finalform commited on
Commit
fd641f5
·
verified ·
1 Parent(s): 45c7088

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. adapter_config.json +4 -4
  2. adapter_model.safetensors +1 -1
  3. checkpoint-1245/README.md +202 -0
  4. checkpoint-1245/adapter_config.json +39 -0
  5. checkpoint-1245/adapter_model.safetensors +3 -0
  6. checkpoint-1245/chat_template.jinja +87 -0
  7. checkpoint-1245/optimizer.pt +3 -0
  8. checkpoint-1245/rng_state.pth +3 -0
  9. checkpoint-1245/scheduler.pt +3 -0
  10. checkpoint-1245/special_tokens_map.json +24 -0
  11. checkpoint-1245/tokenizer.json +0 -0
  12. checkpoint-1245/tokenizer.model +3 -0
  13. checkpoint-1245/tokenizer_config.json +0 -0
  14. checkpoint-1245/trainer_state.json +505 -0
  15. checkpoint-1245/training_args.bin +3 -0
  16. checkpoint-1660/README.md +202 -0
  17. checkpoint-1660/adapter_config.json +39 -0
  18. checkpoint-1660/adapter_model.safetensors +3 -0
  19. checkpoint-1660/chat_template.jinja +87 -0
  20. checkpoint-1660/optimizer.pt +3 -0
  21. checkpoint-1660/rng_state.pth +3 -0
  22. checkpoint-1660/scheduler.pt +3 -0
  23. checkpoint-1660/special_tokens_map.json +24 -0
  24. checkpoint-1660/tokenizer.json +0 -0
  25. checkpoint-1660/tokenizer.model +3 -0
  26. checkpoint-1660/tokenizer_config.json +0 -0
  27. checkpoint-1660/trainer_state.json +668 -0
  28. checkpoint-1660/training_args.bin +3 -0
  29. checkpoint-2075/README.md +202 -0
  30. checkpoint-2075/adapter_config.json +39 -0
  31. checkpoint-2075/adapter_model.safetensors +3 -0
  32. checkpoint-2075/chat_template.jinja +87 -0
  33. checkpoint-2075/optimizer.pt +3 -0
  34. checkpoint-2075/rng_state.pth +3 -0
  35. checkpoint-2075/scheduler.pt +3 -0
  36. checkpoint-2075/special_tokens_map.json +24 -0
  37. checkpoint-2075/tokenizer.json +0 -0
  38. checkpoint-2075/tokenizer.model +3 -0
  39. checkpoint-2075/tokenizer_config.json +0 -0
  40. checkpoint-2075/trainer_state.json +831 -0
  41. checkpoint-2075/training_args.bin +3 -0
  42. checkpoint-2490/README.md +202 -0
  43. checkpoint-2490/adapter_config.json +39 -0
  44. checkpoint-2490/adapter_model.safetensors +3 -0
  45. checkpoint-2490/chat_template.jinja +87 -0
  46. checkpoint-2490/optimizer.pt +3 -0
  47. checkpoint-2490/rng_state.pth +3 -0
  48. checkpoint-2490/scheduler.pt +3 -0
  49. checkpoint-2490/special_tokens_map.json +24 -0
  50. checkpoint-2490/tokenizer.json +0 -0
adapter_config.json CHANGED
@@ -24,13 +24,13 @@
24
  "rank_pattern": {},
25
  "revision": null,
26
  "target_modules": [
27
- "up_proj",
28
- "q_proj",
29
  "gate_proj",
30
  "k_proj",
31
- "o_proj",
32
  "down_proj",
33
- "v_proj"
 
 
 
34
  ],
35
  "task_type": "CAUSAL_LM",
36
  "trainable_token_indices": null,
 
24
  "rank_pattern": {},
25
  "revision": null,
26
  "target_modules": [
 
 
27
  "gate_proj",
28
  "k_proj",
 
29
  "down_proj",
30
+ "o_proj",
31
+ "v_proj",
32
+ "up_proj",
33
+ "q_proj"
34
  ],
35
  "task_type": "CAUSAL_LM",
36
  "trainable_token_indices": null,
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0a8447d936fb5f9087f8afb547e82b7cebafe1eaf0eab24facec650d167f8095
3
  size 335604696
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd96fdcd636771e4873f12078f36d23b38b5a9447f92b7d3611efde0c9ea5b4e
3
  size 335604696
checkpoint-1245/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-1245/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 32,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "o_proj",
31
+ "v_proj",
32
+ "up_proj",
33
+ "q_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-1245/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2997931c8e9988c9b6b59a1e57c4f22759c43d13539e3a0b69f99f4725ffccd
3
+ size 335604696
checkpoint-1245/chat_template.jinja ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if messages[0]["role"] == "system" %}
2
+ {%- set system_message = messages[0]["content"] %}
3
+ {%- set loop_messages = messages[1:] %}
4
+ {%- else %}
5
+ {%- set loop_messages = messages %}
6
+ {%- endif %}
7
+ {%- if not tools is defined %}
8
+ {%- set tools = none %}
9
+ {%- endif %}
10
+ {%- set user_messages = loop_messages | selectattr("role", "equalto", "user") | list %}
11
+
12
+ {#- This block checks for alternating user/assistant messages, skipping tool calling messages #}
13
+ {%- set ns = namespace() %}
14
+ {%- set ns.index = 0 %}
15
+ {%- for message in loop_messages %}
16
+ {%- if not (message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
17
+ {%- if (message["role"] == "user") != (ns.index % 2 == 0) %}
18
+ {{- raise_exception("After the optional system message, conversation roles must alternate user/assistant/user/assistant/...") }}
19
+ {%- endif %}
20
+ {%- set ns.index = ns.index + 1 %}
21
+ {%- endif %}
22
+ {%- endfor %}
23
+
24
+ {{- bos_token }}
25
+ {%- for message in loop_messages %}
26
+ {%- if message["role"] == "user" %}
27
+ {%- if tools is not none and (message == user_messages[-1]) %}
28
+ {{- "[AVAILABLE_TOOLS] [" }}
29
+ {%- for tool in tools %}
30
+ {%- set tool = tool.function %}
31
+ {{- '{"type": "function", "function": {' }}
32
+ {%- for key, val in tool.items() if key != "return" %}
33
+ {%- if val is string %}
34
+ {{- '"' + key + '": "' + val + '"' }}
35
+ {%- else %}
36
+ {{- '"' + key + '": ' + val|tojson }}
37
+ {%- endif %}
38
+ {%- if not loop.last %}
39
+ {{- ", " }}
40
+ {%- endif %}
41
+ {%- endfor %}
42
+ {{- "}}" }}
43
+ {%- if not loop.last %}
44
+ {{- ", " }}
45
+ {%- else %}
46
+ {{- "]" }}
47
+ {%- endif %}
48
+ {%- endfor %}
49
+ {{- "[/AVAILABLE_TOOLS]" }}
50
+ {%- endif %}
51
+ {%- if loop.last and system_message is defined %}
52
+ {{- "[INST] " + system_message + "\n\n" + message["content"] + "[/INST]" }}
53
+ {%- else %}
54
+ {{- "[INST] " + message["content"] + "[/INST]" }}
55
+ {%- endif %}
56
+ {%- elif message.tool_calls is defined and message.tool_calls is not none %}
57
+ {{- "[TOOL_CALLS] [" }}
58
+ {%- for tool_call in message.tool_calls %}
59
+ {%- set out = tool_call.function|tojson %}
60
+ {{- out[:-1] }}
61
+ {%- if not tool_call.id is defined or tool_call.id|length != 9 %}
62
+ {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
63
+ {%- endif %}
64
+ {{- ', "id": "' + tool_call.id + '"}' }}
65
+ {%- if not loop.last %}
66
+ {{- ", " }}
67
+ {%- else %}
68
+ {{- "]" + eos_token }}
69
+ {%- endif %}
70
+ {%- endfor %}
71
+ {%- elif message["role"] == "assistant" %}
72
+ {{- " " + message["content"]|trim + eos_token}}
73
+ {%- elif message["role"] == "tool_results" or message["role"] == "tool" %}
74
+ {%- if message.content is defined and message.content.content is defined %}
75
+ {%- set content = message.content.content %}
76
+ {%- else %}
77
+ {%- set content = message.content %}
78
+ {%- endif %}
79
+ {{- '[TOOL_RESULTS] {"content": ' + content|string + ", " }}
80
+ {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}
81
+ {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
82
+ {%- endif %}
83
+ {{- '"call_id": "' + message.tool_call_id + '"}[/TOOL_RESULTS]' }}
84
+ {%- else %}
85
+ {{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}
86
+ {%- endif %}
87
+ {%- endfor %}
checkpoint-1245/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2aa92d1ffa453e8be16180449483ed1a2bc847961c6bb6d2a539131af8517619
3
+ size 671365003
checkpoint-1245/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a6682f2819b4c512a5135ce5121cc17df05a991d605014db5cc4d78492f734a
3
+ size 14645
checkpoint-1245/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0507b5178a097f1a47eb13bf2dc725ccef8bd541a0c05887db5c53c97f9a004
3
+ size 1465
checkpoint-1245/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-1245/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1245/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
checkpoint-1245/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1245/trainer_state.json ADDED
@@ -0,0 +1,505 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1245,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.060350030175015085,
14
+ "grad_norm": 0.915810763835907,
15
+ "learning_rate": 8.18181818181818e-05,
16
+ "loss": 1.5579,
17
+ "mean_token_accuracy": 0.6726609909534454,
18
+ "num_tokens": 156451.0,
19
+ "step": 25
20
+ },
21
+ {
22
+ "epoch": 0.12070006035003017,
23
+ "grad_norm": 0.8468347191810608,
24
+ "learning_rate": 0.00016704545454545452,
25
+ "loss": 0.8806,
26
+ "mean_token_accuracy": 0.7797876751422882,
27
+ "num_tokens": 273996.0,
28
+ "step": 50
29
+ },
30
+ {
31
+ "epoch": 0.18105009052504525,
32
+ "grad_norm": 0.6957323551177979,
33
+ "learning_rate": 0.0002522727272727273,
34
+ "loss": 0.5904,
35
+ "mean_token_accuracy": 0.8393249285221099,
36
+ "num_tokens": 425859.0,
37
+ "step": 75
38
+ },
39
+ {
40
+ "epoch": 0.24140012070006034,
41
+ "grad_norm": 0.7738164663314819,
42
+ "learning_rate": 0.0002999887132933212,
43
+ "loss": 0.4572,
44
+ "mean_token_accuracy": 0.8712374359369278,
45
+ "num_tokens": 542080.0,
46
+ "step": 100
47
+ },
48
+ {
49
+ "epoch": 0.30175015087507545,
50
+ "grad_norm": 0.6000323295593262,
51
+ "learning_rate": 0.0002998791256978121,
52
+ "loss": 0.3441,
53
+ "mean_token_accuracy": 0.9016327333450317,
54
+ "num_tokens": 690749.0,
55
+ "step": 125
56
+ },
57
+ {
58
+ "epoch": 0.3621001810500905,
59
+ "grad_norm": 0.8241934776306152,
60
+ "learning_rate": 0.0002996530399366737,
61
+ "loss": 0.3391,
62
+ "mean_token_accuracy": 0.9067233097553253,
63
+ "num_tokens": 804498.0,
64
+ "step": 150
65
+ },
66
+ {
67
+ "epoch": 0.4224502112251056,
68
+ "grad_norm": 0.6018714308738708,
69
+ "learning_rate": 0.00029931063174202567,
70
+ "loss": 0.2403,
71
+ "mean_token_accuracy": 0.9311208426952362,
72
+ "num_tokens": 956805.0,
73
+ "step": 175
74
+ },
75
+ {
76
+ "epoch": 0.4828002414001207,
77
+ "grad_norm": 0.6791284680366516,
78
+ "learning_rate": 0.00029885216726118104,
79
+ "loss": 0.2405,
80
+ "mean_token_accuracy": 0.9332937943935394,
81
+ "num_tokens": 1073182.0,
82
+ "step": 200
83
+ },
84
+ {
85
+ "epoch": 0.5431502715751357,
86
+ "grad_norm": 0.4105781614780426,
87
+ "learning_rate": 0.00029827800284977474,
88
+ "loss": 0.1788,
89
+ "mean_token_accuracy": 0.9502924716472626,
90
+ "num_tokens": 1223675.0,
91
+ "step": 225
92
+ },
93
+ {
94
+ "epoch": 0.6035003017501509,
95
+ "grad_norm": 0.6441053152084351,
96
+ "learning_rate": 0.00029758858479477575,
97
+ "loss": 0.1834,
98
+ "mean_token_accuracy": 0.9509575897455216,
99
+ "num_tokens": 1340505.0,
100
+ "step": 250
101
+ },
102
+ {
103
+ "epoch": 0.663850331925166,
104
+ "grad_norm": 0.6117656230926514,
105
+ "learning_rate": 0.0002967844489675963,
106
+ "loss": 0.164,
107
+ "mean_token_accuracy": 0.9560773247480392,
108
+ "num_tokens": 1494591.0,
109
+ "step": 275
110
+ },
111
+ {
112
+ "epoch": 0.724200362100181,
113
+ "grad_norm": 0.6707085967063904,
114
+ "learning_rate": 0.00029586622040756957,
115
+ "loss": 0.1596,
116
+ "mean_token_accuracy": 0.9571379733085632,
117
+ "num_tokens": 1611141.0,
118
+ "step": 300
119
+ },
120
+ {
121
+ "epoch": 0.7845503922751962,
122
+ "grad_norm": 0.3164249658584595,
123
+ "learning_rate": 0.0002948346128361186,
124
+ "loss": 0.1361,
125
+ "mean_token_accuracy": 0.9637150484323501,
126
+ "num_tokens": 1764271.0,
127
+ "step": 325
128
+ },
129
+ {
130
+ "epoch": 0.8449004224502112,
131
+ "grad_norm": 0.7695516347885132,
132
+ "learning_rate": 0.00029369042810199416,
133
+ "loss": 0.1453,
134
+ "mean_token_accuracy": 0.9618589824438095,
135
+ "num_tokens": 1880091.0,
136
+ "step": 350
137
+ },
138
+ {
139
+ "epoch": 0.9052504526252263,
140
+ "grad_norm": 0.4800753593444824,
141
+ "learning_rate": 0.0002924345555580135,
142
+ "loss": 0.1227,
143
+ "mean_token_accuracy": 0.9672258603572845,
144
+ "num_tokens": 2031547.0,
145
+ "step": 375
146
+ },
147
+ {
148
+ "epoch": 0.9656004828002414,
149
+ "grad_norm": 0.5669476985931396,
150
+ "learning_rate": 0.000291067971369783,
151
+ "loss": 0.1207,
152
+ "mean_token_accuracy": 0.96809639275074,
153
+ "num_tokens": 2147237.0,
154
+ "step": 400
155
+ },
156
+ {
157
+ "epoch": 1.0,
158
+ "eval_loss": 0.12038072198629379,
159
+ "eval_mean_token_accuracy": 0.9679264332797076,
160
+ "eval_num_tokens": 2223513.0,
161
+ "eval_runtime": 60.431,
162
+ "eval_samples_per_second": 6.106,
163
+ "eval_steps_per_second": 3.061,
164
+ "step": 415
165
+ },
166
+ {
167
+ "epoch": 1.024140012070006,
168
+ "grad_norm": 0.31214025616645813,
169
+ "learning_rate": 0.0002895917377569438,
170
+ "loss": 0.127,
171
+ "mean_token_accuracy": 0.966964461139797,
172
+ "num_tokens": 2291189.0,
173
+ "step": 425
174
+ },
175
+ {
176
+ "epoch": 1.0844900422450212,
177
+ "grad_norm": 0.4406073987483978,
178
+ "learning_rate": 0.00028800700216752875,
179
+ "loss": 0.0904,
180
+ "mean_token_accuracy": 0.9758492666482925,
181
+ "num_tokens": 2426566.0,
182
+ "step": 450
183
+ },
184
+ {
185
+ "epoch": 1.1448400724200363,
186
+ "grad_norm": 0.4013468325138092,
187
+ "learning_rate": 0.00028631499638607285,
188
+ "loss": 0.114,
189
+ "mean_token_accuracy": 0.9697561454772949,
190
+ "num_tokens": 2560245.0,
191
+ "step": 475
192
+ },
193
+ {
194
+ "epoch": 1.2051901025950513,
195
+ "grad_norm": 0.3366129994392395,
196
+ "learning_rate": 0.0002845170355761712,
197
+ "loss": 0.0827,
198
+ "mean_token_accuracy": 0.9783335107564927,
199
+ "num_tokens": 2695786.0,
200
+ "step": 500
201
+ },
202
+ {
203
+ "epoch": 1.2655401327700664,
204
+ "grad_norm": 0.33777478337287903,
205
+ "learning_rate": 0.0002826145172582274,
206
+ "loss": 0.1049,
207
+ "mean_token_accuracy": 0.9726521408557892,
208
+ "num_tokens": 2827828.0,
209
+ "step": 525
210
+ },
211
+ {
212
+ "epoch": 1.3258901629450814,
213
+ "grad_norm": 0.34536224603652954,
214
+ "learning_rate": 0.00028060892022318764,
215
+ "loss": 0.0827,
216
+ "mean_token_accuracy": 0.9780162799358368,
217
+ "num_tokens": 2959671.0,
218
+ "step": 550
219
+ },
220
+ {
221
+ "epoch": 1.3862401931200965,
222
+ "grad_norm": 0.34014376997947693,
223
+ "learning_rate": 0.0002785018033831051,
224
+ "loss": 0.1,
225
+ "mean_token_accuracy": 0.9745338922739029,
226
+ "num_tokens": 3092256.0,
227
+ "step": 575
228
+ },
229
+ {
230
+ "epoch": 1.4465902232951118,
231
+ "grad_norm": 0.26126986742019653,
232
+ "learning_rate": 0.0002762948045594276,
233
+ "loss": 0.0784,
234
+ "mean_token_accuracy": 0.98013427734375,
235
+ "num_tokens": 3225551.0,
236
+ "step": 600
237
+ },
238
+ {
239
+ "epoch": 1.5069402534701268,
240
+ "grad_norm": 0.25581225752830505,
241
+ "learning_rate": 0.0002739896392099502,
242
+ "loss": 0.0992,
243
+ "mean_token_accuracy": 0.9744413161277771,
244
+ "num_tokens": 3358590.0,
245
+ "step": 625
246
+ },
247
+ {
248
+ "epoch": 1.567290283645142,
249
+ "grad_norm": 0.38688021898269653,
250
+ "learning_rate": 0.00027158809909542307,
251
+ "loss": 0.0746,
252
+ "mean_token_accuracy": 0.9804132694005966,
253
+ "num_tokens": 3494044.0,
254
+ "step": 650
255
+ },
256
+ {
257
+ "epoch": 1.627640313820157,
258
+ "grad_norm": 0.2373267114162445,
259
+ "learning_rate": 0.00026909205088685,
260
+ "loss": 0.0976,
261
+ "mean_token_accuracy": 0.9745747190713883,
262
+ "num_tokens": 3627751.0,
263
+ "step": 675
264
+ },
265
+ {
266
+ "epoch": 1.687990343995172,
267
+ "grad_norm": 0.37386244535446167,
268
+ "learning_rate": 0.0002665034347145612,
269
+ "loss": 0.0751,
270
+ "mean_token_accuracy": 0.9802791184186935,
271
+ "num_tokens": 3762776.0,
272
+ "step": 700
273
+ },
274
+ {
275
+ "epoch": 1.748340374170187,
276
+ "grad_norm": 0.276994526386261,
277
+ "learning_rate": 0.000263824262660187,
278
+ "loss": 0.097,
279
+ "mean_token_accuracy": 0.9747868567705155,
280
+ "num_tokens": 3896978.0,
281
+ "step": 725
282
+ },
283
+ {
284
+ "epoch": 1.8086904043452021,
285
+ "grad_norm": 0.4135245978832245,
286
+ "learning_rate": 0.0002610566171927056,
287
+ "loss": 0.0706,
288
+ "mean_token_accuracy": 0.9817547309398651,
289
+ "num_tokens": 4034768.0,
290
+ "step": 750
291
+ },
292
+ {
293
+ "epoch": 1.8690404345202172,
294
+ "grad_norm": 0.15843796730041504,
295
+ "learning_rate": 0.00025820264954977976,
296
+ "loss": 0.0889,
297
+ "mean_token_accuracy": 0.9776063919067383,
298
+ "num_tokens": 4169906.0,
299
+ "step": 775
300
+ },
301
+ {
302
+ "epoch": 1.9293904646952322,
303
+ "grad_norm": 0.30585798621177673,
304
+ "learning_rate": 0.00025526457806564136,
305
+ "loss": 0.0668,
306
+ "mean_token_accuracy": 0.9821723079681397,
307
+ "num_tokens": 4305541.0,
308
+ "step": 800
309
+ },
310
+ {
311
+ "epoch": 1.9897404948702473,
312
+ "grad_norm": 0.23672625422477722,
313
+ "learning_rate": 0.00025224468644682245,
314
+ "loss": 0.0777,
315
+ "mean_token_accuracy": 0.9801788556575776,
316
+ "num_tokens": 4429095.0,
317
+ "step": 825
318
+ },
319
+ {
320
+ "epoch": 2.0,
321
+ "eval_loss": 0.08333630114793777,
322
+ "eval_mean_token_accuracy": 0.9790130283381487,
323
+ "eval_num_tokens": 4447026.0,
324
+ "eval_runtime": 60.4769,
325
+ "eval_samples_per_second": 6.101,
326
+ "eval_steps_per_second": 3.059,
327
+ "step": 830
328
+ },
329
+ {
330
+ "epoch": 2.048280024140012,
331
+ "grad_norm": 0.2790965139865875,
332
+ "learning_rate": 0.00024914532199707444,
333
+ "loss": 0.0737,
334
+ "mean_token_accuracy": 0.9818082832798516,
335
+ "num_tokens": 4573150.0,
336
+ "step": 850
337
+ },
338
+ {
339
+ "epoch": 2.1086300543150274,
340
+ "grad_norm": 0.38501349091529846,
341
+ "learning_rate": 0.00024596889379285353,
342
+ "loss": 0.0609,
343
+ "mean_token_accuracy": 0.9846205246448517,
344
+ "num_tokens": 4696253.0,
345
+ "step": 875
346
+ },
347
+ {
348
+ "epoch": 2.1689800844900424,
349
+ "grad_norm": 0.3383895754814148,
350
+ "learning_rate": 0.00024271787081079228,
351
+ "loss": 0.0731,
352
+ "mean_token_accuracy": 0.9802233374118805,
353
+ "num_tokens": 4842241.0,
354
+ "step": 900
355
+ },
356
+ {
357
+ "epoch": 2.2293301146650575,
358
+ "grad_norm": 0.21086572110652924,
359
+ "learning_rate": 0.00023939478000861117,
360
+ "loss": 0.0596,
361
+ "mean_token_accuracy": 0.9851127731800079,
362
+ "num_tokens": 4965545.0,
363
+ "step": 925
364
+ },
365
+ {
366
+ "epoch": 2.2896801448400725,
367
+ "grad_norm": 0.20826084911823273,
368
+ "learning_rate": 0.00023600220436096318,
369
+ "loss": 0.0759,
370
+ "mean_token_accuracy": 0.9797697293758393,
371
+ "num_tokens": 5111070.0,
372
+ "step": 950
373
+ },
374
+ {
375
+ "epoch": 2.3500301750150876,
376
+ "grad_norm": 0.2537970244884491,
377
+ "learning_rate": 0.00023254278085173684,
378
+ "loss": 0.059,
379
+ "mean_token_accuracy": 0.9851009005308151,
380
+ "num_tokens": 5235251.0,
381
+ "step": 975
382
+ },
383
+ {
384
+ "epoch": 2.4103802051901027,
385
+ "grad_norm": 0.2794428765773773,
386
+ "learning_rate": 0.00022901919842437972,
387
+ "loss": 0.0671,
388
+ "mean_token_accuracy": 0.9823657035827636,
389
+ "num_tokens": 5379177.0,
390
+ "step": 1000
391
+ },
392
+ {
393
+ "epoch": 2.4707302353651177,
394
+ "grad_norm": 0.23955030739307404,
395
+ "learning_rate": 0.00022543419589183397,
396
+ "loss": 0.06,
397
+ "mean_token_accuracy": 0.9847251123189926,
398
+ "num_tokens": 5501778.0,
399
+ "step": 1025
400
+ },
401
+ {
402
+ "epoch": 2.5310802655401328,
403
+ "grad_norm": 0.24202412366867065,
404
+ "learning_rate": 0.00022179055980770993,
405
+ "loss": 0.0702,
406
+ "mean_token_accuracy": 0.9814589565992355,
407
+ "num_tokens": 5646414.0,
408
+ "step": 1050
409
+ },
410
+ {
411
+ "epoch": 2.591430295715148,
412
+ "grad_norm": 0.18459561467170715,
413
+ "learning_rate": 0.0002180911223003513,
414
+ "loss": 0.062,
415
+ "mean_token_accuracy": 0.9842818379402161,
416
+ "num_tokens": 5771178.0,
417
+ "step": 1075
418
+ },
419
+ {
420
+ "epoch": 2.651780325890163,
421
+ "grad_norm": 0.21107763051986694,
422
+ "learning_rate": 0.00021433875887147627,
423
+ "loss": 0.0656,
424
+ "mean_token_accuracy": 0.982610120177269,
425
+ "num_tokens": 5916367.0,
426
+ "step": 1100
427
+ },
428
+ {
429
+ "epoch": 2.712130356065178,
430
+ "grad_norm": 0.12310996651649475,
431
+ "learning_rate": 0.00021053638616110525,
432
+ "loss": 0.056,
433
+ "mean_token_accuracy": 0.9858221507072449,
434
+ "num_tokens": 6039601.0,
435
+ "step": 1125
436
+ },
437
+ {
438
+ "epoch": 2.772480386240193,
439
+ "grad_norm": 0.0949612483382225,
440
+ "learning_rate": 0.00020668695968051274,
441
+ "loss": 0.062,
442
+ "mean_token_accuracy": 0.9835014945268631,
443
+ "num_tokens": 6183454.0,
444
+ "step": 1150
445
+ },
446
+ {
447
+ "epoch": 2.832830416415208,
448
+ "grad_norm": 0.23207980394363403,
449
+ "learning_rate": 0.00020279347151496482,
450
+ "loss": 0.0546,
451
+ "mean_token_accuracy": 0.9864810138940812,
452
+ "num_tokens": 6305513.0,
453
+ "step": 1175
454
+ },
455
+ {
456
+ "epoch": 2.8931804465902236,
457
+ "grad_norm": 0.14339599013328552,
458
+ "learning_rate": 0.00019885894799802922,
459
+ "loss": 0.0665,
460
+ "mean_token_accuracy": 0.982457509636879,
461
+ "num_tokens": 6450956.0,
462
+ "step": 1200
463
+ },
464
+ {
465
+ "epoch": 2.9535304767652386,
466
+ "grad_norm": 0.10236950218677521,
467
+ "learning_rate": 0.00019488644735926396,
468
+ "loss": 0.0538,
469
+ "mean_token_accuracy": 0.9864566326141357,
470
+ "num_tokens": 6574055.0,
471
+ "step": 1225
472
+ },
473
+ {
474
+ "epoch": 3.0,
475
+ "eval_loss": 0.0698639452457428,
476
+ "eval_mean_token_accuracy": 0.9828434982815304,
477
+ "eval_num_tokens": 6670539.0,
478
+ "eval_runtime": 60.4557,
479
+ "eval_samples_per_second": 6.104,
480
+ "eval_steps_per_second": 3.06,
481
+ "step": 1245
482
+ }
483
+ ],
484
+ "logging_steps": 25,
485
+ "max_steps": 2905,
486
+ "num_input_tokens_seen": 0,
487
+ "num_train_epochs": 7,
488
+ "save_steps": 500,
489
+ "stateful_callbacks": {
490
+ "TrainerControl": {
491
+ "args": {
492
+ "should_epoch_stop": false,
493
+ "should_evaluate": false,
494
+ "should_log": false,
495
+ "should_save": true,
496
+ "should_training_stop": false
497
+ },
498
+ "attributes": {}
499
+ }
500
+ },
501
+ "total_flos": 2.884964041715958e+17,
502
+ "train_batch_size": 2,
503
+ "trial_name": null,
504
+ "trial_params": null
505
+ }
checkpoint-1245/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:837f73e1808d10388c3e9d0067719323e5731b8387ed3c99bcbeb463cf7ac167
3
+ size 6033
checkpoint-1660/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-1660/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 32,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "o_proj",
31
+ "v_proj",
32
+ "up_proj",
33
+ "q_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-1660/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:746556f40bbb50a0a2e12c520ca2bdeac8fb10fef33b37f9fe993a1b3a025bb2
3
+ size 335604696
checkpoint-1660/chat_template.jinja ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if messages[0]["role"] == "system" %}
2
+ {%- set system_message = messages[0]["content"] %}
3
+ {%- set loop_messages = messages[1:] %}
4
+ {%- else %}
5
+ {%- set loop_messages = messages %}
6
+ {%- endif %}
7
+ {%- if not tools is defined %}
8
+ {%- set tools = none %}
9
+ {%- endif %}
10
+ {%- set user_messages = loop_messages | selectattr("role", "equalto", "user") | list %}
11
+
12
+ {#- This block checks for alternating user/assistant messages, skipping tool calling messages #}
13
+ {%- set ns = namespace() %}
14
+ {%- set ns.index = 0 %}
15
+ {%- for message in loop_messages %}
16
+ {%- if not (message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
17
+ {%- if (message["role"] == "user") != (ns.index % 2 == 0) %}
18
+ {{- raise_exception("After the optional system message, conversation roles must alternate user/assistant/user/assistant/...") }}
19
+ {%- endif %}
20
+ {%- set ns.index = ns.index + 1 %}
21
+ {%- endif %}
22
+ {%- endfor %}
23
+
24
+ {{- bos_token }}
25
+ {%- for message in loop_messages %}
26
+ {%- if message["role"] == "user" %}
27
+ {%- if tools is not none and (message == user_messages[-1]) %}
28
+ {{- "[AVAILABLE_TOOLS] [" }}
29
+ {%- for tool in tools %}
30
+ {%- set tool = tool.function %}
31
+ {{- '{"type": "function", "function": {' }}
32
+ {%- for key, val in tool.items() if key != "return" %}
33
+ {%- if val is string %}
34
+ {{- '"' + key + '": "' + val + '"' }}
35
+ {%- else %}
36
+ {{- '"' + key + '": ' + val|tojson }}
37
+ {%- endif %}
38
+ {%- if not loop.last %}
39
+ {{- ", " }}
40
+ {%- endif %}
41
+ {%- endfor %}
42
+ {{- "}}" }}
43
+ {%- if not loop.last %}
44
+ {{- ", " }}
45
+ {%- else %}
46
+ {{- "]" }}
47
+ {%- endif %}
48
+ {%- endfor %}
49
+ {{- "[/AVAILABLE_TOOLS]" }}
50
+ {%- endif %}
51
+ {%- if loop.last and system_message is defined %}
52
+ {{- "[INST] " + system_message + "\n\n" + message["content"] + "[/INST]" }}
53
+ {%- else %}
54
+ {{- "[INST] " + message["content"] + "[/INST]" }}
55
+ {%- endif %}
56
+ {%- elif message.tool_calls is defined and message.tool_calls is not none %}
57
+ {{- "[TOOL_CALLS] [" }}
58
+ {%- for tool_call in message.tool_calls %}
59
+ {%- set out = tool_call.function|tojson %}
60
+ {{- out[:-1] }}
61
+ {%- if not tool_call.id is defined or tool_call.id|length != 9 %}
62
+ {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
63
+ {%- endif %}
64
+ {{- ', "id": "' + tool_call.id + '"}' }}
65
+ {%- if not loop.last %}
66
+ {{- ", " }}
67
+ {%- else %}
68
+ {{- "]" + eos_token }}
69
+ {%- endif %}
70
+ {%- endfor %}
71
+ {%- elif message["role"] == "assistant" %}
72
+ {{- " " + message["content"]|trim + eos_token}}
73
+ {%- elif message["role"] == "tool_results" or message["role"] == "tool" %}
74
+ {%- if message.content is defined and message.content.content is defined %}
75
+ {%- set content = message.content.content %}
76
+ {%- else %}
77
+ {%- set content = message.content %}
78
+ {%- endif %}
79
+ {{- '[TOOL_RESULTS] {"content": ' + content|string + ", " }}
80
+ {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}
81
+ {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
82
+ {%- endif %}
83
+ {{- '"call_id": "' + message.tool_call_id + '"}[/TOOL_RESULTS]' }}
84
+ {%- else %}
85
+ {{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}
86
+ {%- endif %}
87
+ {%- endfor %}
checkpoint-1660/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a2a58ca03c5059f5f60163aefd11741771b2869f0e1333f518ec8a5cf6270db
3
+ size 671365003
checkpoint-1660/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c7bc16906d7e5aa7943ccefbd2721629ef1abc4dd9f285220ee1b8d4e1290ae
3
+ size 14645
checkpoint-1660/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:400af09f812b537d738744947529a57cd588f5dd92eadb329b9f329acf39c801
3
+ size 1465
checkpoint-1660/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-1660/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1660/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
checkpoint-1660/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1660/trainer_state.json ADDED
@@ -0,0 +1,668 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 4.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1660,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.060350030175015085,
14
+ "grad_norm": 0.915810763835907,
15
+ "learning_rate": 8.18181818181818e-05,
16
+ "loss": 1.5579,
17
+ "mean_token_accuracy": 0.6726609909534454,
18
+ "num_tokens": 156451.0,
19
+ "step": 25
20
+ },
21
+ {
22
+ "epoch": 0.12070006035003017,
23
+ "grad_norm": 0.8468347191810608,
24
+ "learning_rate": 0.00016704545454545452,
25
+ "loss": 0.8806,
26
+ "mean_token_accuracy": 0.7797876751422882,
27
+ "num_tokens": 273996.0,
28
+ "step": 50
29
+ },
30
+ {
31
+ "epoch": 0.18105009052504525,
32
+ "grad_norm": 0.6957323551177979,
33
+ "learning_rate": 0.0002522727272727273,
34
+ "loss": 0.5904,
35
+ "mean_token_accuracy": 0.8393249285221099,
36
+ "num_tokens": 425859.0,
37
+ "step": 75
38
+ },
39
+ {
40
+ "epoch": 0.24140012070006034,
41
+ "grad_norm": 0.7738164663314819,
42
+ "learning_rate": 0.0002999887132933212,
43
+ "loss": 0.4572,
44
+ "mean_token_accuracy": 0.8712374359369278,
45
+ "num_tokens": 542080.0,
46
+ "step": 100
47
+ },
48
+ {
49
+ "epoch": 0.30175015087507545,
50
+ "grad_norm": 0.6000323295593262,
51
+ "learning_rate": 0.0002998791256978121,
52
+ "loss": 0.3441,
53
+ "mean_token_accuracy": 0.9016327333450317,
54
+ "num_tokens": 690749.0,
55
+ "step": 125
56
+ },
57
+ {
58
+ "epoch": 0.3621001810500905,
59
+ "grad_norm": 0.8241934776306152,
60
+ "learning_rate": 0.0002996530399366737,
61
+ "loss": 0.3391,
62
+ "mean_token_accuracy": 0.9067233097553253,
63
+ "num_tokens": 804498.0,
64
+ "step": 150
65
+ },
66
+ {
67
+ "epoch": 0.4224502112251056,
68
+ "grad_norm": 0.6018714308738708,
69
+ "learning_rate": 0.00029931063174202567,
70
+ "loss": 0.2403,
71
+ "mean_token_accuracy": 0.9311208426952362,
72
+ "num_tokens": 956805.0,
73
+ "step": 175
74
+ },
75
+ {
76
+ "epoch": 0.4828002414001207,
77
+ "grad_norm": 0.6791284680366516,
78
+ "learning_rate": 0.00029885216726118104,
79
+ "loss": 0.2405,
80
+ "mean_token_accuracy": 0.9332937943935394,
81
+ "num_tokens": 1073182.0,
82
+ "step": 200
83
+ },
84
+ {
85
+ "epoch": 0.5431502715751357,
86
+ "grad_norm": 0.4105781614780426,
87
+ "learning_rate": 0.00029827800284977474,
88
+ "loss": 0.1788,
89
+ "mean_token_accuracy": 0.9502924716472626,
90
+ "num_tokens": 1223675.0,
91
+ "step": 225
92
+ },
93
+ {
94
+ "epoch": 0.6035003017501509,
95
+ "grad_norm": 0.6441053152084351,
96
+ "learning_rate": 0.00029758858479477575,
97
+ "loss": 0.1834,
98
+ "mean_token_accuracy": 0.9509575897455216,
99
+ "num_tokens": 1340505.0,
100
+ "step": 250
101
+ },
102
+ {
103
+ "epoch": 0.663850331925166,
104
+ "grad_norm": 0.6117656230926514,
105
+ "learning_rate": 0.0002967844489675963,
106
+ "loss": 0.164,
107
+ "mean_token_accuracy": 0.9560773247480392,
108
+ "num_tokens": 1494591.0,
109
+ "step": 275
110
+ },
111
+ {
112
+ "epoch": 0.724200362100181,
113
+ "grad_norm": 0.6707085967063904,
114
+ "learning_rate": 0.00029586622040756957,
115
+ "loss": 0.1596,
116
+ "mean_token_accuracy": 0.9571379733085632,
117
+ "num_tokens": 1611141.0,
118
+ "step": 300
119
+ },
120
+ {
121
+ "epoch": 0.7845503922751962,
122
+ "grad_norm": 0.3164249658584595,
123
+ "learning_rate": 0.0002948346128361186,
124
+ "loss": 0.1361,
125
+ "mean_token_accuracy": 0.9637150484323501,
126
+ "num_tokens": 1764271.0,
127
+ "step": 325
128
+ },
129
+ {
130
+ "epoch": 0.8449004224502112,
131
+ "grad_norm": 0.7695516347885132,
132
+ "learning_rate": 0.00029369042810199416,
133
+ "loss": 0.1453,
134
+ "mean_token_accuracy": 0.9618589824438095,
135
+ "num_tokens": 1880091.0,
136
+ "step": 350
137
+ },
138
+ {
139
+ "epoch": 0.9052504526252263,
140
+ "grad_norm": 0.4800753593444824,
141
+ "learning_rate": 0.0002924345555580135,
142
+ "loss": 0.1227,
143
+ "mean_token_accuracy": 0.9672258603572845,
144
+ "num_tokens": 2031547.0,
145
+ "step": 375
146
+ },
147
+ {
148
+ "epoch": 0.9656004828002414,
149
+ "grad_norm": 0.5669476985931396,
150
+ "learning_rate": 0.000291067971369783,
151
+ "loss": 0.1207,
152
+ "mean_token_accuracy": 0.96809639275074,
153
+ "num_tokens": 2147237.0,
154
+ "step": 400
155
+ },
156
+ {
157
+ "epoch": 1.0,
158
+ "eval_loss": 0.12038072198629379,
159
+ "eval_mean_token_accuracy": 0.9679264332797076,
160
+ "eval_num_tokens": 2223513.0,
161
+ "eval_runtime": 60.431,
162
+ "eval_samples_per_second": 6.106,
163
+ "eval_steps_per_second": 3.061,
164
+ "step": 415
165
+ },
166
+ {
167
+ "epoch": 1.024140012070006,
168
+ "grad_norm": 0.31214025616645813,
169
+ "learning_rate": 0.0002895917377569438,
170
+ "loss": 0.127,
171
+ "mean_token_accuracy": 0.966964461139797,
172
+ "num_tokens": 2291189.0,
173
+ "step": 425
174
+ },
175
+ {
176
+ "epoch": 1.0844900422450212,
177
+ "grad_norm": 0.4406073987483978,
178
+ "learning_rate": 0.00028800700216752875,
179
+ "loss": 0.0904,
180
+ "mean_token_accuracy": 0.9758492666482925,
181
+ "num_tokens": 2426566.0,
182
+ "step": 450
183
+ },
184
+ {
185
+ "epoch": 1.1448400724200363,
186
+ "grad_norm": 0.4013468325138092,
187
+ "learning_rate": 0.00028631499638607285,
188
+ "loss": 0.114,
189
+ "mean_token_accuracy": 0.9697561454772949,
190
+ "num_tokens": 2560245.0,
191
+ "step": 475
192
+ },
193
+ {
194
+ "epoch": 1.2051901025950513,
195
+ "grad_norm": 0.3366129994392395,
196
+ "learning_rate": 0.0002845170355761712,
197
+ "loss": 0.0827,
198
+ "mean_token_accuracy": 0.9783335107564927,
199
+ "num_tokens": 2695786.0,
200
+ "step": 500
201
+ },
202
+ {
203
+ "epoch": 1.2655401327700664,
204
+ "grad_norm": 0.33777478337287903,
205
+ "learning_rate": 0.0002826145172582274,
206
+ "loss": 0.1049,
207
+ "mean_token_accuracy": 0.9726521408557892,
208
+ "num_tokens": 2827828.0,
209
+ "step": 525
210
+ },
211
+ {
212
+ "epoch": 1.3258901629450814,
213
+ "grad_norm": 0.34536224603652954,
214
+ "learning_rate": 0.00028060892022318764,
215
+ "loss": 0.0827,
216
+ "mean_token_accuracy": 0.9780162799358368,
217
+ "num_tokens": 2959671.0,
218
+ "step": 550
219
+ },
220
+ {
221
+ "epoch": 1.3862401931200965,
222
+ "grad_norm": 0.34014376997947693,
223
+ "learning_rate": 0.0002785018033831051,
224
+ "loss": 0.1,
225
+ "mean_token_accuracy": 0.9745338922739029,
226
+ "num_tokens": 3092256.0,
227
+ "step": 575
228
+ },
229
+ {
230
+ "epoch": 1.4465902232951118,
231
+ "grad_norm": 0.26126986742019653,
232
+ "learning_rate": 0.0002762948045594276,
233
+ "loss": 0.0784,
234
+ "mean_token_accuracy": 0.98013427734375,
235
+ "num_tokens": 3225551.0,
236
+ "step": 600
237
+ },
238
+ {
239
+ "epoch": 1.5069402534701268,
240
+ "grad_norm": 0.25581225752830505,
241
+ "learning_rate": 0.0002739896392099502,
242
+ "loss": 0.0992,
243
+ "mean_token_accuracy": 0.9744413161277771,
244
+ "num_tokens": 3358590.0,
245
+ "step": 625
246
+ },
247
+ {
248
+ "epoch": 1.567290283645142,
249
+ "grad_norm": 0.38688021898269653,
250
+ "learning_rate": 0.00027158809909542307,
251
+ "loss": 0.0746,
252
+ "mean_token_accuracy": 0.9804132694005966,
253
+ "num_tokens": 3494044.0,
254
+ "step": 650
255
+ },
256
+ {
257
+ "epoch": 1.627640313820157,
258
+ "grad_norm": 0.2373267114162445,
259
+ "learning_rate": 0.00026909205088685,
260
+ "loss": 0.0976,
261
+ "mean_token_accuracy": 0.9745747190713883,
262
+ "num_tokens": 3627751.0,
263
+ "step": 675
264
+ },
265
+ {
266
+ "epoch": 1.687990343995172,
267
+ "grad_norm": 0.37386244535446167,
268
+ "learning_rate": 0.0002665034347145612,
269
+ "loss": 0.0751,
270
+ "mean_token_accuracy": 0.9802791184186935,
271
+ "num_tokens": 3762776.0,
272
+ "step": 700
273
+ },
274
+ {
275
+ "epoch": 1.748340374170187,
276
+ "grad_norm": 0.276994526386261,
277
+ "learning_rate": 0.000263824262660187,
278
+ "loss": 0.097,
279
+ "mean_token_accuracy": 0.9747868567705155,
280
+ "num_tokens": 3896978.0,
281
+ "step": 725
282
+ },
283
+ {
284
+ "epoch": 1.8086904043452021,
285
+ "grad_norm": 0.4135245978832245,
286
+ "learning_rate": 0.0002610566171927056,
287
+ "loss": 0.0706,
288
+ "mean_token_accuracy": 0.9817547309398651,
289
+ "num_tokens": 4034768.0,
290
+ "step": 750
291
+ },
292
+ {
293
+ "epoch": 1.8690404345202172,
294
+ "grad_norm": 0.15843796730041504,
295
+ "learning_rate": 0.00025820264954977976,
296
+ "loss": 0.0889,
297
+ "mean_token_accuracy": 0.9776063919067383,
298
+ "num_tokens": 4169906.0,
299
+ "step": 775
300
+ },
301
+ {
302
+ "epoch": 1.9293904646952322,
303
+ "grad_norm": 0.30585798621177673,
304
+ "learning_rate": 0.00025526457806564136,
305
+ "loss": 0.0668,
306
+ "mean_token_accuracy": 0.9821723079681397,
307
+ "num_tokens": 4305541.0,
308
+ "step": 800
309
+ },
310
+ {
311
+ "epoch": 1.9897404948702473,
312
+ "grad_norm": 0.23672625422477722,
313
+ "learning_rate": 0.00025224468644682245,
314
+ "loss": 0.0777,
315
+ "mean_token_accuracy": 0.9801788556575776,
316
+ "num_tokens": 4429095.0,
317
+ "step": 825
318
+ },
319
+ {
320
+ "epoch": 2.0,
321
+ "eval_loss": 0.08333630114793777,
322
+ "eval_mean_token_accuracy": 0.9790130283381487,
323
+ "eval_num_tokens": 4447026.0,
324
+ "eval_runtime": 60.4769,
325
+ "eval_samples_per_second": 6.101,
326
+ "eval_steps_per_second": 3.059,
327
+ "step": 830
328
+ },
329
+ {
330
+ "epoch": 2.048280024140012,
331
+ "grad_norm": 0.2790965139865875,
332
+ "learning_rate": 0.00024914532199707444,
333
+ "loss": 0.0737,
334
+ "mean_token_accuracy": 0.9818082832798516,
335
+ "num_tokens": 4573150.0,
336
+ "step": 850
337
+ },
338
+ {
339
+ "epoch": 2.1086300543150274,
340
+ "grad_norm": 0.38501349091529846,
341
+ "learning_rate": 0.00024596889379285353,
342
+ "loss": 0.0609,
343
+ "mean_token_accuracy": 0.9846205246448517,
344
+ "num_tokens": 4696253.0,
345
+ "step": 875
346
+ },
347
+ {
348
+ "epoch": 2.1689800844900424,
349
+ "grad_norm": 0.3383895754814148,
350
+ "learning_rate": 0.00024271787081079228,
351
+ "loss": 0.0731,
352
+ "mean_token_accuracy": 0.9802233374118805,
353
+ "num_tokens": 4842241.0,
354
+ "step": 900
355
+ },
356
+ {
357
+ "epoch": 2.2293301146650575,
358
+ "grad_norm": 0.21086572110652924,
359
+ "learning_rate": 0.00023939478000861117,
360
+ "loss": 0.0596,
361
+ "mean_token_accuracy": 0.9851127731800079,
362
+ "num_tokens": 4965545.0,
363
+ "step": 925
364
+ },
365
+ {
366
+ "epoch": 2.2896801448400725,
367
+ "grad_norm": 0.20826084911823273,
368
+ "learning_rate": 0.00023600220436096318,
369
+ "loss": 0.0759,
370
+ "mean_token_accuracy": 0.9797697293758393,
371
+ "num_tokens": 5111070.0,
372
+ "step": 950
373
+ },
374
+ {
375
+ "epoch": 2.3500301750150876,
376
+ "grad_norm": 0.2537970244884491,
377
+ "learning_rate": 0.00023254278085173684,
378
+ "loss": 0.059,
379
+ "mean_token_accuracy": 0.9851009005308151,
380
+ "num_tokens": 5235251.0,
381
+ "step": 975
382
+ },
383
+ {
384
+ "epoch": 2.4103802051901027,
385
+ "grad_norm": 0.2794428765773773,
386
+ "learning_rate": 0.00022901919842437972,
387
+ "loss": 0.0671,
388
+ "mean_token_accuracy": 0.9823657035827636,
389
+ "num_tokens": 5379177.0,
390
+ "step": 1000
391
+ },
392
+ {
393
+ "epoch": 2.4707302353651177,
394
+ "grad_norm": 0.23955030739307404,
395
+ "learning_rate": 0.00022543419589183397,
396
+ "loss": 0.06,
397
+ "mean_token_accuracy": 0.9847251123189926,
398
+ "num_tokens": 5501778.0,
399
+ "step": 1025
400
+ },
401
+ {
402
+ "epoch": 2.5310802655401328,
403
+ "grad_norm": 0.24202412366867065,
404
+ "learning_rate": 0.00022179055980770993,
405
+ "loss": 0.0702,
406
+ "mean_token_accuracy": 0.9814589565992355,
407
+ "num_tokens": 5646414.0,
408
+ "step": 1050
409
+ },
410
+ {
411
+ "epoch": 2.591430295715148,
412
+ "grad_norm": 0.18459561467170715,
413
+ "learning_rate": 0.0002180911223003513,
414
+ "loss": 0.062,
415
+ "mean_token_accuracy": 0.9842818379402161,
416
+ "num_tokens": 5771178.0,
417
+ "step": 1075
418
+ },
419
+ {
420
+ "epoch": 2.651780325890163,
421
+ "grad_norm": 0.21107763051986694,
422
+ "learning_rate": 0.00021433875887147627,
423
+ "loss": 0.0656,
424
+ "mean_token_accuracy": 0.982610120177269,
425
+ "num_tokens": 5916367.0,
426
+ "step": 1100
427
+ },
428
+ {
429
+ "epoch": 2.712130356065178,
430
+ "grad_norm": 0.12310996651649475,
431
+ "learning_rate": 0.00021053638616110525,
432
+ "loss": 0.056,
433
+ "mean_token_accuracy": 0.9858221507072449,
434
+ "num_tokens": 6039601.0,
435
+ "step": 1125
436
+ },
437
+ {
438
+ "epoch": 2.772480386240193,
439
+ "grad_norm": 0.0949612483382225,
440
+ "learning_rate": 0.00020668695968051274,
441
+ "loss": 0.062,
442
+ "mean_token_accuracy": 0.9835014945268631,
443
+ "num_tokens": 6183454.0,
444
+ "step": 1150
445
+ },
446
+ {
447
+ "epoch": 2.832830416415208,
448
+ "grad_norm": 0.23207980394363403,
449
+ "learning_rate": 0.00020279347151496482,
450
+ "loss": 0.0546,
451
+ "mean_token_accuracy": 0.9864810138940812,
452
+ "num_tokens": 6305513.0,
453
+ "step": 1175
454
+ },
455
+ {
456
+ "epoch": 2.8931804465902236,
457
+ "grad_norm": 0.14339599013328552,
458
+ "learning_rate": 0.00019885894799802922,
459
+ "loss": 0.0665,
460
+ "mean_token_accuracy": 0.982457509636879,
461
+ "num_tokens": 6450956.0,
462
+ "step": 1200
463
+ },
464
+ {
465
+ "epoch": 2.9535304767652386,
466
+ "grad_norm": 0.10236950218677521,
467
+ "learning_rate": 0.00019488644735926396,
468
+ "loss": 0.0538,
469
+ "mean_token_accuracy": 0.9864566326141357,
470
+ "num_tokens": 6574055.0,
471
+ "step": 1225
472
+ },
473
+ {
474
+ "epoch": 3.0,
475
+ "eval_loss": 0.0698639452457428,
476
+ "eval_mean_token_accuracy": 0.9828434982815304,
477
+ "eval_num_tokens": 6670539.0,
478
+ "eval_runtime": 60.4557,
479
+ "eval_samples_per_second": 6.104,
480
+ "eval_steps_per_second": 3.06,
481
+ "step": 1245
482
+ },
483
+ {
484
+ "epoch": 3.012070006035003,
485
+ "grad_norm": 0.19694368541240692,
486
+ "learning_rate": 0.00019087905734711452,
487
+ "loss": 0.0664,
488
+ "mean_token_accuracy": 0.98261449324716,
489
+ "num_tokens": 6707839.0,
490
+ "step": 1250
491
+ },
492
+ {
493
+ "epoch": 3.0724200362100182,
494
+ "grad_norm": 0.11810697615146637,
495
+ "learning_rate": 0.00018683989282886613,
496
+ "loss": 0.0468,
497
+ "mean_token_accuracy": 0.988110933303833,
498
+ "num_tokens": 6850375.0,
499
+ "step": 1275
500
+ },
501
+ {
502
+ "epoch": 3.1327700663850333,
503
+ "grad_norm": 0.18672189116477966,
504
+ "learning_rate": 0.0001827720933695173,
505
+ "loss": 0.054,
506
+ "mean_token_accuracy": 0.9859074687957764,
507
+ "num_tokens": 6976640.0,
508
+ "step": 1300
509
+ },
510
+ {
511
+ "epoch": 3.1931200965600484,
512
+ "grad_norm": 0.0706477090716362,
513
+ "learning_rate": 0.00017867882079145627,
514
+ "loss": 0.0458,
515
+ "mean_token_accuracy": 0.9881710064411163,
516
+ "num_tokens": 7116531.0,
517
+ "step": 1325
518
+ },
519
+ {
520
+ "epoch": 3.2534701267350634,
521
+ "grad_norm": 0.19763106107711792,
522
+ "learning_rate": 0.00017456325671683724,
523
+ "loss": 0.0542,
524
+ "mean_token_accuracy": 0.9864082312583924,
525
+ "num_tokens": 7244136.0,
526
+ "step": 1350
527
+ },
528
+ {
529
+ "epoch": 3.3138201569100785,
530
+ "grad_norm": 0.14251746237277985,
531
+ "learning_rate": 0.00017042860009456638,
532
+ "loss": 0.046,
533
+ "mean_token_accuracy": 0.9879621362686157,
534
+ "num_tokens": 7386096.0,
535
+ "step": 1375
536
+ },
537
+ {
538
+ "epoch": 3.3741701870850935,
539
+ "grad_norm": 0.1693497598171234,
540
+ "learning_rate": 0.00016627806471382066,
541
+ "loss": 0.0529,
542
+ "mean_token_accuracy": 0.9869521266222,
543
+ "num_tokens": 7513742.0,
544
+ "step": 1400
545
+ },
546
+ {
547
+ "epoch": 3.4345202172601086,
548
+ "grad_norm": 0.08023709058761597,
549
+ "learning_rate": 0.00016211487670603078,
550
+ "loss": 0.0459,
551
+ "mean_token_accuracy": 0.9879424357414246,
552
+ "num_tokens": 7655678.0,
553
+ "step": 1425
554
+ },
555
+ {
556
+ "epoch": 3.4948702474351236,
557
+ "grad_norm": 0.19639359414577484,
558
+ "learning_rate": 0.0001579422720372715,
559
+ "loss": 0.0567,
560
+ "mean_token_accuracy": 0.9857883536815644,
561
+ "num_tokens": 7780221.0,
562
+ "step": 1450
563
+ },
564
+ {
565
+ "epoch": 3.5552202776101387,
566
+ "grad_norm": 0.07502614706754684,
567
+ "learning_rate": 0.00015376349399300745,
568
+ "loss": 0.0452,
569
+ "mean_token_accuracy": 0.9880510932207107,
570
+ "num_tokens": 7919857.0,
571
+ "step": 1475
572
+ },
573
+ {
574
+ "epoch": 3.6155703077851538,
575
+ "grad_norm": 0.15008965134620667,
576
+ "learning_rate": 0.0001495817906571492,
577
+ "loss": 0.055,
578
+ "mean_token_accuracy": 0.9859279471635819,
579
+ "num_tokens": 8045749.0,
580
+ "step": 1500
581
+ },
582
+ {
583
+ "epoch": 3.675920337960169,
584
+ "grad_norm": 0.08942336589097977,
585
+ "learning_rate": 0.00014540041238738055,
586
+ "loss": 0.0456,
587
+ "mean_token_accuracy": 0.9880678504705429,
588
+ "num_tokens": 8186860.0,
589
+ "step": 1525
590
+ },
591
+ {
592
+ "epoch": 3.736270368135184,
593
+ "grad_norm": 0.15885671973228455,
594
+ "learning_rate": 0.00014122260928871734,
595
+ "loss": 0.0546,
596
+ "mean_token_accuracy": 0.9859816372394562,
597
+ "num_tokens": 8314411.0,
598
+ "step": 1550
599
+ },
600
+ {
601
+ "epoch": 3.796620398310199,
602
+ "grad_norm": 0.08140072971582413,
603
+ "learning_rate": 0.00013705162868726396,
604
+ "loss": 0.0448,
605
+ "mean_token_accuracy": 0.9879288977384567,
606
+ "num_tokens": 8459434.0,
607
+ "step": 1575
608
+ },
609
+ {
610
+ "epoch": 3.856970428485214,
611
+ "grad_norm": 0.14952507615089417,
612
+ "learning_rate": 0.00013289071260612855,
613
+ "loss": 0.0509,
614
+ "mean_token_accuracy": 0.9866566967964172,
615
+ "num_tokens": 8588677.0,
616
+ "step": 1600
617
+ },
618
+ {
619
+ "epoch": 3.9173204586602295,
620
+ "grad_norm": 0.08463295549154282,
621
+ "learning_rate": 0.00012874309524546083,
622
+ "loss": 0.0434,
623
+ "mean_token_accuracy": 0.9884845250844956,
624
+ "num_tokens": 8728697.0,
625
+ "step": 1625
626
+ },
627
+ {
628
+ "epoch": 3.9776704888352445,
629
+ "grad_norm": 0.14282330870628357,
630
+ "learning_rate": 0.00012461200046857084,
631
+ "loss": 0.0489,
632
+ "mean_token_accuracy": 0.9877329683303833,
633
+ "num_tokens": 8849522.0,
634
+ "step": 1650
635
+ },
636
+ {
637
+ "epoch": 4.0,
638
+ "eval_loss": 0.06439081579446793,
639
+ "eval_mean_token_accuracy": 0.9848004015716346,
640
+ "eval_num_tokens": 8894052.0,
641
+ "eval_runtime": 60.4081,
642
+ "eval_samples_per_second": 6.108,
643
+ "eval_steps_per_second": 3.063,
644
+ "step": 1660
645
+ }
646
+ ],
647
+ "logging_steps": 25,
648
+ "max_steps": 2905,
649
+ "num_input_tokens_seen": 0,
650
+ "num_train_epochs": 7,
651
+ "save_steps": 500,
652
+ "stateful_callbacks": {
653
+ "TrainerControl": {
654
+ "args": {
655
+ "should_epoch_stop": false,
656
+ "should_evaluate": false,
657
+ "should_log": false,
658
+ "should_save": true,
659
+ "should_training_stop": false
660
+ },
661
+ "attributes": {}
662
+ }
663
+ },
664
+ "total_flos": 3.846569346121482e+17,
665
+ "train_batch_size": 2,
666
+ "trial_name": null,
667
+ "trial_params": null
668
+ }
checkpoint-1660/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:837f73e1808d10388c3e9d0067719323e5731b8387ed3c99bcbeb463cf7ac167
3
+ size 6033
checkpoint-2075/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-2075/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 32,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "o_proj",
31
+ "v_proj",
32
+ "up_proj",
33
+ "q_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-2075/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f87878abe8fc25118a61dae8fae29bb09797be18f9af4649f241b3ea3c450bed
3
+ size 335604696
checkpoint-2075/chat_template.jinja ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if messages[0]["role"] == "system" %}
2
+ {%- set system_message = messages[0]["content"] %}
3
+ {%- set loop_messages = messages[1:] %}
4
+ {%- else %}
5
+ {%- set loop_messages = messages %}
6
+ {%- endif %}
7
+ {%- if not tools is defined %}
8
+ {%- set tools = none %}
9
+ {%- endif %}
10
+ {%- set user_messages = loop_messages | selectattr("role", "equalto", "user") | list %}
11
+
12
+ {#- This block checks for alternating user/assistant messages, skipping tool calling messages #}
13
+ {%- set ns = namespace() %}
14
+ {%- set ns.index = 0 %}
15
+ {%- for message in loop_messages %}
16
+ {%- if not (message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
17
+ {%- if (message["role"] == "user") != (ns.index % 2 == 0) %}
18
+ {{- raise_exception("After the optional system message, conversation roles must alternate user/assistant/user/assistant/...") }}
19
+ {%- endif %}
20
+ {%- set ns.index = ns.index + 1 %}
21
+ {%- endif %}
22
+ {%- endfor %}
23
+
24
+ {{- bos_token }}
25
+ {%- for message in loop_messages %}
26
+ {%- if message["role"] == "user" %}
27
+ {%- if tools is not none and (message == user_messages[-1]) %}
28
+ {{- "[AVAILABLE_TOOLS] [" }}
29
+ {%- for tool in tools %}
30
+ {%- set tool = tool.function %}
31
+ {{- '{"type": "function", "function": {' }}
32
+ {%- for key, val in tool.items() if key != "return" %}
33
+ {%- if val is string %}
34
+ {{- '"' + key + '": "' + val + '"' }}
35
+ {%- else %}
36
+ {{- '"' + key + '": ' + val|tojson }}
37
+ {%- endif %}
38
+ {%- if not loop.last %}
39
+ {{- ", " }}
40
+ {%- endif %}
41
+ {%- endfor %}
42
+ {{- "}}" }}
43
+ {%- if not loop.last %}
44
+ {{- ", " }}
45
+ {%- else %}
46
+ {{- "]" }}
47
+ {%- endif %}
48
+ {%- endfor %}
49
+ {{- "[/AVAILABLE_TOOLS]" }}
50
+ {%- endif %}
51
+ {%- if loop.last and system_message is defined %}
52
+ {{- "[INST] " + system_message + "\n\n" + message["content"] + "[/INST]" }}
53
+ {%- else %}
54
+ {{- "[INST] " + message["content"] + "[/INST]" }}
55
+ {%- endif %}
56
+ {%- elif message.tool_calls is defined and message.tool_calls is not none %}
57
+ {{- "[TOOL_CALLS] [" }}
58
+ {%- for tool_call in message.tool_calls %}
59
+ {%- set out = tool_call.function|tojson %}
60
+ {{- out[:-1] }}
61
+ {%- if not tool_call.id is defined or tool_call.id|length != 9 %}
62
+ {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
63
+ {%- endif %}
64
+ {{- ', "id": "' + tool_call.id + '"}' }}
65
+ {%- if not loop.last %}
66
+ {{- ", " }}
67
+ {%- else %}
68
+ {{- "]" + eos_token }}
69
+ {%- endif %}
70
+ {%- endfor %}
71
+ {%- elif message["role"] == "assistant" %}
72
+ {{- " " + message["content"]|trim + eos_token}}
73
+ {%- elif message["role"] == "tool_results" or message["role"] == "tool" %}
74
+ {%- if message.content is defined and message.content.content is defined %}
75
+ {%- set content = message.content.content %}
76
+ {%- else %}
77
+ {%- set content = message.content %}
78
+ {%- endif %}
79
+ {{- '[TOOL_RESULTS] {"content": ' + content|string + ", " }}
80
+ {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}
81
+ {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
82
+ {%- endif %}
83
+ {{- '"call_id": "' + message.tool_call_id + '"}[/TOOL_RESULTS]' }}
84
+ {%- else %}
85
+ {{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}
86
+ {%- endif %}
87
+ {%- endfor %}
checkpoint-2075/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad8b1950f0a03fccf96aaa7714d530286a40b928653ee3a0a027fc757dc73c45
3
+ size 671365003
checkpoint-2075/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d71e41eac1a5e8e2ae08863b02b737b57e8a9608788d7b8ce5e609159c7384fb
3
+ size 14645
checkpoint-2075/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdeac6d1a7910e1e533a39a2d59ab67f6fb22254f41224ded16d311412dbc0b1
3
+ size 1465
checkpoint-2075/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-2075/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2075/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
checkpoint-2075/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2075/trainer_state.json ADDED
@@ -0,0 +1,831 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 5.0,
6
+ "eval_steps": 500,
7
+ "global_step": 2075,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.060350030175015085,
14
+ "grad_norm": 0.915810763835907,
15
+ "learning_rate": 8.18181818181818e-05,
16
+ "loss": 1.5579,
17
+ "mean_token_accuracy": 0.6726609909534454,
18
+ "num_tokens": 156451.0,
19
+ "step": 25
20
+ },
21
+ {
22
+ "epoch": 0.12070006035003017,
23
+ "grad_norm": 0.8468347191810608,
24
+ "learning_rate": 0.00016704545454545452,
25
+ "loss": 0.8806,
26
+ "mean_token_accuracy": 0.7797876751422882,
27
+ "num_tokens": 273996.0,
28
+ "step": 50
29
+ },
30
+ {
31
+ "epoch": 0.18105009052504525,
32
+ "grad_norm": 0.6957323551177979,
33
+ "learning_rate": 0.0002522727272727273,
34
+ "loss": 0.5904,
35
+ "mean_token_accuracy": 0.8393249285221099,
36
+ "num_tokens": 425859.0,
37
+ "step": 75
38
+ },
39
+ {
40
+ "epoch": 0.24140012070006034,
41
+ "grad_norm": 0.7738164663314819,
42
+ "learning_rate": 0.0002999887132933212,
43
+ "loss": 0.4572,
44
+ "mean_token_accuracy": 0.8712374359369278,
45
+ "num_tokens": 542080.0,
46
+ "step": 100
47
+ },
48
+ {
49
+ "epoch": 0.30175015087507545,
50
+ "grad_norm": 0.6000323295593262,
51
+ "learning_rate": 0.0002998791256978121,
52
+ "loss": 0.3441,
53
+ "mean_token_accuracy": 0.9016327333450317,
54
+ "num_tokens": 690749.0,
55
+ "step": 125
56
+ },
57
+ {
58
+ "epoch": 0.3621001810500905,
59
+ "grad_norm": 0.8241934776306152,
60
+ "learning_rate": 0.0002996530399366737,
61
+ "loss": 0.3391,
62
+ "mean_token_accuracy": 0.9067233097553253,
63
+ "num_tokens": 804498.0,
64
+ "step": 150
65
+ },
66
+ {
67
+ "epoch": 0.4224502112251056,
68
+ "grad_norm": 0.6018714308738708,
69
+ "learning_rate": 0.00029931063174202567,
70
+ "loss": 0.2403,
71
+ "mean_token_accuracy": 0.9311208426952362,
72
+ "num_tokens": 956805.0,
73
+ "step": 175
74
+ },
75
+ {
76
+ "epoch": 0.4828002414001207,
77
+ "grad_norm": 0.6791284680366516,
78
+ "learning_rate": 0.00029885216726118104,
79
+ "loss": 0.2405,
80
+ "mean_token_accuracy": 0.9332937943935394,
81
+ "num_tokens": 1073182.0,
82
+ "step": 200
83
+ },
84
+ {
85
+ "epoch": 0.5431502715751357,
86
+ "grad_norm": 0.4105781614780426,
87
+ "learning_rate": 0.00029827800284977474,
88
+ "loss": 0.1788,
89
+ "mean_token_accuracy": 0.9502924716472626,
90
+ "num_tokens": 1223675.0,
91
+ "step": 225
92
+ },
93
+ {
94
+ "epoch": 0.6035003017501509,
95
+ "grad_norm": 0.6441053152084351,
96
+ "learning_rate": 0.00029758858479477575,
97
+ "loss": 0.1834,
98
+ "mean_token_accuracy": 0.9509575897455216,
99
+ "num_tokens": 1340505.0,
100
+ "step": 250
101
+ },
102
+ {
103
+ "epoch": 0.663850331925166,
104
+ "grad_norm": 0.6117656230926514,
105
+ "learning_rate": 0.0002967844489675963,
106
+ "loss": 0.164,
107
+ "mean_token_accuracy": 0.9560773247480392,
108
+ "num_tokens": 1494591.0,
109
+ "step": 275
110
+ },
111
+ {
112
+ "epoch": 0.724200362100181,
113
+ "grad_norm": 0.6707085967063904,
114
+ "learning_rate": 0.00029586622040756957,
115
+ "loss": 0.1596,
116
+ "mean_token_accuracy": 0.9571379733085632,
117
+ "num_tokens": 1611141.0,
118
+ "step": 300
119
+ },
120
+ {
121
+ "epoch": 0.7845503922751962,
122
+ "grad_norm": 0.3164249658584595,
123
+ "learning_rate": 0.0002948346128361186,
124
+ "loss": 0.1361,
125
+ "mean_token_accuracy": 0.9637150484323501,
126
+ "num_tokens": 1764271.0,
127
+ "step": 325
128
+ },
129
+ {
130
+ "epoch": 0.8449004224502112,
131
+ "grad_norm": 0.7695516347885132,
132
+ "learning_rate": 0.00029369042810199416,
133
+ "loss": 0.1453,
134
+ "mean_token_accuracy": 0.9618589824438095,
135
+ "num_tokens": 1880091.0,
136
+ "step": 350
137
+ },
138
+ {
139
+ "epoch": 0.9052504526252263,
140
+ "grad_norm": 0.4800753593444824,
141
+ "learning_rate": 0.0002924345555580135,
142
+ "loss": 0.1227,
143
+ "mean_token_accuracy": 0.9672258603572845,
144
+ "num_tokens": 2031547.0,
145
+ "step": 375
146
+ },
147
+ {
148
+ "epoch": 0.9656004828002414,
149
+ "grad_norm": 0.5669476985931396,
150
+ "learning_rate": 0.000291067971369783,
151
+ "loss": 0.1207,
152
+ "mean_token_accuracy": 0.96809639275074,
153
+ "num_tokens": 2147237.0,
154
+ "step": 400
155
+ },
156
+ {
157
+ "epoch": 1.0,
158
+ "eval_loss": 0.12038072198629379,
159
+ "eval_mean_token_accuracy": 0.9679264332797076,
160
+ "eval_num_tokens": 2223513.0,
161
+ "eval_runtime": 60.431,
162
+ "eval_samples_per_second": 6.106,
163
+ "eval_steps_per_second": 3.061,
164
+ "step": 415
165
+ },
166
+ {
167
+ "epoch": 1.024140012070006,
168
+ "grad_norm": 0.31214025616645813,
169
+ "learning_rate": 0.0002895917377569438,
170
+ "loss": 0.127,
171
+ "mean_token_accuracy": 0.966964461139797,
172
+ "num_tokens": 2291189.0,
173
+ "step": 425
174
+ },
175
+ {
176
+ "epoch": 1.0844900422450212,
177
+ "grad_norm": 0.4406073987483978,
178
+ "learning_rate": 0.00028800700216752875,
179
+ "loss": 0.0904,
180
+ "mean_token_accuracy": 0.9758492666482925,
181
+ "num_tokens": 2426566.0,
182
+ "step": 450
183
+ },
184
+ {
185
+ "epoch": 1.1448400724200363,
186
+ "grad_norm": 0.4013468325138092,
187
+ "learning_rate": 0.00028631499638607285,
188
+ "loss": 0.114,
189
+ "mean_token_accuracy": 0.9697561454772949,
190
+ "num_tokens": 2560245.0,
191
+ "step": 475
192
+ },
193
+ {
194
+ "epoch": 1.2051901025950513,
195
+ "grad_norm": 0.3366129994392395,
196
+ "learning_rate": 0.0002845170355761712,
197
+ "loss": 0.0827,
198
+ "mean_token_accuracy": 0.9783335107564927,
199
+ "num_tokens": 2695786.0,
200
+ "step": 500
201
+ },
202
+ {
203
+ "epoch": 1.2655401327700664,
204
+ "grad_norm": 0.33777478337287903,
205
+ "learning_rate": 0.0002826145172582274,
206
+ "loss": 0.1049,
207
+ "mean_token_accuracy": 0.9726521408557892,
208
+ "num_tokens": 2827828.0,
209
+ "step": 525
210
+ },
211
+ {
212
+ "epoch": 1.3258901629450814,
213
+ "grad_norm": 0.34536224603652954,
214
+ "learning_rate": 0.00028060892022318764,
215
+ "loss": 0.0827,
216
+ "mean_token_accuracy": 0.9780162799358368,
217
+ "num_tokens": 2959671.0,
218
+ "step": 550
219
+ },
220
+ {
221
+ "epoch": 1.3862401931200965,
222
+ "grad_norm": 0.34014376997947693,
223
+ "learning_rate": 0.0002785018033831051,
224
+ "loss": 0.1,
225
+ "mean_token_accuracy": 0.9745338922739029,
226
+ "num_tokens": 3092256.0,
227
+ "step": 575
228
+ },
229
+ {
230
+ "epoch": 1.4465902232951118,
231
+ "grad_norm": 0.26126986742019653,
232
+ "learning_rate": 0.0002762948045594276,
233
+ "loss": 0.0784,
234
+ "mean_token_accuracy": 0.98013427734375,
235
+ "num_tokens": 3225551.0,
236
+ "step": 600
237
+ },
238
+ {
239
+ "epoch": 1.5069402534701268,
240
+ "grad_norm": 0.25581225752830505,
241
+ "learning_rate": 0.0002739896392099502,
242
+ "loss": 0.0992,
243
+ "mean_token_accuracy": 0.9744413161277771,
244
+ "num_tokens": 3358590.0,
245
+ "step": 625
246
+ },
247
+ {
248
+ "epoch": 1.567290283645142,
249
+ "grad_norm": 0.38688021898269653,
250
+ "learning_rate": 0.00027158809909542307,
251
+ "loss": 0.0746,
252
+ "mean_token_accuracy": 0.9804132694005966,
253
+ "num_tokens": 3494044.0,
254
+ "step": 650
255
+ },
256
+ {
257
+ "epoch": 1.627640313820157,
258
+ "grad_norm": 0.2373267114162445,
259
+ "learning_rate": 0.00026909205088685,
260
+ "loss": 0.0976,
261
+ "mean_token_accuracy": 0.9745747190713883,
262
+ "num_tokens": 3627751.0,
263
+ "step": 675
264
+ },
265
+ {
266
+ "epoch": 1.687990343995172,
267
+ "grad_norm": 0.37386244535446167,
268
+ "learning_rate": 0.0002665034347145612,
269
+ "loss": 0.0751,
270
+ "mean_token_accuracy": 0.9802791184186935,
271
+ "num_tokens": 3762776.0,
272
+ "step": 700
273
+ },
274
+ {
275
+ "epoch": 1.748340374170187,
276
+ "grad_norm": 0.276994526386261,
277
+ "learning_rate": 0.000263824262660187,
278
+ "loss": 0.097,
279
+ "mean_token_accuracy": 0.9747868567705155,
280
+ "num_tokens": 3896978.0,
281
+ "step": 725
282
+ },
283
+ {
284
+ "epoch": 1.8086904043452021,
285
+ "grad_norm": 0.4135245978832245,
286
+ "learning_rate": 0.0002610566171927056,
287
+ "loss": 0.0706,
288
+ "mean_token_accuracy": 0.9817547309398651,
289
+ "num_tokens": 4034768.0,
290
+ "step": 750
291
+ },
292
+ {
293
+ "epoch": 1.8690404345202172,
294
+ "grad_norm": 0.15843796730041504,
295
+ "learning_rate": 0.00025820264954977976,
296
+ "loss": 0.0889,
297
+ "mean_token_accuracy": 0.9776063919067383,
298
+ "num_tokens": 4169906.0,
299
+ "step": 775
300
+ },
301
+ {
302
+ "epoch": 1.9293904646952322,
303
+ "grad_norm": 0.30585798621177673,
304
+ "learning_rate": 0.00025526457806564136,
305
+ "loss": 0.0668,
306
+ "mean_token_accuracy": 0.9821723079681397,
307
+ "num_tokens": 4305541.0,
308
+ "step": 800
309
+ },
310
+ {
311
+ "epoch": 1.9897404948702473,
312
+ "grad_norm": 0.23672625422477722,
313
+ "learning_rate": 0.00025224468644682245,
314
+ "loss": 0.0777,
315
+ "mean_token_accuracy": 0.9801788556575776,
316
+ "num_tokens": 4429095.0,
317
+ "step": 825
318
+ },
319
+ {
320
+ "epoch": 2.0,
321
+ "eval_loss": 0.08333630114793777,
322
+ "eval_mean_token_accuracy": 0.9790130283381487,
323
+ "eval_num_tokens": 4447026.0,
324
+ "eval_runtime": 60.4769,
325
+ "eval_samples_per_second": 6.101,
326
+ "eval_steps_per_second": 3.059,
327
+ "step": 830
328
+ },
329
+ {
330
+ "epoch": 2.048280024140012,
331
+ "grad_norm": 0.2790965139865875,
332
+ "learning_rate": 0.00024914532199707444,
333
+ "loss": 0.0737,
334
+ "mean_token_accuracy": 0.9818082832798516,
335
+ "num_tokens": 4573150.0,
336
+ "step": 850
337
+ },
338
+ {
339
+ "epoch": 2.1086300543150274,
340
+ "grad_norm": 0.38501349091529846,
341
+ "learning_rate": 0.00024596889379285353,
342
+ "loss": 0.0609,
343
+ "mean_token_accuracy": 0.9846205246448517,
344
+ "num_tokens": 4696253.0,
345
+ "step": 875
346
+ },
347
+ {
348
+ "epoch": 2.1689800844900424,
349
+ "grad_norm": 0.3383895754814148,
350
+ "learning_rate": 0.00024271787081079228,
351
+ "loss": 0.0731,
352
+ "mean_token_accuracy": 0.9802233374118805,
353
+ "num_tokens": 4842241.0,
354
+ "step": 900
355
+ },
356
+ {
357
+ "epoch": 2.2293301146650575,
358
+ "grad_norm": 0.21086572110652924,
359
+ "learning_rate": 0.00023939478000861117,
360
+ "loss": 0.0596,
361
+ "mean_token_accuracy": 0.9851127731800079,
362
+ "num_tokens": 4965545.0,
363
+ "step": 925
364
+ },
365
+ {
366
+ "epoch": 2.2896801448400725,
367
+ "grad_norm": 0.20826084911823273,
368
+ "learning_rate": 0.00023600220436096318,
369
+ "loss": 0.0759,
370
+ "mean_token_accuracy": 0.9797697293758393,
371
+ "num_tokens": 5111070.0,
372
+ "step": 950
373
+ },
374
+ {
375
+ "epoch": 2.3500301750150876,
376
+ "grad_norm": 0.2537970244884491,
377
+ "learning_rate": 0.00023254278085173684,
378
+ "loss": 0.059,
379
+ "mean_token_accuracy": 0.9851009005308151,
380
+ "num_tokens": 5235251.0,
381
+ "step": 975
382
+ },
383
+ {
384
+ "epoch": 2.4103802051901027,
385
+ "grad_norm": 0.2794428765773773,
386
+ "learning_rate": 0.00022901919842437972,
387
+ "loss": 0.0671,
388
+ "mean_token_accuracy": 0.9823657035827636,
389
+ "num_tokens": 5379177.0,
390
+ "step": 1000
391
+ },
392
+ {
393
+ "epoch": 2.4707302353651177,
394
+ "grad_norm": 0.23955030739307404,
395
+ "learning_rate": 0.00022543419589183397,
396
+ "loss": 0.06,
397
+ "mean_token_accuracy": 0.9847251123189926,
398
+ "num_tokens": 5501778.0,
399
+ "step": 1025
400
+ },
401
+ {
402
+ "epoch": 2.5310802655401328,
403
+ "grad_norm": 0.24202412366867065,
404
+ "learning_rate": 0.00022179055980770993,
405
+ "loss": 0.0702,
406
+ "mean_token_accuracy": 0.9814589565992355,
407
+ "num_tokens": 5646414.0,
408
+ "step": 1050
409
+ },
410
+ {
411
+ "epoch": 2.591430295715148,
412
+ "grad_norm": 0.18459561467170715,
413
+ "learning_rate": 0.0002180911223003513,
414
+ "loss": 0.062,
415
+ "mean_token_accuracy": 0.9842818379402161,
416
+ "num_tokens": 5771178.0,
417
+ "step": 1075
418
+ },
419
+ {
420
+ "epoch": 2.651780325890163,
421
+ "grad_norm": 0.21107763051986694,
422
+ "learning_rate": 0.00021433875887147627,
423
+ "loss": 0.0656,
424
+ "mean_token_accuracy": 0.982610120177269,
425
+ "num_tokens": 5916367.0,
426
+ "step": 1100
427
+ },
428
+ {
429
+ "epoch": 2.712130356065178,
430
+ "grad_norm": 0.12310996651649475,
431
+ "learning_rate": 0.00021053638616110525,
432
+ "loss": 0.056,
433
+ "mean_token_accuracy": 0.9858221507072449,
434
+ "num_tokens": 6039601.0,
435
+ "step": 1125
436
+ },
437
+ {
438
+ "epoch": 2.772480386240193,
439
+ "grad_norm": 0.0949612483382225,
440
+ "learning_rate": 0.00020668695968051274,
441
+ "loss": 0.062,
442
+ "mean_token_accuracy": 0.9835014945268631,
443
+ "num_tokens": 6183454.0,
444
+ "step": 1150
445
+ },
446
+ {
447
+ "epoch": 2.832830416415208,
448
+ "grad_norm": 0.23207980394363403,
449
+ "learning_rate": 0.00020279347151496482,
450
+ "loss": 0.0546,
451
+ "mean_token_accuracy": 0.9864810138940812,
452
+ "num_tokens": 6305513.0,
453
+ "step": 1175
454
+ },
455
+ {
456
+ "epoch": 2.8931804465902236,
457
+ "grad_norm": 0.14339599013328552,
458
+ "learning_rate": 0.00019885894799802922,
459
+ "loss": 0.0665,
460
+ "mean_token_accuracy": 0.982457509636879,
461
+ "num_tokens": 6450956.0,
462
+ "step": 1200
463
+ },
464
+ {
465
+ "epoch": 2.9535304767652386,
466
+ "grad_norm": 0.10236950218677521,
467
+ "learning_rate": 0.00019488644735926396,
468
+ "loss": 0.0538,
469
+ "mean_token_accuracy": 0.9864566326141357,
470
+ "num_tokens": 6574055.0,
471
+ "step": 1225
472
+ },
473
+ {
474
+ "epoch": 3.0,
475
+ "eval_loss": 0.0698639452457428,
476
+ "eval_mean_token_accuracy": 0.9828434982815304,
477
+ "eval_num_tokens": 6670539.0,
478
+ "eval_runtime": 60.4557,
479
+ "eval_samples_per_second": 6.104,
480
+ "eval_steps_per_second": 3.06,
481
+ "step": 1245
482
+ },
483
+ {
484
+ "epoch": 3.012070006035003,
485
+ "grad_norm": 0.19694368541240692,
486
+ "learning_rate": 0.00019087905734711452,
487
+ "loss": 0.0664,
488
+ "mean_token_accuracy": 0.98261449324716,
489
+ "num_tokens": 6707839.0,
490
+ "step": 1250
491
+ },
492
+ {
493
+ "epoch": 3.0724200362100182,
494
+ "grad_norm": 0.11810697615146637,
495
+ "learning_rate": 0.00018683989282886613,
496
+ "loss": 0.0468,
497
+ "mean_token_accuracy": 0.988110933303833,
498
+ "num_tokens": 6850375.0,
499
+ "step": 1275
500
+ },
501
+ {
502
+ "epoch": 3.1327700663850333,
503
+ "grad_norm": 0.18672189116477966,
504
+ "learning_rate": 0.0001827720933695173,
505
+ "loss": 0.054,
506
+ "mean_token_accuracy": 0.9859074687957764,
507
+ "num_tokens": 6976640.0,
508
+ "step": 1300
509
+ },
510
+ {
511
+ "epoch": 3.1931200965600484,
512
+ "grad_norm": 0.0706477090716362,
513
+ "learning_rate": 0.00017867882079145627,
514
+ "loss": 0.0458,
515
+ "mean_token_accuracy": 0.9881710064411163,
516
+ "num_tokens": 7116531.0,
517
+ "step": 1325
518
+ },
519
+ {
520
+ "epoch": 3.2534701267350634,
521
+ "grad_norm": 0.19763106107711792,
522
+ "learning_rate": 0.00017456325671683724,
523
+ "loss": 0.0542,
524
+ "mean_token_accuracy": 0.9864082312583924,
525
+ "num_tokens": 7244136.0,
526
+ "step": 1350
527
+ },
528
+ {
529
+ "epoch": 3.3138201569100785,
530
+ "grad_norm": 0.14251746237277985,
531
+ "learning_rate": 0.00017042860009456638,
532
+ "loss": 0.046,
533
+ "mean_token_accuracy": 0.9879621362686157,
534
+ "num_tokens": 7386096.0,
535
+ "step": 1375
536
+ },
537
+ {
538
+ "epoch": 3.3741701870850935,
539
+ "grad_norm": 0.1693497598171234,
540
+ "learning_rate": 0.00016627806471382066,
541
+ "loss": 0.0529,
542
+ "mean_token_accuracy": 0.9869521266222,
543
+ "num_tokens": 7513742.0,
544
+ "step": 1400
545
+ },
546
+ {
547
+ "epoch": 3.4345202172601086,
548
+ "grad_norm": 0.08023709058761597,
549
+ "learning_rate": 0.00016211487670603078,
550
+ "loss": 0.0459,
551
+ "mean_token_accuracy": 0.9879424357414246,
552
+ "num_tokens": 7655678.0,
553
+ "step": 1425
554
+ },
555
+ {
556
+ "epoch": 3.4948702474351236,
557
+ "grad_norm": 0.19639359414577484,
558
+ "learning_rate": 0.0001579422720372715,
559
+ "loss": 0.0567,
560
+ "mean_token_accuracy": 0.9857883536815644,
561
+ "num_tokens": 7780221.0,
562
+ "step": 1450
563
+ },
564
+ {
565
+ "epoch": 3.5552202776101387,
566
+ "grad_norm": 0.07502614706754684,
567
+ "learning_rate": 0.00015376349399300745,
568
+ "loss": 0.0452,
569
+ "mean_token_accuracy": 0.9880510932207107,
570
+ "num_tokens": 7919857.0,
571
+ "step": 1475
572
+ },
573
+ {
574
+ "epoch": 3.6155703077851538,
575
+ "grad_norm": 0.15008965134620667,
576
+ "learning_rate": 0.0001495817906571492,
577
+ "loss": 0.055,
578
+ "mean_token_accuracy": 0.9859279471635819,
579
+ "num_tokens": 8045749.0,
580
+ "step": 1500
581
+ },
582
+ {
583
+ "epoch": 3.675920337960169,
584
+ "grad_norm": 0.08942336589097977,
585
+ "learning_rate": 0.00014540041238738055,
586
+ "loss": 0.0456,
587
+ "mean_token_accuracy": 0.9880678504705429,
588
+ "num_tokens": 8186860.0,
589
+ "step": 1525
590
+ },
591
+ {
592
+ "epoch": 3.736270368135184,
593
+ "grad_norm": 0.15885671973228455,
594
+ "learning_rate": 0.00014122260928871734,
595
+ "loss": 0.0546,
596
+ "mean_token_accuracy": 0.9859816372394562,
597
+ "num_tokens": 8314411.0,
598
+ "step": 1550
599
+ },
600
+ {
601
+ "epoch": 3.796620398310199,
602
+ "grad_norm": 0.08140072971582413,
603
+ "learning_rate": 0.00013705162868726396,
604
+ "loss": 0.0448,
605
+ "mean_token_accuracy": 0.9879288977384567,
606
+ "num_tokens": 8459434.0,
607
+ "step": 1575
608
+ },
609
+ {
610
+ "epoch": 3.856970428485214,
611
+ "grad_norm": 0.14952507615089417,
612
+ "learning_rate": 0.00013289071260612855,
613
+ "loss": 0.0509,
614
+ "mean_token_accuracy": 0.9866566967964172,
615
+ "num_tokens": 8588677.0,
616
+ "step": 1600
617
+ },
618
+ {
619
+ "epoch": 3.9173204586602295,
620
+ "grad_norm": 0.08463295549154282,
621
+ "learning_rate": 0.00012874309524546083,
622
+ "loss": 0.0434,
623
+ "mean_token_accuracy": 0.9884845250844956,
624
+ "num_tokens": 8728697.0,
625
+ "step": 1625
626
+ },
627
+ {
628
+ "epoch": 3.9776704888352445,
629
+ "grad_norm": 0.14282330870628357,
630
+ "learning_rate": 0.00012461200046857084,
631
+ "loss": 0.0489,
632
+ "mean_token_accuracy": 0.9877329683303833,
633
+ "num_tokens": 8849522.0,
634
+ "step": 1650
635
+ },
636
+ {
637
+ "epoch": 4.0,
638
+ "eval_loss": 0.06439081579446793,
639
+ "eval_mean_token_accuracy": 0.9848004015716346,
640
+ "eval_num_tokens": 8894052.0,
641
+ "eval_runtime": 60.4081,
642
+ "eval_samples_per_second": 6.108,
643
+ "eval_steps_per_second": 3.063,
644
+ "step": 1660
645
+ },
646
+ {
647
+ "epoch": 4.036210018105009,
648
+ "grad_norm": 0.09698522090911865,
649
+ "learning_rate": 0.00012050063929608123,
650
+ "loss": 0.0455,
651
+ "mean_token_accuracy": 0.9885102627203637,
652
+ "num_tokens": 8991994.0,
653
+ "step": 1675
654
+ },
655
+ {
656
+ "epoch": 4.096560048280024,
657
+ "grad_norm": 0.0668676421046257,
658
+ "learning_rate": 0.0001164122074100633,
659
+ "loss": 0.041,
660
+ "mean_token_accuracy": 0.9895569503307342,
661
+ "num_tokens": 9121732.0,
662
+ "step": 1700
663
+ },
664
+ {
665
+ "epoch": 4.15691007845504,
666
+ "grad_norm": 0.0820237323641777,
667
+ "learning_rate": 0.00011234988267009415,
668
+ "loss": 0.0443,
669
+ "mean_token_accuracy": 0.9885162824392318,
670
+ "num_tokens": 9262923.0,
671
+ "step": 1725
672
+ },
673
+ {
674
+ "epoch": 4.217260108630055,
675
+ "grad_norm": 0.07873061299324036,
676
+ "learning_rate": 0.00010831682264316787,
677
+ "loss": 0.0417,
678
+ "mean_token_accuracy": 0.9893530422449112,
679
+ "num_tokens": 9391281.0,
680
+ "step": 1750
681
+ },
682
+ {
683
+ "epoch": 4.27761013880507,
684
+ "grad_norm": 0.14161907136440277,
685
+ "learning_rate": 0.00010431616214937911,
686
+ "loss": 0.044,
687
+ "mean_token_accuracy": 0.9886807698011398,
688
+ "num_tokens": 9528910.0,
689
+ "step": 1775
690
+ },
691
+ {
692
+ "epoch": 4.337960168980085,
693
+ "grad_norm": 0.11667165160179138,
694
+ "learning_rate": 0.00010035101082528777,
695
+ "loss": 0.0411,
696
+ "mean_token_accuracy": 0.9895562261343003,
697
+ "num_tokens": 9657454.0,
698
+ "step": 1800
699
+ },
700
+ {
701
+ "epoch": 4.3983101991551,
702
+ "grad_norm": 0.1089748963713646,
703
+ "learning_rate": 9.642445070685809e-05,
704
+ "loss": 0.0445,
705
+ "mean_token_accuracy": 0.9886202031373977,
706
+ "num_tokens": 9797754.0,
707
+ "step": 1825
708
+ },
709
+ {
710
+ "epoch": 4.458660229330115,
711
+ "grad_norm": 0.11159568279981613,
712
+ "learning_rate": 9.253953383385157e-05,
713
+ "loss": 0.041,
714
+ "mean_token_accuracy": 0.9896017628908157,
715
+ "num_tokens": 9926999.0,
716
+ "step": 1850
717
+ },
718
+ {
719
+ "epoch": 4.51901025950513,
720
+ "grad_norm": 0.06931650638580322,
721
+ "learning_rate": 8.869927987753459e-05,
722
+ "loss": 0.0445,
723
+ "mean_token_accuracy": 0.9883027869462967,
724
+ "num_tokens": 10067224.0,
725
+ "step": 1875
726
+ },
727
+ {
728
+ "epoch": 4.579360289680145,
729
+ "grad_norm": 0.06088819354772568,
730
+ "learning_rate": 8.490667379354661e-05,
731
+ "loss": 0.0411,
732
+ "mean_token_accuracy": 0.9894358485937118,
733
+ "num_tokens": 10196460.0,
734
+ "step": 1900
735
+ },
736
+ {
737
+ "epoch": 4.63971031985516,
738
+ "grad_norm": 0.09456664323806763,
739
+ "learning_rate": 8.116466350175079e-05,
740
+ "loss": 0.0436,
741
+ "mean_token_accuracy": 0.9884065991640091,
742
+ "num_tokens": 10335320.0,
743
+ "step": 1925
744
+ },
745
+ {
746
+ "epoch": 4.700060350030175,
747
+ "grad_norm": 0.06058884039521217,
748
+ "learning_rate": 7.747615759487304e-05,
749
+ "loss": 0.0412,
750
+ "mean_token_accuracy": 0.9891911673545838,
751
+ "num_tokens": 10465180.0,
752
+ "step": 1950
753
+ },
754
+ {
755
+ "epoch": 4.76041038020519,
756
+ "grad_norm": 0.08679672330617905,
757
+ "learning_rate": 7.38440230777085e-05,
758
+ "loss": 0.042,
759
+ "mean_token_accuracy": 0.988958535194397,
760
+ "num_tokens": 10603341.0,
761
+ "step": 1975
762
+ },
763
+ {
764
+ "epoch": 4.820760410380205,
765
+ "grad_norm": 0.1154605895280838,
766
+ "learning_rate": 7.027108313865378e-05,
767
+ "loss": 0.0409,
768
+ "mean_token_accuracy": 0.9893914723396301,
769
+ "num_tokens": 10730981.0,
770
+ "step": 2000
771
+ },
772
+ {
773
+ "epoch": 4.88111044055522,
774
+ "grad_norm": 0.06791651248931885,
775
+ "learning_rate": 6.676011495529687e-05,
776
+ "loss": 0.0446,
777
+ "mean_token_accuracy": 0.9883267271518708,
778
+ "num_tokens": 10870777.0,
779
+ "step": 2025
780
+ },
781
+ {
782
+ "epoch": 4.941460470730235,
783
+ "grad_norm": 0.08565431088209152,
784
+ "learning_rate": 6.331384753577056e-05,
785
+ "loss": 0.0399,
786
+ "mean_token_accuracy": 0.9895966738462448,
787
+ "num_tokens": 11000621.0,
788
+ "step": 2050
789
+ },
790
+ {
791
+ "epoch": 5.0,
792
+ "grad_norm": 0.22377392649650574,
793
+ "learning_rate": 5.993495959754631e-05,
794
+ "loss": 0.0455,
795
+ "mean_token_accuracy": 0.9887414543899065,
796
+ "num_tokens": 11117565.0,
797
+ "step": 2075
798
+ },
799
+ {
800
+ "epoch": 5.0,
801
+ "eval_loss": 0.06433924287557602,
802
+ "eval_mean_token_accuracy": 0.9855138524158581,
803
+ "eval_num_tokens": 11117565.0,
804
+ "eval_runtime": 60.4738,
805
+ "eval_samples_per_second": 6.102,
806
+ "eval_steps_per_second": 3.059,
807
+ "step": 2075
808
+ }
809
+ ],
810
+ "logging_steps": 25,
811
+ "max_steps": 2905,
812
+ "num_input_tokens_seen": 0,
813
+ "num_train_epochs": 7,
814
+ "save_steps": 500,
815
+ "stateful_callbacks": {
816
+ "TrainerControl": {
817
+ "args": {
818
+ "should_epoch_stop": false,
819
+ "should_evaluate": false,
820
+ "should_log": false,
821
+ "should_save": true,
822
+ "should_training_stop": false
823
+ },
824
+ "attributes": {}
825
+ }
826
+ },
827
+ "total_flos": 4.8081582397894656e+17,
828
+ "train_batch_size": 2,
829
+ "trial_name": null,
830
+ "trial_params": null
831
+ }
checkpoint-2075/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:837f73e1808d10388c3e9d0067719323e5731b8387ed3c99bcbeb463cf7ac167
3
+ size 6033
checkpoint-2490/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-2490/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 32,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "gate_proj",
28
+ "k_proj",
29
+ "down_proj",
30
+ "o_proj",
31
+ "v_proj",
32
+ "up_proj",
33
+ "q_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-2490/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21284563332ac6b7d0b3e27cc6d544abda6cc5b517c15108a0ed40c6d6970bfe
3
+ size 335604696
checkpoint-2490/chat_template.jinja ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if messages[0]["role"] == "system" %}
2
+ {%- set system_message = messages[0]["content"] %}
3
+ {%- set loop_messages = messages[1:] %}
4
+ {%- else %}
5
+ {%- set loop_messages = messages %}
6
+ {%- endif %}
7
+ {%- if not tools is defined %}
8
+ {%- set tools = none %}
9
+ {%- endif %}
10
+ {%- set user_messages = loop_messages | selectattr("role", "equalto", "user") | list %}
11
+
12
+ {#- This block checks for alternating user/assistant messages, skipping tool calling messages #}
13
+ {%- set ns = namespace() %}
14
+ {%- set ns.index = 0 %}
15
+ {%- for message in loop_messages %}
16
+ {%- if not (message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
17
+ {%- if (message["role"] == "user") != (ns.index % 2 == 0) %}
18
+ {{- raise_exception("After the optional system message, conversation roles must alternate user/assistant/user/assistant/...") }}
19
+ {%- endif %}
20
+ {%- set ns.index = ns.index + 1 %}
21
+ {%- endif %}
22
+ {%- endfor %}
23
+
24
+ {{- bos_token }}
25
+ {%- for message in loop_messages %}
26
+ {%- if message["role"] == "user" %}
27
+ {%- if tools is not none and (message == user_messages[-1]) %}
28
+ {{- "[AVAILABLE_TOOLS] [" }}
29
+ {%- for tool in tools %}
30
+ {%- set tool = tool.function %}
31
+ {{- '{"type": "function", "function": {' }}
32
+ {%- for key, val in tool.items() if key != "return" %}
33
+ {%- if val is string %}
34
+ {{- '"' + key + '": "' + val + '"' }}
35
+ {%- else %}
36
+ {{- '"' + key + '": ' + val|tojson }}
37
+ {%- endif %}
38
+ {%- if not loop.last %}
39
+ {{- ", " }}
40
+ {%- endif %}
41
+ {%- endfor %}
42
+ {{- "}}" }}
43
+ {%- if not loop.last %}
44
+ {{- ", " }}
45
+ {%- else %}
46
+ {{- "]" }}
47
+ {%- endif %}
48
+ {%- endfor %}
49
+ {{- "[/AVAILABLE_TOOLS]" }}
50
+ {%- endif %}
51
+ {%- if loop.last and system_message is defined %}
52
+ {{- "[INST] " + system_message + "\n\n" + message["content"] + "[/INST]" }}
53
+ {%- else %}
54
+ {{- "[INST] " + message["content"] + "[/INST]" }}
55
+ {%- endif %}
56
+ {%- elif message.tool_calls is defined and message.tool_calls is not none %}
57
+ {{- "[TOOL_CALLS] [" }}
58
+ {%- for tool_call in message.tool_calls %}
59
+ {%- set out = tool_call.function|tojson %}
60
+ {{- out[:-1] }}
61
+ {%- if not tool_call.id is defined or tool_call.id|length != 9 %}
62
+ {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
63
+ {%- endif %}
64
+ {{- ', "id": "' + tool_call.id + '"}' }}
65
+ {%- if not loop.last %}
66
+ {{- ", " }}
67
+ {%- else %}
68
+ {{- "]" + eos_token }}
69
+ {%- endif %}
70
+ {%- endfor %}
71
+ {%- elif message["role"] == "assistant" %}
72
+ {{- " " + message["content"]|trim + eos_token}}
73
+ {%- elif message["role"] == "tool_results" or message["role"] == "tool" %}
74
+ {%- if message.content is defined and message.content.content is defined %}
75
+ {%- set content = message.content.content %}
76
+ {%- else %}
77
+ {%- set content = message.content %}
78
+ {%- endif %}
79
+ {{- '[TOOL_RESULTS] {"content": ' + content|string + ", " }}
80
+ {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}
81
+ {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
82
+ {%- endif %}
83
+ {{- '"call_id": "' + message.tool_call_id + '"}[/TOOL_RESULTS]' }}
84
+ {%- else %}
85
+ {{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}
86
+ {%- endif %}
87
+ {%- endfor %}
checkpoint-2490/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c14e94a2e599bd6ac51f7077a7077bb284d2df427919d7efb6964628731e3ca2
3
+ size 671365003
checkpoint-2490/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7379eeeecc1695daae9e68d92129c493d60f18222f595ec263b6505459c689e3
3
+ size 14645
checkpoint-2490/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b41bfa144f42e80c8ff5d37b29a2644e1a27e71ffa4c3224a8b4db5b2151dea
3
+ size 1465
checkpoint-2490/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-2490/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff