"loss": 0.0973,
|
243 |
+
"mean_token_accuracy": 0.9747027105093002,
|
244 |
+
"num_tokens": 3356289.0,
|
245 |
+
"step": 625
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 1.567290283645142,
|
249 |
+
"grad_norm": 0.20789697766304016,
|
250 |
+
"learning_rate": 0.00027158809909542307,
|
251 |
+
"loss": 0.0799,
|
252 |
+
"mean_token_accuracy": 0.9793938374519349,
|
253 |
+
"num_tokens": 3492136.0,
|
254 |
+
"step": 650
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 1.627640313820157,
|
258 |
+
"grad_norm": 0.2433897703886032,
|
259 |
+
"learning_rate": 0.00026909205088685,
|
260 |
+
"loss": 0.1014,
|
261 |
+
"mean_token_accuracy": 0.9734487825632095,
|
262 |
+
"num_tokens": 3626915.0,
|
263 |
+
"step": 675
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 1.687990343995172,
|
267 |
+
"grad_norm": 0.7531152367591858,
|
268 |
+
"learning_rate": 0.0002665034347145612,
|
269 |
+
"loss": 0.0712,
|
270 |
+
"mean_token_accuracy": 0.9815128433704376,
|
271 |
+
"num_tokens": 3763997.0,
|
272 |
+
"step": 700
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 1.748340374170187,
|
276 |
+
"grad_norm": 0.2832512855529785,
|
277 |
+
"learning_rate": 0.000263824262660187,
|
278 |
+
"loss": 0.0906,
|
279 |
+
"mean_token_accuracy": 0.9767874735593796,
|
280 |
+
"num_tokens": 3899136.0,
|
281 |
+
"step": 725
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 1.8086904043452021,
|
285 |
+
"grad_norm": 0.25026917457580566,
|
286 |
+
"learning_rate": 0.0002610566171927056,
|
287 |
+
"loss": 0.0738,
|
288 |
+
"mean_token_accuracy": 0.9808795565366745,
|
289 |
+
"num_tokens": 4035090.0,
|
290 |
+
"step": 750
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 1.8690404345202172,
|
294 |
+
"grad_norm": 0.2247888296842575,
|
295 |
+
"learning_rate": 0.00025820264954977976,
|
296 |
+
"loss": 0.0924,
|
297 |
+
"mean_token_accuracy": 0.9755205953121185,
|
298 |
+
"num_tokens": 4170738.0,
|
299 |
+
"step": 775
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 1.9293904646952322,
|
303 |
+
"grad_norm": 0.2288103550672531,
|
304 |
+
"learning_rate": 0.00025526457806564136,
|
305 |
+
"loss": 0.0689,
|
306 |
+
"mean_token_accuracy": 0.9819435960054398,
|
307 |
+
"num_tokens": 4304690.0,
|
308 |
+
"step": 800
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 1.9897404948702473,
|
312 |
+
"grad_norm": 0.3063240647315979,
|
313 |
+
"learning_rate": 0.00025224468644682245,
|
314 |
+
"loss": 0.0848,
|
315 |
+
"mean_token_accuracy": 0.9782917034626007,
|
316 |
+
"num_tokens": 4428594.0,
|
317 |
+
"step": 825
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 2.0,
|
321 |
+
"eval_loss": 0.08532727509737015,
|
322 |
+
"eval_mean_token_accuracy": 0.978298093499364,
|
323 |
+
"eval_num_tokens": 4447026.0,
|
324 |
+
"eval_runtime": 60.4972,
|
325 |
+
"eval_samples_per_second": 6.099,
|
326 |
+
"eval_steps_per_second": 3.058,
|
327 |
+
"step": 830
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 2.048280024140012,
|
331 |
+
"grad_norm": 0.292191743850708,
|
332 |
+
"learning_rate": 0.00024914532199707444,
|
333 |
+
"loss": 0.0742,
|
334 |
+
"mean_token_accuracy": 0.9807861385886202,
|
335 |
+
"num_tokens": 4570802.0,
|
336 |
+
"step": 850
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 2.1086300543150274,
|
340 |
+
"grad_norm": 0.12266981601715088,
|
341 |
+
"learning_rate": 0.00024596889379285353,
|
342 |
+
"loss": 0.0583,
|
343 |
+
"mean_token_accuracy": 0.9852461409568787,
|
344 |
+
"num_tokens": 4693406.0,
|
345 |
+
"step": 875
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 2.1689800844900424,
|
349 |
+
"grad_norm": 0.2619573473930359,
|
350 |
+
"learning_rate": 0.00024271787081079228,
|
351 |
+
"loss": 0.0675,
|
352 |
+
"mean_token_accuracy": 0.9823181647062301,
|
353 |
+
"num_tokens": 4840920.0,
|
354 |
+
"step": 900
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 2.2293301146650575,
|
358 |
+
"grad_norm": 0.3071349859237671,
|
359 |
+
"learning_rate": 0.00023939478000861117,
|
360 |
+
"loss": 0.0618,
|
361 |
+
"mean_token_accuracy": 0.9843161147832871,
|
362 |
+
"num_tokens": 4963388.0,
|
363 |
+
"step": 925
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 2.2896801448400725,
|
367 |
+
"grad_norm": 0.19022433459758759,
|
368 |
+
"learning_rate": 0.00023600220436096318,
|
369 |
+
"loss": 0.073,
|
370 |
+
"mean_token_accuracy": 0.9802478235960007,
|
371 |
+
"num_tokens": 5109242.0,
|
372 |
+
"step": 950
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 2.3500301750150876,
|
376 |
+
"grad_norm": 0.21214531362056732,
|
377 |
+
"learning_rate": 0.00023254278085173684,
|
378 |
+
"loss": 0.058,
|
379 |
+
"mean_token_accuracy": 0.985277818441391,
|
380 |
+
"num_tokens": 5233880.0,
|
381 |
+
"step": 975
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 2.4103802051901027,
|
385 |
+
"grad_norm": 0.27143731713294983,
|
386 |
+
"learning_rate": 0.00022901919842437972,
|
387 |
+
"loss": 0.0696,
|
388 |
+
"mean_token_accuracy": 0.9813511747121811,
|
389 |
+
"num_tokens": 5379872.0,
|
390 |
+
"step": 1000
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 2.4707302353651177,
|
394 |
+
"grad_norm": 0.22756575047969818,
|
395 |
+
"learning_rate": 0.00022543419589183397,
|
396 |
+
"loss": 0.0557,
|
397 |
+
"mean_token_accuracy": 0.9860703033208847,
|
398 |
+
"num_tokens": 5503533.0,
|
399 |
+
"step": 1025
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 2.5310802655401328,
|
403 |
+
"grad_norm": 0.20393149554729462,
|
404 |
+
"learning_rate": 0.00022179055980770993,
|
405 |
+
"loss": 0.0714,
|
406 |
+
"mean_token_accuracy": 0.9812053245306015,
|
407 |
+
"num_tokens": 5648709.0,
|
408 |
+
"step": 1050
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 2.591430295715148,
|
412 |
+
"grad_norm": 0.1682002693414688,
|
413 |
+
"learning_rate": 0.0002180911223003513,
|
414 |
+
"loss": 0.0573,
|
415 |
+
"mean_token_accuracy": 0.9854411727190018,
|
416 |
+
"num_tokens": 5771477.0,
|
417 |
+
"step": 1075
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 2.651780325890163,
|
421 |
+
"grad_norm": 0.17297177016735077,
|
422 |
+
"learning_rate": 0.00021433875887147627,
|
423 |
+
"loss": 0.0684,
|
424 |
+
"mean_token_accuracy": 0.9818347871303559,
|
425 |
+
"num_tokens": 5917022.0,
|
426 |
+
"step": 1100
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 2.712130356065178,
|
430 |
+
"grad_norm": 0.3354227840900421,
|
431 |
+
"learning_rate": 0.00021053638616110525,
|
432 |
+
"loss": 0.056,
|
433 |
+
"mean_token_accuracy": 0.9859032183885574,
|
434 |
+
"num_tokens": 6040041.0,
|
435 |
+
"step": 1125
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 2.772480386240193,
|
439 |
+
"grad_norm": 0.17890885472297668,
|
440 |
+
"learning_rate": 0.00020668695968051274,
|
441 |
+
"loss": 0.0644,
|
442 |
+
"mean_token_accuracy": 0.9828311365842819,
|
443 |
+
"num_tokens": 6183440.0,
|
444 |
+
"step": 1150
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 2.832830416415208,
|
448 |
+
"grad_norm": 0.19668501615524292,
|
449 |
+
"learning_rate": 0.00020279347151496482,
|
450 |
+
"loss": 0.0572,
|
451 |
+
"mean_token_accuracy": 0.9856607836484909,
|
452 |
+
"num_tokens": 6307206.0,
|
453 |
+
"step": 1175
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 2.8931804465902236,
|
457 |
+
"grad_norm": 0.12178179621696472,
|
458 |
+
"learning_rate": 0.00019885894799802922,
|
459 |
+
"loss": 0.0626,
|
460 |
+
"mean_token_accuracy": 0.9839641106128693,
|
461 |
+
"num_tokens": 6451936.0,
|
462 |
+
"step": 1200
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 2.9535304767652386,
|
466 |
+
"grad_norm": 0.14492283761501312,
|
467 |
+
"learning_rate": 0.00019488644735926396,
|
468 |
+
"loss": 0.0533,
|
469 |
+
"mean_token_accuracy": 0.9867338234186173,
|
470 |
+
"num_tokens": 6574944.0,
|
471 |
+
"step": 1225
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 3.0,
|
475 |
+
"eval_loss": 0.06949137151241302,
|
476 |
+
"eval_mean_token_accuracy": 0.9829865713377257,
|
477 |
+
"eval_num_tokens": 6670539.0,
|
478 |
+
"eval_runtime": 60.3936,
|
479 |
+
"eval_samples_per_second": 6.11,
|
480 |
+
"eval_steps_per_second": 3.063,
|
481 |
+
"step": 1245
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 3.012070006035003,
|
485 |
+
"grad_norm": 0.18783801794052124,
|
486 |
+
"learning_rate": 0.00019087905734711452,
|
487 |
+
"loss": 0.0609,
|
488 |
+
"mean_token_accuracy": 0.984156120683729,
|
489 |
+
"num_tokens": 6706398.0,
|
490 |
+
"step": 1250
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 3.0724200362100182,
|
494 |
+
"grad_norm": 0.2086067646741867,
|
495 |
+
"learning_rate": 0.00018683989282886613,
|
496 |
+
"loss": 0.046,
|
497 |
+
"mean_token_accuracy": 0.9881435281038284,
|
498 |
+
"num_tokens": 6848066.0,
|
499 |
+
"step": 1275
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 3.1327700663850333,
|
503 |
+
"grad_norm": 0.2123444378376007,
|
504 |
+
"learning_rate": 0.0001827720933695173,
|
505 |
+
"loss": 0.0552,
|
506 |
+
"mean_token_accuracy": 0.9860709112882614,
|
507 |
+
"num_tokens": 6975273.0,
|
508 |
+
"step": 1300
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 3.1931200965600484,
|
512 |
+
"grad_norm": 0.11279409378767014,
|
513 |
+
"learning_rate": 0.00017867882079145627,
|
514 |
+
"loss": 0.0455,
|
515 |
+
"mean_token_accuracy": 0.9881318390369416,
|
516 |
+
"num_tokens": 7117546.0,
|
517 |
+
"step": 1325
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 3.2534701267350634,
|
521 |
+
"grad_norm": 0.177442729473114,
|
522 |
+
"learning_rate": 0.00017456325671683724,
|
523 |
+
"loss": 0.0546,
|
524 |
+
"mean_token_accuracy": 0.9862780523300171,
|
525 |
+
"num_tokens": 7244543.0,
|
526 |
+
"step": 1350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 3.3138201569100785,
|
530 |
+
"grad_norm": 0.10142289847135544,
|
531 |
+
"learning_rate": 0.00017042860009456638,
|
532 |
+
"loss": 0.0445,
|
533 |
+
"mean_token_accuracy": 0.988534786105156,
|
534 |
+
"num_tokens": 7384967.0,
|
535 |
+
"step": 1375
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 3.3741701870850935,
|
539 |
+
"grad_norm": 0.15665322542190552,
|
540 |
+
"learning_rate": 0.00016627806471382066,
|
541 |
+
"loss": 0.0532,
|
542 |
+
"mean_token_accuracy": 0.9868290704488755,
|
543 |
+
"num_tokens": 7509226.0,
|
544 |
+
"step": 1400
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 3.4345202172601086,
|
548 |
+
"grad_norm": 0.15646246075630188,
|
549 |
+
"learning_rate": 0.00016211487670603078,
|
550 |
+
"loss": 0.0456,
|
551 |
+
"mean_token_accuracy": 0.9882669430971146,
|
552 |
+
"num_tokens": 7648911.0,
|
553 |
+
"step": 1425
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 3.4948702474351236,
|
557 |
+
"grad_norm": 0.16921687126159668,
|
558 |
+
"learning_rate": 0.0001579422720372715,
|
559 |
+
"loss": 0.0568,
|
560 |
+
"mean_token_accuracy": 0.9850279080867768,
|
561 |
+
"num_tokens": 7777925.0,
|
562 |
+
"step": 1450
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 3.5552202776101387,
|
566 |
+
"grad_norm": 0.10589733719825745,
|
567 |
+
"learning_rate": 0.00015376349399300745,
|
568 |
+
"loss": 0.0446,
|
569 |
+
"mean_token_accuracy": 0.9881089746952056,
|
570 |
+
"num_tokens": 7922053.0,
|
571 |
+
"step": 1475
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 3.6155703077851538,
|
575 |
+
"grad_norm": 0.2955225110054016,
|
576 |
+
"learning_rate": 0.0001495817906571492,
|
577 |
+
"loss": 0.0544,
|
578 |
+
"mean_token_accuracy": 0.9862786346673965,
|
579 |
+
"num_tokens": 8049528.0,
|
580 |
+
"step": 1500
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 3.675920337960169,
|
584 |
+
"grad_norm": 0.0742836520075798,
|
585 |
+
"learning_rate": 0.00014540041238738055,
|
586 |
+
"loss": 0.0456,
|
587 |
+
"mean_token_accuracy": 0.9878502124547959,
|
588 |
+
"num_tokens": 8190743.0,
|
589 |
+
"step": 1525
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 3.736270368135184,
|
593 |
+
"grad_norm": 0.12437008321285248,
|
594 |
+
"learning_rate": 0.00014122260928871734,
|
595 |
+
"loss": 0.0535,
|
596 |
+
"mean_token_accuracy": 0.9863007247447968,
|
597 |
+
"num_tokens": 8316676.0,
|
598 |
+
"step": 1550
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 3.796620398310199,
|
602 |
+
"grad_norm": 0.08342117071151733,
|
603 |
+
"learning_rate": 0.00013705162868726396,
|
604 |
+
"loss": 0.0447,
|
605 |
+
"mean_token_accuracy": 0.9884078222513198,
|
606 |
+
"num_tokens": 8457403.0,
|
607 |
+
"step": 1575
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 3.856970428485214,
|
611 |
+
"grad_norm": 0.17910127341747284,
|
612 |
+
"learning_rate": 0.00013289071260612855,
|
613 |
+
"loss": 0.052,
|
614 |
+
"mean_token_accuracy": 0.9868350481986999,
|
615 |
+
"num_tokens": 8583976.0,
|
616 |
+
"step": 1600
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 3.9173204586602295,
|
620 |
+
"grad_norm": 0.06760319322347641,
|
621 |
+
"learning_rate": 0.00012874309524546083,
|
622 |
+
"loss": 0.045,
|
623 |
+
"mean_token_accuracy": 0.9878969532251358,
|
624 |
+
"num_tokens": 8727702.0,
|
625 |
+
"step": 1625
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 3.9776704888352445,
|
629 |
+
"grad_norm": 0.15349148213863373,
|
630 |
+
"learning_rate": 0.00012461200046857084,
|
631 |
+
"loss": 0.0508,
|
632 |
+
"mean_token_accuracy": 0.987232791185379,
|
633 |
+
"num_tokens": 8849683.0,
|
634 |
+
"step": 1650
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 4.0,
|
638 |
+
"eval_loss": 0.0635647177696228,
|
639 |
+
"eval_mean_token_accuracy": 0.9845431846541327,
|
640 |
+
"eval_num_tokens": 8894052.0,
|
641 |
+
"eval_runtime": 60.4472,
|
642 |
+
"eval_samples_per_second": 6.105,
|
643 |
+
"eval_steps_per_second": 3.061,
|
644 |
+
"step": 1660
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 4.036210018105009,
|
648 |
+
"grad_norm": 0.1430218666791916,
|
649 |
+
"learning_rate": 0.00012050063929608123,
|
650 |
+
"loss": 0.0441,
|
651 |
+
"mean_token_accuracy": 0.9887785659622901,
|
652 |
+
"num_tokens": 8992417.0,
|
653 |
+
"step": 1675
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 4.096560048280024,
|
657 |
+
"grad_norm": 0.08819396048784256,
|
658 |
+
"learning_rate": 0.0001164122074100633,
|
659 |
+
"loss": 0.0406,
|
660 |
+
"mean_token_accuracy": 0.9898108446598053,
|
661 |
+
"num_tokens": 9122219.0,
|
662 |
+
"step": 1700
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 4.15691007845504,
|
666 |
+
"grad_norm": 0.08506345748901367,
|
667 |
+
"learning_rate": 0.00011234988267009415,
|
668 |
+
"loss": 0.0457,
|
669 |
+
"mean_token_accuracy": 0.9884944796562195,
|
670 |
+
"num_tokens": 9262178.0,
|
671 |
+
"step": 1725
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 4.217260108630055,
|
675 |
+
"grad_norm": 0.08111756294965744,
|
676 |
+
"learning_rate": 0.00010831682264316787,
|
677 |
+
"loss": 0.0416,
|
678 |
+
"mean_token_accuracy": 0.989647062420845,
|
679 |
+
"num_tokens": 9391026.0,
|
680 |
+
"step": 1750
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 4.27761013880507,
|
684 |
+
"grad_norm": 0.07644202560186386,
|
685 |
+
"learning_rate": 0.00010431616214937911,
|
686 |
+
"loss": 0.046,
|
687 |
+
"mean_token_accuracy": 0.9881355553865433,
|
688 |
+
"num_tokens": 9531921.0,
|
689 |
+
"step": 1775
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 4.337960168980085,
|
693 |
+
"grad_norm": 0.03971414268016815,
|
694 |
+
"learning_rate": 0.00010035101082528777,
|
695 |
+
"loss": 0.0413,
|
696 |
+
"mean_token_accuracy": 0.9894955778121948,
|
697 |
+
"num_tokens": 9661664.0,
|
698 |
+
"step": 1800
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 4.3983101991551,
|
702 |
+
"grad_norm": 0.07305199652910233,
|
703 |
+
"learning_rate": 9.642445070685809e-05,
|
704 |
+
"loss": 0.0435,
|
705 |
+
"mean_token_accuracy": 0.9884718316793442,
|
706 |
+
"num_tokens": 9801214.0,
|
707 |
+
"step": 1825
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"epoch": 4.458660229330115,
|
711 |
+
"grad_norm": 0.07561074942350388,
|
712 |
+
"learning_rate": 9.253953383385157e-05,
|
713 |
+
"loss": 0.0411,
|
714 |
+
"mean_token_accuracy": 0.9890134006738662,
|
715 |
+
"num_tokens": 9929511.0,
|
716 |
+
"step": 1850
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 4.51901025950513,
|
720 |
+
"grad_norm": 0.12152893096208572,
|
721 |
+
"learning_rate": 8.869927987753459e-05,
|
722 |
+
"loss": 0.0442,
|
723 |
+
"mean_token_accuracy": 0.9886808878183365,
|
724 |
+
"num_tokens": 10069489.0,
|
725 |
+
"step": 1875
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 4.579360289680145,
|
729 |
+
"grad_norm": 0.05834532529115677,
|
730 |
+
"learning_rate": 8.490667379354661e-05,
|
731 |
+
"loss": 0.0417,
|
732 |
+
"mean_token_accuracy": 0.9894009435176849,
|
733 |
+
"num_tokens": 10197956.0,
|
734 |
+
"step": 1900
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 4.63971031985516,
|
738 |
+
"grad_norm": 0.08154677599668503,
|
739 |
+
"learning_rate": 8.116466350175079e-05,
|
740 |
+
"loss": 0.0437,
|
741 |
+
"mean_token_accuracy": 0.9884669744968414,
|
742 |
+
"num_tokens": 10335860.0,
|
743 |
+
"step": 1925
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 4.700060350030175,
|
747 |
+
"grad_norm": 0.07408758997917175,
|
748 |
+
"learning_rate": 7.747615759487304e-05,
|
749 |
+
"loss": 0.0411,
|
750 |
+
"mean_token_accuracy": 0.989289864897728,
|
751 |
+
"num_tokens": 10464303.0,
|
752 |
+
"step": 1950
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 4.76041038020519,
|
756 |
+
"grad_norm": 0.0779808983206749,
|
757 |
+
"learning_rate": 7.38440230777085e-05,
|
758 |
+
"loss": 0.0453,
|
759 |
+
"mean_token_accuracy": 0.9880505865812301,
|
760 |
+
"num_tokens": 10601511.0,
|
761 |
+
"step": 1975
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 4.820760410380205,
|
765 |
+
"grad_norm": 0.046579256653785706,
|
766 |
+
"learning_rate": 7.027108313865378e-05,
|
767 |
+
"loss": 0.0401,
|
768 |
+
"mean_token_accuracy": 0.9896253395080566,
|
769 |
+
"num_tokens": 10732156.0,
|
770 |
+
"step": 2000
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 4.88111044055522,
|
774 |
+
"grad_norm": 0.07918152213096619,
|
775 |
+
"learning_rate": 6.676011495529687e-05,
|
776 |
+
"loss": 0.042,
|
777 |
+
"mean_token_accuracy": 0.9889346659183502,
|
778 |
+
"num_tokens": 10873235.0,
|
779 |
+
"step": 2025
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 4.941460470730235,
|
783 |
+
"grad_norm": 0.04908803850412369,
|
784 |
+
"learning_rate": 6.331384753577056e-05,
|
785 |
+
"loss": 0.0408,
|
786 |
+
"mean_token_accuracy": 0.9895875388383866,
|
787 |
+
"num_tokens": 11001827.0,
|
788 |
+
"step": 2050
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 5.0,
|
792 |
+
"grad_norm": 0.22838693857192993,
|
793 |
+
"learning_rate": 5.993495959754631e-05,
|
794 |
+
"loss": 0.0452,
|
795 |
+
"mean_token_accuracy": 0.9885991817897128,
|
796 |
+
"num_tokens": 11117565.0,
|
797 |
+
"step": 2075
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 5.0,
|
801 |
+
"eval_loss": 0.06391309201717377,
|
802 |
+
"eval_mean_token_accuracy": 0.9852847150854163,
|
803 |
+
"eval_num_tokens": 11117565.0,
|
804 |
+
"eval_runtime": 60.3576,
|
805 |
+
"eval_samples_per_second": 6.114,
|
806 |
+
"eval_steps_per_second": 3.065,
|
807 |
+
"step": 2075
|
808 |
+
}
|
809 |
+
],
|
810 |
+
"logging_steps": 25,
|
811 |
+
"max_steps": 2905,
|
812 |
+
"num_input_tokens_seen": 0,
|
813 |
+
"num_train_epochs": 7,
|
814 |
+
"save_steps": 500,
|
815 |
+
"stateful_callbacks": {
|
816 |
+
"TrainerControl": {
|
817 |
+
"args": {
|
818 |
+
"should_epoch_stop": false,
|
819 |
+
"should_evaluate": false,
|
820 |
+
"should_log": false,
|
821 |
+
"should_save": true,
|
822 |
+
"should_training_stop": false
|
823 |
+
},
|
824 |
+
"attributes": {}
|
825 |
+
}
|
826 |
+
},
|
827 |
+
"total_flos": 4.8080321362273075e+17,
|
828 |
+
"train_batch_size": 2,
|
829 |
+
"trial_name": null,
|
830 |
+
"trial_params": null
|
831 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db6de366ac315839abd567edca47f98a08a1256a4f1baddaab0d0cfffba2f28f
|
3 |
+
size 5969
|