finalform commited on
Commit
8010bcd
·
verified ·
1 Parent(s): 31d048f

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.17.0
adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 32,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "o_proj",
29
+ "k_proj",
30
+ "down_proj",
31
+ "q_proj",
32
+ "up_proj",
33
+ "gate_proj",
34
+ "v_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0c07f5121879c4cadaec404d3b23f7a9725dc290d43d72b27b3ed83c91425f8
3
+ size 335604696
chat_template.jinja ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if messages[0]["role"] == "system" %}
2
+ {%- set system_message = messages[0]["content"] %}
3
+ {%- set loop_messages = messages[1:] %}
4
+ {%- else %}
5
+ {%- set loop_messages = messages %}
6
+ {%- endif %}
7
+ {%- if not tools is defined %}
8
+ {%- set tools = none %}
9
+ {%- endif %}
10
+ {%- set user_messages = loop_messages | selectattr("role", "equalto", "user") | list %}
11
+
12
+ {#- This block checks for alternating user/assistant messages, skipping tool calling messages #}
13
+ {%- set ns = namespace() %}
14
+ {%- set ns.index = 0 %}
15
+ {%- for message in loop_messages %}
16
+ {%- if not (message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
17
+ {%- if (message["role"] == "user") != (ns.index % 2 == 0) %}
18
+ {{- raise_exception("After the optional system message, conversation roles must alternate user/assistant/user/assistant/...") }}
19
+ {%- endif %}
20
+ {%- set ns.index = ns.index + 1 %}
21
+ {%- endif %}
22
+ {%- endfor %}
23
+
24
+ {{- bos_token }}
25
+ {%- for message in loop_messages %}
26
+ {%- if message["role"] == "user" %}
27
+ {%- if tools is not none and (message == user_messages[-1]) %}
28
+ {{- "[AVAILABLE_TOOLS] [" }}
29
+ {%- for tool in tools %}
30
+ {%- set tool = tool.function %}
31
+ {{- '{"type": "function", "function": {' }}
32
+ {%- for key, val in tool.items() if key != "return" %}
33
+ {%- if val is string %}
34
+ {{- '"' + key + '": "' + val + '"' }}
35
+ {%- else %}
36
+ {{- '"' + key + '": ' + val|tojson }}
37
+ {%- endif %}
38
+ {%- if not loop.last %}
39
+ {{- ", " }}
40
+ {%- endif %}
41
+ {%- endfor %}
42
+ {{- "}}" }}
43
+ {%- if not loop.last %}
44
+ {{- ", " }}
45
+ {%- else %}
46
+ {{- "]" }}
47
+ {%- endif %}
48
+ {%- endfor %}
49
+ {{- "[/AVAILABLE_TOOLS]" }}
50
+ {%- endif %}
51
+ {%- if loop.last and system_message is defined %}
52
+ {{- "[INST] " + system_message + "\n\n" + message["content"] + "[/INST]" }}
53
+ {%- else %}
54
+ {{- "[INST] " + message["content"] + "[/INST]" }}
55
+ {%- endif %}
56
+ {%- elif message.tool_calls is defined and message.tool_calls is not none %}
57
+ {{- "[TOOL_CALLS] [" }}
58
+ {%- for tool_call in message.tool_calls %}
59
+ {%- set out = tool_call.function|tojson %}
60
+ {{- out[:-1] }}
61
+ {%- if not tool_call.id is defined or tool_call.id|length != 9 %}
62
+ {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
63
+ {%- endif %}
64
+ {{- ', "id": "' + tool_call.id + '"}' }}
65
+ {%- if not loop.last %}
66
+ {{- ", " }}
67
+ {%- else %}
68
+ {{- "]" + eos_token }}
69
+ {%- endif %}
70
+ {%- endfor %}
71
+ {%- elif message["role"] == "assistant" %}
72
+ {{- " " + message["content"]|trim + eos_token}}
73
+ {%- elif message["role"] == "tool_results" or message["role"] == "tool" %}
74
+ {%- if message.content is defined and message.content.content is defined %}
75
+ {%- set content = message.content.content %}
76
+ {%- else %}
77
+ {%- set content = message.content %}
78
+ {%- endif %}
79
+ {{- '[TOOL_RESULTS] {"content": ' + content|string + ", " }}
80
+ {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}
81
+ {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
82
+ {%- endif %}
83
+ {{- '"call_id": "' + message.tool_call_id + '"}[/TOOL_RESULTS]' }}
84
+ {%- else %}
85
+ {{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}
86
+ {%- endif %}
87
+ {%- endfor %}
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e18e1dc6c698b77ed15080de0981c7e22e0359d8e62e31896792a69006bbbcb
3
+ size 671365003
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1d1105d42c57a99667ef8275ff47ca54315e8a9807d2b17d4c6cdc6ecb9e6cc
3
+ size 14645
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdeac6d1a7910e1e533a39a2d59ab67f6fb22254f41224ded16d311412dbc0b1
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,831 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 5.0,
6
+ "eval_steps": 500,
7
+ "global_step": 2075,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.060350030175015085,
14
+ "grad_norm": 0.8775522708892822,
15
+ "learning_rate": 8.18181818181818e-05,
16
+ "loss": 1.5879,
17
+ "mean_token_accuracy": 0.6690774387121201,
18
+ "num_tokens": 155085.0,
19
+ "step": 25
20
+ },
21
+ {
22
+ "epoch": 0.12070006035003017,
23
+ "grad_norm": 0.9928436279296875,
24
+ "learning_rate": 0.00016704545454545452,
25
+ "loss": 0.882,
26
+ "mean_token_accuracy": 0.7819808393716812,
27
+ "num_tokens": 272168.0,
28
+ "step": 50
29
+ },
30
+ {
31
+ "epoch": 0.18105009052504525,
32
+ "grad_norm": 0.6491063237190247,
33
+ "learning_rate": 0.0002522727272727273,
34
+ "loss": 0.5779,
35
+ "mean_token_accuracy": 0.8428267538547516,
36
+ "num_tokens": 424672.0,
37
+ "step": 75
38
+ },
39
+ {
40
+ "epoch": 0.24140012070006034,
41
+ "grad_norm": 0.8907634615898132,
42
+ "learning_rate": 0.0002999887132933212,
43
+ "loss": 0.5317,
44
+ "mean_token_accuracy": 0.8538330507278442,
45
+ "num_tokens": 538458.0,
46
+ "step": 100
47
+ },
48
+ {
49
+ "epoch": 0.30175015087507545,
50
+ "grad_norm": 0.9097657203674316,
51
+ "learning_rate": 0.0002998791256978121,
52
+ "loss": 0.3574,
53
+ "mean_token_accuracy": 0.8985000151395798,
54
+ "num_tokens": 689411.0,
55
+ "step": 125
56
+ },
57
+ {
58
+ "epoch": 0.3621001810500905,
59
+ "grad_norm": 0.6912802457809448,
60
+ "learning_rate": 0.0002996530399366737,
61
+ "loss": 0.3448,
62
+ "mean_token_accuracy": 0.9023130792379379,
63
+ "num_tokens": 804866.0,
64
+ "step": 150
65
+ },
66
+ {
67
+ "epoch": 0.4224502112251056,
68
+ "grad_norm": 0.5329523682594299,
69
+ "learning_rate": 0.00029931063174202567,
70
+ "loss": 0.2315,
71
+ "mean_token_accuracy": 0.9339979404211044,
72
+ "num_tokens": 957115.0,
73
+ "step": 175
74
+ },
75
+ {
76
+ "epoch": 0.4828002414001207,
77
+ "grad_norm": 0.759782075881958,
78
+ "learning_rate": 0.00029885216726118104,
79
+ "loss": 0.2336,
80
+ "mean_token_accuracy": 0.9350438743829728,
81
+ "num_tokens": 1073977.0,
82
+ "step": 200
83
+ },
84
+ {
85
+ "epoch": 0.5431502715751357,
86
+ "grad_norm": 0.3837663531303406,
87
+ "learning_rate": 0.00029827800284977474,
88
+ "loss": 0.189,
89
+ "mean_token_accuracy": 0.9478910142183303,
90
+ "num_tokens": 1225658.0,
91
+ "step": 225
92
+ },
93
+ {
94
+ "epoch": 0.6035003017501509,
95
+ "grad_norm": 0.7154819369316101,
96
+ "learning_rate": 0.00029758858479477575,
97
+ "loss": 0.192,
98
+ "mean_token_accuracy": 0.9470360428094864,
99
+ "num_tokens": 1340933.0,
100
+ "step": 250
101
+ },
102
+ {
103
+ "epoch": 0.663850331925166,
104
+ "grad_norm": 0.32724520564079285,
105
+ "learning_rate": 0.0002967844489675963,
106
+ "loss": 0.1544,
107
+ "mean_token_accuracy": 0.9575115633010864,
108
+ "num_tokens": 1492525.0,
109
+ "step": 275
110
+ },
111
+ {
112
+ "epoch": 0.724200362100181,
113
+ "grad_norm": 0.7199254035949707,
114
+ "learning_rate": 0.00029586622040756957,
115
+ "loss": 0.1512,
116
+ "mean_token_accuracy": 0.9590712755918502,
117
+ "num_tokens": 1609549.0,
118
+ "step": 300
119
+ },
120
+ {
121
+ "epoch": 0.7845503922751962,
122
+ "grad_norm": 0.5064759850502014,
123
+ "learning_rate": 0.0002948346128361186,
124
+ "loss": 0.127,
125
+ "mean_token_accuracy": 0.9652698183059693,
126
+ "num_tokens": 1760812.0,
127
+ "step": 325
128
+ },
129
+ {
130
+ "epoch": 0.8449004224502112,
131
+ "grad_norm": 0.9060899615287781,
132
+ "learning_rate": 0.00029369042810199416,
133
+ "loss": 0.1295,
134
+ "mean_token_accuracy": 0.9658441722393036,
135
+ "num_tokens": 1878082.0,
136
+ "step": 350
137
+ },
138
+ {
139
+ "epoch": 0.9052504526252263,
140
+ "grad_norm": 0.39403802156448364,
141
+ "learning_rate": 0.0002924345555580135,
142
+ "loss": 0.124,
143
+ "mean_token_accuracy": 0.96674849152565,
144
+ "num_tokens": 2030379.0,
145
+ "step": 375
146
+ },
147
+ {
148
+ "epoch": 0.9656004828002414,
149
+ "grad_norm": 0.510175347328186,
150
+ "learning_rate": 0.000291067971369783,
151
+ "loss": 0.1175,
152
+ "mean_token_accuracy": 0.9700243002176285,
153
+ "num_tokens": 2145568.0,
154
+ "step": 400
155
+ },
156
+ {
157
+ "epoch": 1.0,
158
+ "eval_loss": 0.12158163636922836,
159
+ "eval_mean_token_accuracy": 0.9679943664653882,
160
+ "eval_num_tokens": 2223513.0,
161
+ "eval_runtime": 60.3991,
162
+ "eval_samples_per_second": 6.109,
163
+ "eval_steps_per_second": 3.063,
164
+ "step": 415
165
+ },
166
+ {
167
+ "epoch": 1.024140012070006,
168
+ "grad_norm": 0.406086802482605,
169
+ "learning_rate": 0.0002895917377569438,
170
+ "loss": 0.1273,
171
+ "mean_token_accuracy": 0.9658442354693855,
172
+ "num_tokens": 2291474.0,
173
+ "step": 425
174
+ },
175
+ {
176
+ "epoch": 1.0844900422450212,
177
+ "grad_norm": 0.5659676790237427,
178
+ "learning_rate": 0.00028800700216752875,
179
+ "loss": 0.0838,
180
+ "mean_token_accuracy": 0.9784896957874298,
181
+ "num_tokens": 2426520.0,
182
+ "step": 450
183
+ },
184
+ {
185
+ "epoch": 1.1448400724200363,
186
+ "grad_norm": 0.35416120290756226,
187
+ "learning_rate": 0.00028631499638607285,
188
+ "loss": 0.1106,
189
+ "mean_token_accuracy": 0.9712809121608734,
190
+ "num_tokens": 2559490.0,
191
+ "step": 475
192
+ },
193
+ {
194
+ "epoch": 1.2051901025950513,
195
+ "grad_norm": 0.4320279657840729,
196
+ "learning_rate": 0.0002845170355761712,
197
+ "loss": 0.0828,
198
+ "mean_token_accuracy": 0.9781204652786255,
199
+ "num_tokens": 2692836.0,
200
+ "step": 500
201
+ },
202
+ {
203
+ "epoch": 1.2655401327700664,
204
+ "grad_norm": 0.2252548485994339,
205
+ "learning_rate": 0.0002826145172582274,
206
+ "loss": 0.1078,
207
+ "mean_token_accuracy": 0.972182622551918,
208
+ "num_tokens": 2824220.0,
209
+ "step": 525
210
+ },
211
+ {
212
+ "epoch": 1.3258901629450814,
213
+ "grad_norm": 0.5526081323623657,
214
+ "learning_rate": 0.00028060892022318764,
215
+ "loss": 0.0859,
216
+ "mean_token_accuracy": 0.9773634171485901,
217
+ "num_tokens": 2957350.0,
218
+ "step": 550
219
+ },
220
+ {
221
+ "epoch": 1.3862401931200965,
222
+ "grad_norm": 0.28977397084236145,
223
+ "learning_rate": 0.0002785018033831051,
224
+ "loss": 0.1003,
225
+ "mean_token_accuracy": 0.9744341260194779,
226
+ "num_tokens": 3089488.0,
227
+ "step": 575
228
+ },
229
+ {
230
+ "epoch": 1.4465902232951118,
231
+ "grad_norm": 0.3141675591468811,
232
+ "learning_rate": 0.0002762948045594276,
233
+ "loss": 0.0791,
234
+ "mean_token_accuracy": 0.9794832402467728,
235
+ "num_tokens": 3223359.0,
236
+ "step": 600
237
+ },
238
+ {
239
+ "epoch": 1.5069402534701268,
240
+ "grad_norm": 0.2956194579601288,
241
+ "learning_rate": 0.0002739896392099502,
242
+ "loss": 0.0973,
243
+ "mean_token_accuracy": 0.9747027105093002,
244
+ "num_tokens": 3356289.0,
245
+ "step": 625
246
+ },
247
+ {
248
+ "epoch": 1.567290283645142,
249
+ "grad_norm": 0.20789697766304016,
250
+ "learning_rate": 0.00027158809909542307,
251
+ "loss": 0.0799,
252
+ "mean_token_accuracy": 0.9793938374519349,
253
+ "num_tokens": 3492136.0,
254
+ "step": 650
255
+ },
256
+ {
257
+ "epoch": 1.627640313820157,
258
+ "grad_norm": 0.2433897703886032,
259
+ "learning_rate": 0.00026909205088685,
260
+ "loss": 0.1014,
261
+ "mean_token_accuracy": 0.9734487825632095,
262
+ "num_tokens": 3626915.0,
263
+ "step": 675
264
+ },
265
+ {
266
+ "epoch": 1.687990343995172,
267
+ "grad_norm": 0.7531152367591858,
268
+ "learning_rate": 0.0002665034347145612,
269
+ "loss": 0.0712,
270
+ "mean_token_accuracy": 0.9815128433704376,
271
+ "num_tokens": 3763997.0,
272
+ "step": 700
273
+ },
274
+ {
275
+ "epoch": 1.748340374170187,
276
+ "grad_norm": 0.2832512855529785,
277
+ "learning_rate": 0.000263824262660187,
278
+ "loss": 0.0906,
279
+ "mean_token_accuracy": 0.9767874735593796,
280
+ "num_tokens": 3899136.0,
281
+ "step": 725
282
+ },
283
+ {
284
+ "epoch": 1.8086904043452021,
285
+ "grad_norm": 0.25026917457580566,
286
+ "learning_rate": 0.0002610566171927056,
287
+ "loss": 0.0738,
288
+ "mean_token_accuracy": 0.9808795565366745,
289
+ "num_tokens": 4035090.0,
290
+ "step": 750
291
+ },
292
+ {
293
+ "epoch": 1.8690404345202172,
294
+ "grad_norm": 0.2247888296842575,
295
+ "learning_rate": 0.00025820264954977976,
296
+ "loss": 0.0924,
297
+ "mean_token_accuracy": 0.9755205953121185,
298
+ "num_tokens": 4170738.0,
299
+ "step": 775
300
+ },
301
+ {
302
+ "epoch": 1.9293904646952322,
303
+ "grad_norm": 0.2288103550672531,
304
+ "learning_rate": 0.00025526457806564136,
305
+ "loss": 0.0689,
306
+ "mean_token_accuracy": 0.9819435960054398,
307
+ "num_tokens": 4304690.0,
308
+ "step": 800
309
+ },
310
+ {
311
+ "epoch": 1.9897404948702473,
312
+ "grad_norm": 0.3063240647315979,
313
+ "learning_rate": 0.00025224468644682245,
314
+ "loss": 0.0848,
315
+ "mean_token_accuracy": 0.9782917034626007,
316
+ "num_tokens": 4428594.0,
317
+ "step": 825
318
+ },
319
+ {
320
+ "epoch": 2.0,
321
+ "eval_loss": 0.08532727509737015,
322
+ "eval_mean_token_accuracy": 0.978298093499364,
323
+ "eval_num_tokens": 4447026.0,
324
+ "eval_runtime": 60.4972,
325
+ "eval_samples_per_second": 6.099,
326
+ "eval_steps_per_second": 3.058,
327
+ "step": 830
328
+ },
329
+ {
330
+ "epoch": 2.048280024140012,
331
+ "grad_norm": 0.292191743850708,
332
+ "learning_rate": 0.00024914532199707444,
333
+ "loss": 0.0742,
334
+ "mean_token_accuracy": 0.9807861385886202,
335
+ "num_tokens": 4570802.0,
336
+ "step": 850
337
+ },
338
+ {
339
+ "epoch": 2.1086300543150274,
340
+ "grad_norm": 0.12266981601715088,
341
+ "learning_rate": 0.00024596889379285353,
342
+ "loss": 0.0583,
343
+ "mean_token_accuracy": 0.9852461409568787,
344
+ "num_tokens": 4693406.0,
345
+ "step": 875
346
+ },
347
+ {
348
+ "epoch": 2.1689800844900424,
349
+ "grad_norm": 0.2619573473930359,
350
+ "learning_rate": 0.00024271787081079228,
351
+ "loss": 0.0675,
352
+ "mean_token_accuracy": 0.9823181647062301,
353
+ "num_tokens": 4840920.0,
354
+ "step": 900
355
+ },
356
+ {
357
+ "epoch": 2.2293301146650575,
358
+ "grad_norm": 0.3071349859237671,
359
+ "learning_rate": 0.00023939478000861117,
360
+ "loss": 0.0618,
361
+ "mean_token_accuracy": 0.9843161147832871,
362
+ "num_tokens": 4963388.0,
363
+ "step": 925
364
+ },
365
+ {
366
+ "epoch": 2.2896801448400725,
367
+ "grad_norm": 0.19022433459758759,
368
+ "learning_rate": 0.00023600220436096318,
369
+ "loss": 0.073,
370
+ "mean_token_accuracy": 0.9802478235960007,
371
+ "num_tokens": 5109242.0,
372
+ "step": 950
373
+ },
374
+ {
375
+ "epoch": 2.3500301750150876,
376
+ "grad_norm": 0.21214531362056732,
377
+ "learning_rate": 0.00023254278085173684,
378
+ "loss": 0.058,
379
+ "mean_token_accuracy": 0.985277818441391,
380
+ "num_tokens": 5233880.0,
381
+ "step": 975
382
+ },
383
+ {
384
+ "epoch": 2.4103802051901027,
385
+ "grad_norm": 0.27143731713294983,
386
+ "learning_rate": 0.00022901919842437972,
387
+ "loss": 0.0696,
388
+ "mean_token_accuracy": 0.9813511747121811,
389
+ "num_tokens": 5379872.0,
390
+ "step": 1000
391
+ },
392
+ {
393
+ "epoch": 2.4707302353651177,
394
+ "grad_norm": 0.22756575047969818,
395
+ "learning_rate": 0.00022543419589183397,
396
+ "loss": 0.0557,
397
+ "mean_token_accuracy": 0.9860703033208847,
398
+ "num_tokens": 5503533.0,
399
+ "step": 1025
400
+ },
401
+ {
402
+ "epoch": 2.5310802655401328,
403
+ "grad_norm": 0.20393149554729462,
404
+ "learning_rate": 0.00022179055980770993,
405
+ "loss": 0.0714,
406
+ "mean_token_accuracy": 0.9812053245306015,
407
+ "num_tokens": 5648709.0,
408
+ "step": 1050
409
+ },
410
+ {
411
+ "epoch": 2.591430295715148,
412
+ "grad_norm": 0.1682002693414688,
413
+ "learning_rate": 0.0002180911223003513,
414
+ "loss": 0.0573,
415
+ "mean_token_accuracy": 0.9854411727190018,
416
+ "num_tokens": 5771477.0,
417
+ "step": 1075
418
+ },
419
+ {
420
+ "epoch": 2.651780325890163,
421
+ "grad_norm": 0.17297177016735077,
422
+ "learning_rate": 0.00021433875887147627,
423
+ "loss": 0.0684,
424
+ "mean_token_accuracy": 0.9818347871303559,
425
+ "num_tokens": 5917022.0,
426
+ "step": 1100
427
+ },
428
+ {
429
+ "epoch": 2.712130356065178,
430
+ "grad_norm": 0.3354227840900421,
431
+ "learning_rate": 0.00021053638616110525,
432
+ "loss": 0.056,
433
+ "mean_token_accuracy": 0.9859032183885574,
434
+ "num_tokens": 6040041.0,
435
+ "step": 1125
436
+ },
437
+ {
438
+ "epoch": 2.772480386240193,
439
+ "grad_norm": 0.17890885472297668,
440
+ "learning_rate": 0.00020668695968051274,
441
+ "loss": 0.0644,
442
+ "mean_token_accuracy": 0.9828311365842819,
443
+ "num_tokens": 6183440.0,
444
+ "step": 1150
445
+ },
446
+ {
447
+ "epoch": 2.832830416415208,
448
+ "grad_norm": 0.19668501615524292,
449
+ "learning_rate": 0.00020279347151496482,
450
+ "loss": 0.0572,
451
+ "mean_token_accuracy": 0.9856607836484909,
452
+ "num_tokens": 6307206.0,
453
+ "step": 1175
454
+ },
455
+ {
456
+ "epoch": 2.8931804465902236,
457
+ "grad_norm": 0.12178179621696472,
458
+ "learning_rate": 0.00019885894799802922,
459
+ "loss": 0.0626,
460
+ "mean_token_accuracy": 0.9839641106128693,
461
+ "num_tokens": 6451936.0,
462
+ "step": 1200
463
+ },
464
+ {
465
+ "epoch": 2.9535304767652386,
466
+ "grad_norm": 0.14492283761501312,
467
+ "learning_rate": 0.00019488644735926396,
468
+ "loss": 0.0533,
469
+ "mean_token_accuracy": 0.9867338234186173,
470
+ "num_tokens": 6574944.0,
471
+ "step": 1225
472
+ },
473
+ {
474
+ "epoch": 3.0,
475
+ "eval_loss": 0.06949137151241302,
476
+ "eval_mean_token_accuracy": 0.9829865713377257,
477
+ "eval_num_tokens": 6670539.0,
478
+ "eval_runtime": 60.3936,
479
+ "eval_samples_per_second": 6.11,
480
+ "eval_steps_per_second": 3.063,
481
+ "step": 1245
482
+ },
483
+ {
484
+ "epoch": 3.012070006035003,
485
+ "grad_norm": 0.18783801794052124,
486
+ "learning_rate": 0.00019087905734711452,
487
+ "loss": 0.0609,
488
+ "mean_token_accuracy": 0.984156120683729,
489
+ "num_tokens": 6706398.0,
490
+ "step": 1250
491
+ },
492
+ {
493
+ "epoch": 3.0724200362100182,
494
+ "grad_norm": 0.2086067646741867,
495
+ "learning_rate": 0.00018683989282886613,
496
+ "loss": 0.046,
497
+ "mean_token_accuracy": 0.9881435281038284,
498
+ "num_tokens": 6848066.0,
499
+ "step": 1275
500
+ },
501
+ {
502
+ "epoch": 3.1327700663850333,
503
+ "grad_norm": 0.2123444378376007,
504
+ "learning_rate": 0.0001827720933695173,
505
+ "loss": 0.0552,
506
+ "mean_token_accuracy": 0.9860709112882614,
507
+ "num_tokens": 6975273.0,
508
+ "step": 1300
509
+ },
510
+ {
511
+ "epoch": 3.1931200965600484,
512
+ "grad_norm": 0.11279409378767014,
513
+ "learning_rate": 0.00017867882079145627,
514
+ "loss": 0.0455,
515
+ "mean_token_accuracy": 0.9881318390369416,
516
+ "num_tokens": 7117546.0,
517
+ "step": 1325
518
+ },
519
+ {
520
+ "epoch": 3.2534701267350634,
521
+ "grad_norm": 0.177442729473114,
522
+ "learning_rate": 0.00017456325671683724,
523
+ "loss": 0.0546,
524
+ "mean_token_accuracy": 0.9862780523300171,
525
+ "num_tokens": 7244543.0,
526
+ "step": 1350
527
+ },
528
+ {
529
+ "epoch": 3.3138201569100785,
530
+ "grad_norm": 0.10142289847135544,
531
+ "learning_rate": 0.00017042860009456638,
532
+ "loss": 0.0445,
533
+ "mean_token_accuracy": 0.988534786105156,
534
+ "num_tokens": 7384967.0,
535
+ "step": 1375
536
+ },
537
+ {
538
+ "epoch": 3.3741701870850935,
539
+ "grad_norm": 0.15665322542190552,
540
+ "learning_rate": 0.00016627806471382066,
541
+ "loss": 0.0532,
542
+ "mean_token_accuracy": 0.9868290704488755,
543
+ "num_tokens": 7509226.0,
544
+ "step": 1400
545
+ },
546
+ {
547
+ "epoch": 3.4345202172601086,
548
+ "grad_norm": 0.15646246075630188,
549
+ "learning_rate": 0.00016211487670603078,
550
+ "loss": 0.0456,
551
+ "mean_token_accuracy": 0.9882669430971146,
552
+ "num_tokens": 7648911.0,
553
+ "step": 1425
554
+ },
555
+ {
556
+ "epoch": 3.4948702474351236,
557
+ "grad_norm": 0.16921687126159668,
558
+ "learning_rate": 0.0001579422720372715,
559
+ "loss": 0.0568,
560
+ "mean_token_accuracy": 0.9850279080867768,
561
+ "num_tokens": 7777925.0,
562
+ "step": 1450
563
+ },
564
+ {
565
+ "epoch": 3.5552202776101387,
566
+ "grad_norm": 0.10589733719825745,
567
+ "learning_rate": 0.00015376349399300745,
568
+ "loss": 0.0446,
569
+ "mean_token_accuracy": 0.9881089746952056,
570
+ "num_tokens": 7922053.0,
571
+ "step": 1475
572
+ },
573
+ {
574
+ "epoch": 3.6155703077851538,
575
+ "grad_norm": 0.2955225110054016,
576
+ "learning_rate": 0.0001495817906571492,
577
+ "loss": 0.0544,
578
+ "mean_token_accuracy": 0.9862786346673965,
579
+ "num_tokens": 8049528.0,
580
+ "step": 1500
581
+ },
582
+ {
583
+ "epoch": 3.675920337960169,
584
+ "grad_norm": 0.0742836520075798,
585
+ "learning_rate": 0.00014540041238738055,
586
+ "loss": 0.0456,
587
+ "mean_token_accuracy": 0.9878502124547959,
588
+ "num_tokens": 8190743.0,
589
+ "step": 1525
590
+ },
591
+ {
592
+ "epoch": 3.736270368135184,
593
+ "grad_norm": 0.12437008321285248,
594
+ "learning_rate": 0.00014122260928871734,
595
+ "loss": 0.0535,
596
+ "mean_token_accuracy": 0.9863007247447968,
597
+ "num_tokens": 8316676.0,
598
+ "step": 1550
599
+ },
600
+ {
601
+ "epoch": 3.796620398310199,
602
+ "grad_norm": 0.08342117071151733,
603
+ "learning_rate": 0.00013705162868726396,
604
+ "loss": 0.0447,
605
+ "mean_token_accuracy": 0.9884078222513198,
606
+ "num_tokens": 8457403.0,
607
+ "step": 1575
608
+ },
609
+ {
610
+ "epoch": 3.856970428485214,
611
+ "grad_norm": 0.17910127341747284,
612
+ "learning_rate": 0.00013289071260612855,
613
+ "loss": 0.052,
614
+ "mean_token_accuracy": 0.9868350481986999,
615
+ "num_tokens": 8583976.0,
616
+ "step": 1600
617
+ },
618
+ {
619
+ "epoch": 3.9173204586602295,
620
+ "grad_norm": 0.06760319322347641,
621
+ "learning_rate": 0.00012874309524546083,
622
+ "loss": 0.045,
623
+ "mean_token_accuracy": 0.9878969532251358,
624
+ "num_tokens": 8727702.0,
625
+ "step": 1625
626
+ },
627
+ {
628
+ "epoch": 3.9776704888352445,
629
+ "grad_norm": 0.15349148213863373,
630
+ "learning_rate": 0.00012461200046857084,
631
+ "loss": 0.0508,
632
+ "mean_token_accuracy": 0.987232791185379,
633
+ "num_tokens": 8849683.0,
634
+ "step": 1650
635
+ },
636
+ {
637
+ "epoch": 4.0,
638
+ "eval_loss": 0.0635647177696228,
639
+ "eval_mean_token_accuracy": 0.9845431846541327,
640
+ "eval_num_tokens": 8894052.0,
641
+ "eval_runtime": 60.4472,
642
+ "eval_samples_per_second": 6.105,
643
+ "eval_steps_per_second": 3.061,
644
+ "step": 1660
645
+ },
646
+ {
647
+ "epoch": 4.036210018105009,
648
+ "grad_norm": 0.1430218666791916,
649
+ "learning_rate": 0.00012050063929608123,
650
+ "loss": 0.0441,
651
+ "mean_token_accuracy": 0.9887785659622901,
652
+ "num_tokens": 8992417.0,
653
+ "step": 1675
654
+ },
655
+ {
656
+ "epoch": 4.096560048280024,
657
+ "grad_norm": 0.08819396048784256,
658
+ "learning_rate": 0.0001164122074100633,
659
+ "loss": 0.0406,
660
+ "mean_token_accuracy": 0.9898108446598053,
661
+ "num_tokens": 9122219.0,
662
+ "step": 1700
663
+ },
664
+ {
665
+ "epoch": 4.15691007845504,
666
+ "grad_norm": 0.08506345748901367,
667
+ "learning_rate": 0.00011234988267009415,
668
+ "loss": 0.0457,
669
+ "mean_token_accuracy": 0.9884944796562195,
670
+ "num_tokens": 9262178.0,
671
+ "step": 1725
672
+ },
673
+ {
674
+ "epoch": 4.217260108630055,
675
+ "grad_norm": 0.08111756294965744,
676
+ "learning_rate": 0.00010831682264316787,
677
+ "loss": 0.0416,
678
+ "mean_token_accuracy": 0.989647062420845,
679
+ "num_tokens": 9391026.0,
680
+ "step": 1750
681
+ },
682
+ {
683
+ "epoch": 4.27761013880507,
684
+ "grad_norm": 0.07644202560186386,
685
+ "learning_rate": 0.00010431616214937911,
686
+ "loss": 0.046,
687
+ "mean_token_accuracy": 0.9881355553865433,
688
+ "num_tokens": 9531921.0,
689
+ "step": 1775
690
+ },
691
+ {
692
+ "epoch": 4.337960168980085,
693
+ "grad_norm": 0.03971414268016815,
694
+ "learning_rate": 0.00010035101082528777,
695
+ "loss": 0.0413,
696
+ "mean_token_accuracy": 0.9894955778121948,
697
+ "num_tokens": 9661664.0,
698
+ "step": 1800
699
+ },
700
+ {
701
+ "epoch": 4.3983101991551,
702
+ "grad_norm": 0.07305199652910233,
703
+ "learning_rate": 9.642445070685809e-05,
704
+ "loss": 0.0435,
705
+ "mean_token_accuracy": 0.9884718316793442,
706
+ "num_tokens": 9801214.0,
707
+ "step": 1825
708
+ },
709
+ {
710
+ "epoch": 4.458660229330115,
711
+ "grad_norm": 0.07561074942350388,
712
+ "learning_rate": 9.253953383385157e-05,
713
+ "loss": 0.0411,
714
+ "mean_token_accuracy": 0.9890134006738662,
715
+ "num_tokens": 9929511.0,
716
+ "step": 1850
717
+ },
718
+ {
719
+ "epoch": 4.51901025950513,
720
+ "grad_norm": 0.12152893096208572,
721
+ "learning_rate": 8.869927987753459e-05,
722
+ "loss": 0.0442,
723
+ "mean_token_accuracy": 0.9886808878183365,
724
+ "num_tokens": 10069489.0,
725
+ "step": 1875
726
+ },
727
+ {
728
+ "epoch": 4.579360289680145,
729
+ "grad_norm": 0.05834532529115677,
730
+ "learning_rate": 8.490667379354661e-05,
731
+ "loss": 0.0417,
732
+ "mean_token_accuracy": 0.9894009435176849,
733
+ "num_tokens": 10197956.0,
734
+ "step": 1900
735
+ },
736
+ {
737
+ "epoch": 4.63971031985516,
738
+ "grad_norm": 0.08154677599668503,
739
+ "learning_rate": 8.116466350175079e-05,
740
+ "loss": 0.0437,
741
+ "mean_token_accuracy": 0.9884669744968414,
742
+ "num_tokens": 10335860.0,
743
+ "step": 1925
744
+ },
745
+ {
746
+ "epoch": 4.700060350030175,
747
+ "grad_norm": 0.07408758997917175,
748
+ "learning_rate": 7.747615759487304e-05,
749
+ "loss": 0.0411,
750
+ "mean_token_accuracy": 0.989289864897728,
751
+ "num_tokens": 10464303.0,
752
+ "step": 1950
753
+ },
754
+ {
755
+ "epoch": 4.76041038020519,
756
+ "grad_norm": 0.0779808983206749,
757
+ "learning_rate": 7.38440230777085e-05,
758
+ "loss": 0.0453,
759
+ "mean_token_accuracy": 0.9880505865812301,
760
+ "num_tokens": 10601511.0,
761
+ "step": 1975
762
+ },
763
+ {
764
+ "epoch": 4.820760410380205,
765
+ "grad_norm": 0.046579256653785706,
766
+ "learning_rate": 7.027108313865378e-05,
767
+ "loss": 0.0401,
768
+ "mean_token_accuracy": 0.9896253395080566,
769
+ "num_tokens": 10732156.0,
770
+ "step": 2000
771
+ },
772
+ {
773
+ "epoch": 4.88111044055522,
774
+ "grad_norm": 0.07918152213096619,
775
+ "learning_rate": 6.676011495529687e-05,
776
+ "loss": 0.042,
777
+ "mean_token_accuracy": 0.9889346659183502,
778
+ "num_tokens": 10873235.0,
779
+ "step": 2025
780
+ },
781
+ {
782
+ "epoch": 4.941460470730235,
783
+ "grad_norm": 0.04908803850412369,
784
+ "learning_rate": 6.331384753577056e-05,
785
+ "loss": 0.0408,
786
+ "mean_token_accuracy": 0.9895875388383866,
787
+ "num_tokens": 11001827.0,
788
+ "step": 2050
789
+ },
790
+ {
791
+ "epoch": 5.0,
792
+ "grad_norm": 0.22838693857192993,
793
+ "learning_rate": 5.993495959754631e-05,
794
+ "loss": 0.0452,
795
+ "mean_token_accuracy": 0.9885991817897128,
796
+ "num_tokens": 11117565.0,
797
+ "step": 2075
798
+ },
799
+ {
800
+ "epoch": 5.0,
801
+ "eval_loss": 0.06391309201717377,
802
+ "eval_mean_token_accuracy": 0.9852847150854163,
803
+ "eval_num_tokens": 11117565.0,
804
+ "eval_runtime": 60.3576,
805
+ "eval_samples_per_second": 6.114,
806
+ "eval_steps_per_second": 3.065,
807
+ "step": 2075
808
+ }
809
+ ],
810
+ "logging_steps": 25,
811
+ "max_steps": 2905,
812
+ "num_input_tokens_seen": 0,
813
+ "num_train_epochs": 7,
814
+ "save_steps": 500,
815
+ "stateful_callbacks": {
816
+ "TrainerControl": {
817
+ "args": {
818
+ "should_epoch_stop": false,
819
+ "should_evaluate": false,
820
+ "should_log": false,
821
+ "should_save": true,
822
+ "should_training_stop": false
823
+ },
824
+ "attributes": {}
825
+ }
826
+ },
827
+ "total_flos": 4.8080321362273075e+17,
828
+ "train_batch_size": 2,
829
+ "trial_name": null,
830
+ "trial_params": null
831
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db6de366ac315839abd567edca47f98a08a1256a4f1baddaab0d0cfffba2f28f
3
+ size 5969