Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- adapter_config.json +4 -4
- adapter_model.safetensors +1 -1
- checkpoint-1245/README.md +202 -0
- checkpoint-1245/adapter_config.json +39 -0
- checkpoint-1245/adapter_model.safetensors +3 -0
- checkpoint-1245/chat_template.jinja +87 -0
- checkpoint-1245/optimizer.pt +3 -0
- checkpoint-1245/rng_state.pth +3 -0
- checkpoint-1245/scheduler.pt +3 -0
- checkpoint-1245/special_tokens_map.json +24 -0
- checkpoint-1245/tokenizer.json +0 -0
- checkpoint-1245/tokenizer.model +3 -0
- checkpoint-1245/tokenizer_config.json +0 -0
- checkpoint-1245/trainer_state.json +505 -0
- checkpoint-1245/training_args.bin +3 -0
- checkpoint-1660/README.md +202 -0
- checkpoint-1660/adapter_config.json +39 -0
- checkpoint-1660/adapter_model.safetensors +3 -0
- checkpoint-1660/chat_template.jinja +87 -0
- checkpoint-1660/optimizer.pt +3 -0
- checkpoint-1660/rng_state.pth +3 -0
- checkpoint-1660/scheduler.pt +3 -0
- checkpoint-1660/special_tokens_map.json +24 -0
- checkpoint-1660/tokenizer.json +0 -0
- checkpoint-1660/tokenizer.model +3 -0
- checkpoint-1660/tokenizer_config.json +0 -0
- checkpoint-1660/trainer_state.json +668 -0
- checkpoint-1660/training_args.bin +3 -0
- checkpoint-2075/README.md +202 -0
- checkpoint-2075/adapter_config.json +39 -0
- checkpoint-2075/adapter_model.safetensors +3 -0
- checkpoint-2075/chat_template.jinja +87 -0
- checkpoint-2075/optimizer.pt +3 -0
- checkpoint-2075/rng_state.pth +3 -0
- checkpoint-2075/scheduler.pt +3 -0
- checkpoint-2075/special_tokens_map.json +24 -0
- checkpoint-2075/tokenizer.json +0 -0
- checkpoint-2075/tokenizer.model +3 -0
- checkpoint-2075/tokenizer_config.json +0 -0
- checkpoint-2075/trainer_state.json +831 -0
- checkpoint-2075/training_args.bin +3 -0
- checkpoint-2490/README.md +202 -0
- checkpoint-2490/adapter_config.json +39 -0
- checkpoint-2490/adapter_model.safetensors +3 -0
- checkpoint-2490/chat_template.jinja +87 -0
- checkpoint-2490/optimizer.pt +3 -0
- checkpoint-2490/rng_state.pth +3 -0
- checkpoint-2490/scheduler.pt +3 -0
- checkpoint-2490/special_tokens_map.json +24 -0
- checkpoint-2490/tokenizer.json +0 -0
adapter_config.json
CHANGED
@@ -24,13 +24,13 @@
|
|
24 |
"rank_pattern": {},
|
25 |
"revision": null,
|
26 |
"target_modules": [
|
27 |
-
"up_proj",
|
28 |
-
"q_proj",
|
29 |
"gate_proj",
|
30 |
"k_proj",
|
31 |
-
"o_proj",
|
32 |
"down_proj",
|
33 |
-
"
|
|
|
|
|
|
|
34 |
],
|
35 |
"task_type": "CAUSAL_LM",
|
36 |
"trainable_token_indices": null,
|
|
|
24 |
"rank_pattern": {},
|
25 |
"revision": null,
|
26 |
"target_modules": [
|
|
|
|
|
27 |
"gate_proj",
|
28 |
"k_proj",
|
|
|
29 |
"down_proj",
|
30 |
+
"o_proj",
|
31 |
+
"v_proj",
|
32 |
+
"up_proj",
|
33 |
+
"q_proj"
|
34 |
],
|
35 |
"task_type": "CAUSAL_LM",
|
36 |
"trainable_token_indices": null,
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 335604696
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd96fdcd636771e4873f12078f36d23b38b5a9447f92b7d3611efde0c9ea5b4e
|
3 |
size 335604696
|
checkpoint-1245/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.3
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.2
|
checkpoint-1245/adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 16,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.1,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 32,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"gate_proj",
|
28 |
+
"k_proj",
|
29 |
+
"down_proj",
|
30 |
+
"o_proj",
|
31 |
+
"v_proj",
|
32 |
+
"up_proj",
|
33 |
+
"q_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": false
|
39 |
+
}
|
checkpoint-1245/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2997931c8e9988c9b6b59a1e57c4f22759c43d13539e3a0b69f99f4725ffccd
|
3 |
+
size 335604696
|
checkpoint-1245/chat_template.jinja
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if messages[0]["role"] == "system" %}
|
2 |
+
{%- set system_message = messages[0]["content"] %}
|
3 |
+
{%- set loop_messages = messages[1:] %}
|
4 |
+
{%- else %}
|
5 |
+
{%- set loop_messages = messages %}
|
6 |
+
{%- endif %}
|
7 |
+
{%- if not tools is defined %}
|
8 |
+
{%- set tools = none %}
|
9 |
+
{%- endif %}
|
10 |
+
{%- set user_messages = loop_messages | selectattr("role", "equalto", "user") | list %}
|
11 |
+
|
12 |
+
{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}
|
13 |
+
{%- set ns = namespace() %}
|
14 |
+
{%- set ns.index = 0 %}
|
15 |
+
{%- for message in loop_messages %}
|
16 |
+
{%- if not (message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
|
17 |
+
{%- if (message["role"] == "user") != (ns.index % 2 == 0) %}
|
18 |
+
{{- raise_exception("After the optional system message, conversation roles must alternate user/assistant/user/assistant/...") }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- set ns.index = ns.index + 1 %}
|
21 |
+
{%- endif %}
|
22 |
+
{%- endfor %}
|
23 |
+
|
24 |
+
{{- bos_token }}
|
25 |
+
{%- for message in loop_messages %}
|
26 |
+
{%- if message["role"] == "user" %}
|
27 |
+
{%- if tools is not none and (message == user_messages[-1]) %}
|
28 |
+
{{- "[AVAILABLE_TOOLS] [" }}
|
29 |
+
{%- for tool in tools %}
|
30 |
+
{%- set tool = tool.function %}
|
31 |
+
{{- '{"type": "function", "function": {' }}
|
32 |
+
{%- for key, val in tool.items() if key != "return" %}
|
33 |
+
{%- if val is string %}
|
34 |
+
{{- '"' + key + '": "' + val + '"' }}
|
35 |
+
{%- else %}
|
36 |
+
{{- '"' + key + '": ' + val|tojson }}
|
37 |
+
{%- endif %}
|
38 |
+
{%- if not loop.last %}
|
39 |
+
{{- ", " }}
|
40 |
+
{%- endif %}
|
41 |
+
{%- endfor %}
|
42 |
+
{{- "}}" }}
|
43 |
+
{%- if not loop.last %}
|
44 |
+
{{- ", " }}
|
45 |
+
{%- else %}
|
46 |
+
{{- "]" }}
|
47 |
+
{%- endif %}
|
48 |
+
{%- endfor %}
|
49 |
+
{{- "[/AVAILABLE_TOOLS]" }}
|
50 |
+
{%- endif %}
|
51 |
+
{%- if loop.last and system_message is defined %}
|
52 |
+
{{- "[INST] " + system_message + "\n\n" + message["content"] + "[/INST]" }}
|
53 |
+
{%- else %}
|
54 |
+
{{- "[INST] " + message["content"] + "[/INST]" }}
|
55 |
+
{%- endif %}
|
56 |
+
{%- elif message.tool_calls is defined and message.tool_calls is not none %}
|
57 |
+
{{- "[TOOL_CALLS] [" }}
|
58 |
+
{%- for tool_call in message.tool_calls %}
|
59 |
+
{%- set out = tool_call.function|tojson %}
|
60 |
+
{{- out[:-1] }}
|
61 |
+
{%- if not tool_call.id is defined or tool_call.id|length != 9 %}
|
62 |
+
{{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
|
63 |
+
{%- endif %}
|
64 |
+
{{- ', "id": "' + tool_call.id + '"}' }}
|
65 |
+
{%- if not loop.last %}
|
66 |
+
{{- ", " }}
|
67 |
+
{%- else %}
|
68 |
+
{{- "]" + eos_token }}
|
69 |
+
{%- endif %}
|
70 |
+
{%- endfor %}
|
71 |
+
{%- elif message["role"] == "assistant" %}
|
72 |
+
{{- " " + message["content"]|trim + eos_token}}
|
73 |
+
{%- elif message["role"] == "tool_results" or message["role"] == "tool" %}
|
74 |
+
{%- if message.content is defined and message.content.content is defined %}
|
75 |
+
{%- set content = message.content.content %}
|
76 |
+
{%- else %}
|
77 |
+
{%- set content = message.content %}
|
78 |
+
{%- endif %}
|
79 |
+
{{- '[TOOL_RESULTS] {"content": ' + content|string + ", " }}
|
80 |
+
{%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}
|
81 |
+
{{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
|
82 |
+
{%- endif %}
|
83 |
+
{{- '"call_id": "' + message.tool_call_id + '"}[/TOOL_RESULTS]' }}
|
84 |
+
{%- else %}
|
85 |
+
{{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}
|
86 |
+
{%- endif %}
|
87 |
+
{%- endfor %}
|
checkpoint-1245/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2aa92d1ffa453e8be16180449483ed1a2bc847961c6bb6d2a539131af8517619
|
3 |
+
size 671365003
|
checkpoint-1245/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a6682f2819b4c512a5135ce5121cc17df05a991d605014db5cc4d78492f734a
|
3 |
+
size 14645
|
checkpoint-1245/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0507b5178a097f1a47eb13bf2dc725ccef8bd541a0c05887db5c53c97f9a004
|
3 |
+
size 1465
|
checkpoint-1245/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-1245/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1245/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
|
3 |
+
size 587404
|
checkpoint-1245/tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1245/trainer_state.json
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 3.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 1245,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.060350030175015085,
|
14 |
+
"grad_norm": 0.915810763835907,
|
15 |
+
"learning_rate": 8.18181818181818e-05,
|
16 |
+
"loss": 1.5579,
|
17 |
+
"mean_token_accuracy": 0.6726609909534454,
|
18 |
+
"num_tokens": 156451.0,
|
19 |
+
"step": 25
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"epoch": 0.12070006035003017,
|
23 |
+
"grad_norm": 0.8468347191810608,
|
24 |
+
"learning_rate": 0.00016704545454545452,
|
25 |
+
"loss": 0.8806,
|
26 |
+
"mean_token_accuracy": 0.7797876751422882,
|
27 |
+
"num_tokens": 273996.0,
|
28 |
+
"step": 50
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 0.18105009052504525,
|
32 |
+
"grad_norm": 0.6957323551177979,
|
33 |
+
"learning_rate": 0.0002522727272727273,
|
34 |
+
"loss": 0.5904,
|
35 |
+
"mean_token_accuracy": 0.8393249285221099,
|
36 |
+
"num_tokens": 425859.0,
|
37 |
+
"step": 75
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.24140012070006034,
|
41 |
+
"grad_norm": 0.7738164663314819,
|
42 |
+
"learning_rate": 0.0002999887132933212,
|
43 |
+
"loss": 0.4572,
|
44 |
+
"mean_token_accuracy": 0.8712374359369278,
|
45 |
+
"num_tokens": 542080.0,
|
46 |
+
"step": 100
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.30175015087507545,
|
50 |
+
"grad_norm": 0.6000323295593262,
|
51 |
+
"learning_rate": 0.0002998791256978121,
|
52 |
+
"loss": 0.3441,
|
53 |
+
"mean_token_accuracy": 0.9016327333450317,
|
54 |
+
"num_tokens": 690749.0,
|
55 |
+
"step": 125
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.3621001810500905,
|
59 |
+
"grad_norm": 0.8241934776306152,
|
60 |
+
"learning_rate": 0.0002996530399366737,
|
61 |
+
"loss": 0.3391,
|
62 |
+
"mean_token_accuracy": 0.9067233097553253,
|
63 |
+
"num_tokens": 804498.0,
|
64 |
+
"step": 150
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 0.4224502112251056,
|
68 |
+
"grad_norm": 0.6018714308738708,
|
69 |
+
"learning_rate": 0.00029931063174202567,
|
70 |
+
"loss": 0.2403,
|
71 |
+
"mean_token_accuracy": 0.9311208426952362,
|
72 |
+
"num_tokens": 956805.0,
|
73 |
+
"step": 175
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.4828002414001207,
|
77 |
+
"grad_norm": 0.6791284680366516,
|
78 |
+
"learning_rate": 0.00029885216726118104,
|
79 |
+
"loss": 0.2405,
|
80 |
+
"mean_token_accuracy": 0.9332937943935394,
|
81 |
+
"num_tokens": 1073182.0,
|
82 |
+
"step": 200
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.5431502715751357,
|
86 |
+
"grad_norm": 0.4105781614780426,
|
87 |
+
"learning_rate": 0.00029827800284977474,
|
88 |
+
"loss": 0.1788,
|
89 |
+
"mean_token_accuracy": 0.9502924716472626,
|
90 |
+
"num_tokens": 1223675.0,
|
91 |
+
"step": 225
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.6035003017501509,
|
95 |
+
"grad_norm": 0.6441053152084351,
|
96 |
+
"learning_rate": 0.00029758858479477575,
|
97 |
+
"loss": 0.1834,
|
98 |
+
"mean_token_accuracy": 0.9509575897455216,
|
99 |
+
"num_tokens": 1340505.0,
|
100 |
+
"step": 250
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.663850331925166,
|
104 |
+
"grad_norm": 0.6117656230926514,
|
105 |
+
"learning_rate": 0.0002967844489675963,
|
106 |
+
"loss": 0.164,
|
107 |
+
"mean_token_accuracy": 0.9560773247480392,
|
108 |
+
"num_tokens": 1494591.0,
|
109 |
+
"step": 275
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.724200362100181,
|
113 |
+
"grad_norm": 0.6707085967063904,
|
114 |
+
"learning_rate": 0.00029586622040756957,
|
115 |
+
"loss": 0.1596,
|
116 |
+
"mean_token_accuracy": 0.9571379733085632,
|
117 |
+
"num_tokens": 1611141.0,
|
118 |
+
"step": 300
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 0.7845503922751962,
|
122 |
+
"grad_norm": 0.3164249658584595,
|
123 |
+
"learning_rate": 0.0002948346128361186,
|
124 |
+
"loss": 0.1361,
|
125 |
+
"mean_token_accuracy": 0.9637150484323501,
|
126 |
+
"num_tokens": 1764271.0,
|
127 |
+
"step": 325
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 0.8449004224502112,
|
131 |
+
"grad_norm": 0.7695516347885132,
|
132 |
+
"learning_rate": 0.00029369042810199416,
|
133 |
+
"loss": 0.1453,
|
134 |
+
"mean_token_accuracy": 0.9618589824438095,
|
135 |
+
"num_tokens": 1880091.0,
|
136 |
+
"step": 350
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.9052504526252263,
|
140 |
+
"grad_norm": 0.4800753593444824,
|
141 |
+
"learning_rate": 0.0002924345555580135,
|
142 |
+
"loss": 0.1227,
|
143 |
+
"mean_token_accuracy": 0.9672258603572845,
|
144 |
+
"num_tokens": 2031547.0,
|
145 |
+
"step": 375
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.9656004828002414,
|
149 |
+
"grad_norm": 0.5669476985931396,
|
150 |
+
"learning_rate": 0.000291067971369783,
|
151 |
+
"loss": 0.1207,
|
152 |
+
"mean_token_accuracy": 0.96809639275074,
|
153 |
+
"num_tokens": 2147237.0,
|
154 |
+
"step": 400
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 1.0,
|
158 |
+
"eval_loss": 0.12038072198629379,
|
159 |
+
"eval_mean_token_accuracy": 0.9679264332797076,
|
160 |
+
"eval_num_tokens": 2223513.0,
|
161 |
+
"eval_runtime": 60.431,
|
162 |
+
"eval_samples_per_second": 6.106,
|
163 |
+
"eval_steps_per_second": 3.061,
|
164 |
+
"step": 415
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 1.024140012070006,
|
168 |
+
"grad_norm": 0.31214025616645813,
|
169 |
+
"learning_rate": 0.0002895917377569438,
|
170 |
+
"loss": 0.127,
|
171 |
+
"mean_token_accuracy": 0.966964461139797,
|
172 |
+
"num_tokens": 2291189.0,
|
173 |
+
"step": 425
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 1.0844900422450212,
|
177 |
+
"grad_norm": 0.4406073987483978,
|
178 |
+
"learning_rate": 0.00028800700216752875,
|
179 |
+
"loss": 0.0904,
|
180 |
+
"mean_token_accuracy": 0.9758492666482925,
|
181 |
+
"num_tokens": 2426566.0,
|
182 |
+
"step": 450
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 1.1448400724200363,
|
186 |
+
"grad_norm": 0.4013468325138092,
|
187 |
+
"learning_rate": 0.00028631499638607285,
|
188 |
+
"loss": 0.114,
|
189 |
+
"mean_token_accuracy": 0.9697561454772949,
|
190 |
+
"num_tokens": 2560245.0,
|
191 |
+
"step": 475
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 1.2051901025950513,
|
195 |
+
"grad_norm": 0.3366129994392395,
|
196 |
+
"learning_rate": 0.0002845170355761712,
|
197 |
+
"loss": 0.0827,
|
198 |
+
"mean_token_accuracy": 0.9783335107564927,
|
199 |
+
"num_tokens": 2695786.0,
|
200 |
+
"step": 500
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 1.2655401327700664,
|
204 |
+
"grad_norm": 0.33777478337287903,
|
205 |
+
"learning_rate": 0.0002826145172582274,
|
206 |
+
"loss": 0.1049,
|
207 |
+
"mean_token_accuracy": 0.9726521408557892,
|
208 |
+
"num_tokens": 2827828.0,
|
209 |
+
"step": 525
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 1.3258901629450814,
|
213 |
+
"grad_norm": 0.34536224603652954,
|
214 |
+
"learning_rate": 0.00028060892022318764,
|
215 |
+
"loss": 0.0827,
|
216 |
+
"mean_token_accuracy": 0.9780162799358368,
|
217 |
+
"num_tokens": 2959671.0,
|
218 |
+
"step": 550
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 1.3862401931200965,
|
222 |
+
"grad_norm": 0.34014376997947693,
|
223 |
+
"learning_rate": 0.0002785018033831051,
|
224 |
+
"loss": 0.1,
|
225 |
+
"mean_token_accuracy": 0.9745338922739029,
|
226 |
+
"num_tokens": 3092256.0,
|
227 |
+
"step": 575
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 1.4465902232951118,
|
231 |
+
"grad_norm": 0.26126986742019653,
|
232 |
+
"learning_rate": 0.0002762948045594276,
|
233 |
+
"loss": 0.0784,
|
234 |
+
"mean_token_accuracy": 0.98013427734375,
|
235 |
+
"num_tokens": 3225551.0,
|
236 |
+
"step": 600
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 1.5069402534701268,
|
240 |
+
"grad_norm": 0.25581225752830505,
|
241 |
+
"learning_rate": 0.0002739896392099502,
|
242 |
+
"loss": 0.0992,
|
243 |
+
"mean_token_accuracy": 0.9744413161277771,
|
244 |
+
"num_tokens": 3358590.0,
|
245 |
+
"step": 625
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 1.567290283645142,
|
249 |
+
"grad_norm": 0.38688021898269653,
|
250 |
+
"learning_rate": 0.00027158809909542307,
|
251 |
+
"loss": 0.0746,
|
252 |
+
"mean_token_accuracy": 0.9804132694005966,
|
253 |
+
"num_tokens": 3494044.0,
|
254 |
+
"step": 650
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 1.627640313820157,
|
258 |
+
"grad_norm": 0.2373267114162445,
|
259 |
+
"learning_rate": 0.00026909205088685,
|
260 |
+
"loss": 0.0976,
|
261 |
+
"mean_token_accuracy": 0.9745747190713883,
|
262 |
+
"num_tokens": 3627751.0,
|
263 |
+
"step": 675
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 1.687990343995172,
|
267 |
+
"grad_norm": 0.37386244535446167,
|
268 |
+
"learning_rate": 0.0002665034347145612,
|
269 |
+
"loss": 0.0751,
|
270 |
+
"mean_token_accuracy": 0.9802791184186935,
|
271 |
+
"num_tokens": 3762776.0,
|
272 |
+
"step": 700
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 1.748340374170187,
|
276 |
+
"grad_norm": 0.276994526386261,
|
277 |
+
"learning_rate": 0.000263824262660187,
|
278 |
+
"loss": 0.097,
|
279 |
+
"mean_token_accuracy": 0.9747868567705155,
|
280 |
+
"num_tokens": 3896978.0,
|
281 |
+
"step": 725
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 1.8086904043452021,
|
285 |
+
"grad_norm": 0.4135245978832245,
|
286 |
+
"learning_rate": 0.0002610566171927056,
|
287 |
+
"loss": 0.0706,
|
288 |
+
"mean_token_accuracy": 0.9817547309398651,
|
289 |
+
"num_tokens": 4034768.0,
|
290 |
+
"step": 750
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 1.8690404345202172,
|
294 |
+
"grad_norm": 0.15843796730041504,
|
295 |
+
"learning_rate": 0.00025820264954977976,
|
296 |
+
"loss": 0.0889,
|
297 |
+
"mean_token_accuracy": 0.9776063919067383,
|
298 |
+
"num_tokens": 4169906.0,
|
299 |
+
"step": 775
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 1.9293904646952322,
|
303 |
+
"grad_norm": 0.30585798621177673,
|
304 |
+
"learning_rate": 0.00025526457806564136,
|
305 |
+
"loss": 0.0668,
|
306 |
+
"mean_token_accuracy": 0.9821723079681397,
|
307 |
+
"num_tokens": 4305541.0,
|
308 |
+
"step": 800
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 1.9897404948702473,
|
312 |
+
"grad_norm": 0.23672625422477722,
|
313 |
+
"learning_rate": 0.00025224468644682245,
|
314 |
+
"loss": 0.0777,
|
315 |
+
"mean_token_accuracy": 0.9801788556575776,
|
316 |
+
"num_tokens": 4429095.0,
|
317 |
+
"step": 825
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 2.0,
|
321 |
+
"eval_loss": 0.08333630114793777,
|
322 |
+
"eval_mean_token_accuracy": 0.9790130283381487,
|
323 |
+
"eval_num_tokens": 4447026.0,
|
324 |
+
"eval_runtime": 60.4769,
|
325 |
+
"eval_samples_per_second": 6.101,
|
326 |
+
"eval_steps_per_second": 3.059,
|
327 |
+
"step": 830
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 2.048280024140012,
|
331 |
+
"grad_norm": 0.2790965139865875,
|
332 |
+
"learning_rate": 0.00024914532199707444,
|
333 |
+
"loss": 0.0737,
|
334 |
+
"mean_token_accuracy": 0.9818082832798516,
|
335 |
+
"num_tokens": 4573150.0,
|
336 |
+
"step": 850
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 2.1086300543150274,
|
340 |
+
"grad_norm": 0.38501349091529846,
|
341 |
+
"learning_rate": 0.00024596889379285353,
|
342 |
+
"loss": 0.0609,
|
343 |
+
"mean_token_accuracy": 0.9846205246448517,
|
344 |
+
"num_tokens": 4696253.0,
|
345 |
+
"step": 875
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 2.1689800844900424,
|
349 |
+
"grad_norm": 0.3383895754814148,
|
350 |
+
"learning_rate": 0.00024271787081079228,
|
351 |
+
"loss": 0.0731,
|
352 |
+
"mean_token_accuracy": 0.9802233374118805,
|
353 |
+
"num_tokens": 4842241.0,
|
354 |
+
"step": 900
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 2.2293301146650575,
|
358 |
+
"grad_norm": 0.21086572110652924,
|
359 |
+
"learning_rate": 0.00023939478000861117,
|
360 |
+
"loss": 0.0596,
|
361 |
+
"mean_token_accuracy": 0.9851127731800079,
|
362 |
+
"num_tokens": 4965545.0,
|
363 |
+
"step": 925
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 2.2896801448400725,
|
367 |
+
"grad_norm": 0.20826084911823273,
|
368 |
+
"learning_rate": 0.00023600220436096318,
|
369 |
+
"loss": 0.0759,
|
370 |
+
"mean_token_accuracy": 0.9797697293758393,
|
371 |
+
"num_tokens": 5111070.0,
|
372 |
+
"step": 950
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 2.3500301750150876,
|
376 |
+
"grad_norm": 0.2537970244884491,
|
377 |
+
"learning_rate": 0.00023254278085173684,
|
378 |
+
"loss": 0.059,
|
379 |
+
"mean_token_accuracy": 0.9851009005308151,
|
380 |
+
"num_tokens": 5235251.0,
|
381 |
+
"step": 975
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 2.4103802051901027,
|
385 |
+
"grad_norm": 0.2794428765773773,
|
386 |
+
"learning_rate": 0.00022901919842437972,
|
387 |
+
"loss": 0.0671,
|
388 |
+
"mean_token_accuracy": 0.9823657035827636,
|
389 |
+
"num_tokens": 5379177.0,
|
390 |
+
"step": 1000
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 2.4707302353651177,
|
394 |
+
"grad_norm": 0.23955030739307404,
|
395 |
+
"learning_rate": 0.00022543419589183397,
|
396 |
+
"loss": 0.06,
|
397 |
+
"mean_token_accuracy": 0.9847251123189926,
|
398 |
+
"num_tokens": 5501778.0,
|
399 |
+
"step": 1025
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 2.5310802655401328,
|
403 |
+
"grad_norm": 0.24202412366867065,
|
404 |
+
"learning_rate": 0.00022179055980770993,
|
405 |
+
"loss": 0.0702,
|
406 |
+
"mean_token_accuracy": 0.9814589565992355,
|
407 |
+
"num_tokens": 5646414.0,
|
408 |
+
"step": 1050
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 2.591430295715148,
|
412 |
+
"grad_norm": 0.18459561467170715,
|
413 |
+
"learning_rate": 0.0002180911223003513,
|
414 |
+
"loss": 0.062,
|
415 |
+
"mean_token_accuracy": 0.9842818379402161,
|
416 |
+
"num_tokens": 5771178.0,
|
417 |
+
"step": 1075
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 2.651780325890163,
|
421 |
+
"grad_norm": 0.21107763051986694,
|
422 |
+
"learning_rate": 0.00021433875887147627,
|
423 |
+
"loss": 0.0656,
|
424 |
+
"mean_token_accuracy": 0.982610120177269,
|
425 |
+
"num_tokens": 5916367.0,
|
426 |
+
"step": 1100
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 2.712130356065178,
|
430 |
+
"grad_norm": 0.12310996651649475,
|
431 |
+
"learning_rate": 0.00021053638616110525,
|
432 |
+
"loss": 0.056,
|
433 |
+
"mean_token_accuracy": 0.9858221507072449,
|
434 |
+
"num_tokens": 6039601.0,
|
435 |
+
"step": 1125
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 2.772480386240193,
|
439 |
+
"grad_norm": 0.0949612483382225,
|
440 |
+
"learning_rate": 0.00020668695968051274,
|
441 |
+
"loss": 0.062,
|
442 |
+
"mean_token_accuracy": 0.9835014945268631,
|
443 |
+
"num_tokens": 6183454.0,
|
444 |
+
"step": 1150
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 2.832830416415208,
|
448 |
+
"grad_norm": 0.23207980394363403,
|
449 |
+
"learning_rate": 0.00020279347151496482,
|
450 |
+
"loss": 0.0546,
|
451 |
+
"mean_token_accuracy": 0.9864810138940812,
|
452 |
+
"num_tokens": 6305513.0,
|
453 |
+
"step": 1175
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 2.8931804465902236,
|
457 |
+
"grad_norm": 0.14339599013328552,
|
458 |
+
"learning_rate": 0.00019885894799802922,
|
459 |
+
"loss": 0.0665,
|
460 |
+
"mean_token_accuracy": 0.982457509636879,
|
461 |
+
"num_tokens": 6450956.0,
|
462 |
+
"step": 1200
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 2.9535304767652386,
|
466 |
+
"grad_norm": 0.10236950218677521,
|
467 |
+
"learning_rate": 0.00019488644735926396,
|
468 |
+
"loss": 0.0538,
|
469 |
+
"mean_token_accuracy": 0.9864566326141357,
|
470 |
+
"num_tokens": 6574055.0,
|
471 |
+
"step": 1225
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 3.0,
|
475 |
+
"eval_loss": 0.0698639452457428,
|
476 |
+
"eval_mean_token_accuracy": 0.9828434982815304,
|
477 |
+
"eval_num_tokens": 6670539.0,
|
478 |
+
"eval_runtime": 60.4557,
|
479 |
+
"eval_samples_per_second": 6.104,
|
480 |
+
"eval_steps_per_second": 3.06,
|
481 |
+
"step": 1245
|
482 |
+
}
|
483 |
+
],
|
484 |
+
"logging_steps": 25,
|
485 |
+
"max_steps": 2905,
|
486 |
+
"num_input_tokens_seen": 0,
|
487 |
+
"num_train_epochs": 7,
|
488 |
+
"save_steps": 500,
|
489 |
+
"stateful_callbacks": {
|
490 |
+
"TrainerControl": {
|
491 |
+
"args": {
|
492 |
+
"should_epoch_stop": false,
|
493 |
+
"should_evaluate": false,
|
494 |
+
"should_log": false,
|
495 |
+
"should_save": true,
|
496 |
+
"should_training_stop": false
|
497 |
+
},
|
498 |
+
"attributes": {}
|
499 |
+
}
|
500 |
+
},
|
501 |
+
"total_flos": 2.884964041715958e+17,
|
502 |
+
"train_batch_size": 2,
|
503 |
+
"trial_name": null,
|
504 |
+
"trial_params": null
|
505 |
+
}
|
checkpoint-1245/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:837f73e1808d10388c3e9d0067719323e5731b8387ed3c99bcbeb463cf7ac167
|
3 |
+
size 6033
|
checkpoint-1660/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.3
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.2
|
checkpoint-1660/adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 16,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.1,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 32,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"gate_proj",
|
28 |
+
"k_proj",
|
29 |
+
"down_proj",
|
30 |
+
"o_proj",
|
31 |
+
"v_proj",
|
32 |
+
"up_proj",
|
33 |
+
"q_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": false
|
39 |
+
}
|
checkpoint-1660/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:746556f40bbb50a0a2e12c520ca2bdeac8fb10fef33b37f9fe993a1b3a025bb2
|
3 |
+
size 335604696
|
checkpoint-1660/chat_template.jinja
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if messages[0]["role"] == "system" %}
|
2 |
+
{%- set system_message = messages[0]["content"] %}
|
3 |
+
{%- set loop_messages = messages[1:] %}
|
4 |
+
{%- else %}
|
5 |
+
{%- set loop_messages = messages %}
|
6 |
+
{%- endif %}
|
7 |
+
{%- if not tools is defined %}
|
8 |
+
{%- set tools = none %}
|
9 |
+
{%- endif %}
|
10 |
+
{%- set user_messages = loop_messages | selectattr("role", "equalto", "user") | list %}
|
11 |
+
|
12 |
+
{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}
|
13 |
+
{%- set ns = namespace() %}
|
14 |
+
{%- set ns.index = 0 %}
|
15 |
+
{%- for message in loop_messages %}
|
16 |
+
{%- if not (message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
|
17 |
+
{%- if (message["role"] == "user") != (ns.index % 2 == 0) %}
|
18 |
+
{{- raise_exception("After the optional system message, conversation roles must alternate user/assistant/user/assistant/...") }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- set ns.index = ns.index + 1 %}
|
21 |
+
{%- endif %}
|
22 |
+
{%- endfor %}
|
23 |
+
|
24 |
+
{{- bos_token }}
|
25 |
+
{%- for message in loop_messages %}
|
26 |
+
{%- if message["role"] == "user" %}
|
27 |
+
{%- if tools is not none and (message == user_messages[-1]) %}
|
28 |
+
{{- "[AVAILABLE_TOOLS] [" }}
|
29 |
+
{%- for tool in tools %}
|
30 |
+
{%- set tool = tool.function %}
|
31 |
+
{{- '{"type": "function", "function": {' }}
|
32 |
+
{%- for key, val in tool.items() if key != "return" %}
|
33 |
+
{%- if val is string %}
|
34 |
+
{{- '"' + key + '": "' + val + '"' }}
|
35 |
+
{%- else %}
|
36 |
+
{{- '"' + key + '": ' + val|tojson }}
|
37 |
+
{%- endif %}
|
38 |
+
{%- if not loop.last %}
|
39 |
+
{{- ", " }}
|
40 |
+
{%- endif %}
|
41 |
+
{%- endfor %}
|
42 |
+
{{- "}}" }}
|
43 |
+
{%- if not loop.last %}
|
44 |
+
{{- ", " }}
|
45 |
+
{%- else %}
|
46 |
+
{{- "]" }}
|
47 |
+
{%- endif %}
|
48 |
+
{%- endfor %}
|
49 |
+
{{- "[/AVAILABLE_TOOLS]" }}
|
50 |
+
{%- endif %}
|
51 |
+
{%- if loop.last and system_message is defined %}
|
52 |
+
{{- "[INST] " + system_message + "\n\n" + message["content"] + "[/INST]" }}
|
53 |
+
{%- else %}
|
54 |
+
{{- "[INST] " + message["content"] + "[/INST]" }}
|
55 |
+
{%- endif %}
|
56 |
+
{%- elif message.tool_calls is defined and message.tool_calls is not none %}
|
57 |
+
{{- "[TOOL_CALLS] [" }}
|
58 |
+
{%- for tool_call in message.tool_calls %}
|
59 |
+
{%- set out = tool_call.function|tojson %}
|
60 |
+
{{- out[:-1] }}
|
61 |
+
{%- if not tool_call.id is defined or tool_call.id|length != 9 %}
|
62 |
+
{{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
|
63 |
+
{%- endif %}
|
64 |
+
{{- ', "id": "' + tool_call.id + '"}' }}
|
65 |
+
{%- if not loop.last %}
|
66 |
+
{{- ", " }}
|
67 |
+
{%- else %}
|
68 |
+
{{- "]" + eos_token }}
|
69 |
+
{%- endif %}
|
70 |
+
{%- endfor %}
|
71 |
+
{%- elif message["role"] == "assistant" %}
|
72 |
+
{{- " " + message["content"]|trim + eos_token}}
|
73 |
+
{%- elif message["role"] == "tool_results" or message["role"] == "tool" %}
|
74 |
+
{%- if message.content is defined and message.content.content is defined %}
|
75 |
+
{%- set content = message.content.content %}
|
76 |
+
{%- else %}
|
77 |
+
{%- set content = message.content %}
|
78 |
+
{%- endif %}
|
79 |
+
{{- '[TOOL_RESULTS] {"content": ' + content|string + ", " }}
|
80 |
+
{%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}
|
81 |
+
{{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
|
82 |
+
{%- endif %}
|
83 |
+
{{- '"call_id": "' + message.tool_call_id + '"}[/TOOL_RESULTS]' }}
|
84 |
+
{%- else %}
|
85 |
+
{{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}
|
86 |
+
{%- endif %}
|
87 |
+
{%- endfor %}
|
checkpoint-1660/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a2a58ca03c5059f5f60163aefd11741771b2869f0e1333f518ec8a5cf6270db
|
3 |
+
size 671365003
|
checkpoint-1660/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c7bc16906d7e5aa7943ccefbd2721629ef1abc4dd9f285220ee1b8d4e1290ae
|
3 |
+
size 14645
|
checkpoint-1660/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:400af09f812b537d738744947529a57cd588f5dd92eadb329b9f329acf39c801
|
3 |
+
size 1465
|
checkpoint-1660/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-1660/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1660/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
|
3 |
+
size 587404
|
checkpoint-1660/tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1660/trainer_state.json
ADDED
@@ -0,0 +1,668 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 4.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 1660,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.060350030175015085,
|
14 |
+
"grad_norm": 0.915810763835907,
|
15 |
+
"learning_rate": 8.18181818181818e-05,
|
16 |
+
"loss": 1.5579,
|
17 |
+
"mean_token_accuracy": 0.6726609909534454,
|
18 |
+
"num_tokens": 156451.0,
|
19 |
+
"step": 25
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"epoch": 0.12070006035003017,
|
23 |
+
"grad_norm": 0.8468347191810608,
|
24 |
+
"learning_rate": 0.00016704545454545452,
|
25 |
+
"loss": 0.8806,
|
26 |
+
"mean_token_accuracy": 0.7797876751422882,
|
27 |
+
"num_tokens": 273996.0,
|
28 |
+
"step": 50
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 0.18105009052504525,
|
32 |
+
"grad_norm": 0.6957323551177979,
|
33 |
+
"learning_rate": 0.0002522727272727273,
|
34 |
+
"loss": 0.5904,
|
35 |
+
"mean_token_accuracy": 0.8393249285221099,
|
36 |
+
"num_tokens": 425859.0,
|
37 |
+
"step": 75
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.24140012070006034,
|
41 |
+
"grad_norm": 0.7738164663314819,
|
42 |
+
"learning_rate": 0.0002999887132933212,
|
43 |
+
"loss": 0.4572,
|
44 |
+
"mean_token_accuracy": 0.8712374359369278,
|
45 |
+
"num_tokens": 542080.0,
|
46 |
+
"step": 100
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.30175015087507545,
|
50 |
+
"grad_norm": 0.6000323295593262,
|
51 |
+
"learning_rate": 0.0002998791256978121,
|
52 |
+
"loss": 0.3441,
|
53 |
+
"mean_token_accuracy": 0.9016327333450317,
|
54 |
+
"num_tokens": 690749.0,
|
55 |
+
"step": 125
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.3621001810500905,
|
59 |
+
"grad_norm": 0.8241934776306152,
|
60 |
+
"learning_rate": 0.0002996530399366737,
|
61 |
+
"loss": 0.3391,
|
62 |
+
"mean_token_accuracy": 0.9067233097553253,
|
63 |
+
"num_tokens": 804498.0,
|
64 |
+
"step": 150
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 0.4224502112251056,
|
68 |
+
"grad_norm": 0.6018714308738708,
|
69 |
+
"learning_rate": 0.00029931063174202567,
|
70 |
+
"loss": 0.2403,
|
71 |
+
"mean_token_accuracy": 0.9311208426952362,
|
72 |
+
"num_tokens": 956805.0,
|
73 |
+
"step": 175
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.4828002414001207,
|
77 |
+
"grad_norm": 0.6791284680366516,
|
78 |
+
"learning_rate": 0.00029885216726118104,
|
79 |
+
"loss": 0.2405,
|
80 |
+
"mean_token_accuracy": 0.9332937943935394,
|
81 |
+
"num_tokens": 1073182.0,
|
82 |
+
"step": 200
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.5431502715751357,
|
86 |
+
"grad_norm": 0.4105781614780426,
|
87 |
+
"learning_rate": 0.00029827800284977474,
|
88 |
+
"loss": 0.1788,
|
89 |
+
"mean_token_accuracy": 0.9502924716472626,
|
90 |
+
"num_tokens": 1223675.0,
|
91 |
+
"step": 225
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.6035003017501509,
|
95 |
+
"grad_norm": 0.6441053152084351,
|
96 |
+
"learning_rate": 0.00029758858479477575,
|
97 |
+
"loss": 0.1834,
|
98 |
+
"mean_token_accuracy": 0.9509575897455216,
|
99 |
+
"num_tokens": 1340505.0,
|
100 |
+
"step": 250
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.663850331925166,
|
104 |
+
"grad_norm": 0.6117656230926514,
|
105 |
+
"learning_rate": 0.0002967844489675963,
|
106 |
+
"loss": 0.164,
|
107 |
+
"mean_token_accuracy": 0.9560773247480392,
|
108 |
+
"num_tokens": 1494591.0,
|
109 |
+
"step": 275
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.724200362100181,
|
113 |
+
"grad_norm": 0.6707085967063904,
|
114 |
+
"learning_rate": 0.00029586622040756957,
|
115 |
+
"loss": 0.1596,
|
116 |
+
"mean_token_accuracy": 0.9571379733085632,
|
117 |
+
"num_tokens": 1611141.0,
|
118 |
+
"step": 300
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 0.7845503922751962,
|
122 |
+
"grad_norm": 0.3164249658584595,
|
123 |
+
"learning_rate": 0.0002948346128361186,
|
124 |
+
"loss": 0.1361,
|
125 |
+
"mean_token_accuracy": 0.9637150484323501,
|
126 |
+
"num_tokens": 1764271.0,
|
127 |
+
"step": 325
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 0.8449004224502112,
|
131 |
+
"grad_norm": 0.7695516347885132,
|
132 |
+
"learning_rate": 0.00029369042810199416,
|
133 |
+
"loss": 0.1453,
|
134 |
+
"mean_token_accuracy": 0.9618589824438095,
|
135 |
+
"num_tokens": 1880091.0,
|
136 |
+
"step": 350
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.9052504526252263,
|
140 |
+
"grad_norm": 0.4800753593444824,
|
141 |
+
"learning_rate": 0.0002924345555580135,
|
142 |
+
"loss": 0.1227,
|
143 |
+
"mean_token_accuracy": 0.9672258603572845,
|
144 |
+
"num_tokens": 2031547.0,
|
145 |
+
"step": 375
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.9656004828002414,
|
149 |
+
"grad_norm": 0.5669476985931396,
|
150 |
+
"learning_rate": 0.000291067971369783,
|
151 |
+
"loss": 0.1207,
|
152 |
+
"mean_token_accuracy": 0.96809639275074,
|
153 |
+
"num_tokens": 2147237.0,
|
154 |
+
"step": 400
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 1.0,
|
158 |
+
"eval_loss": 0.12038072198629379,
|
159 |
+
"eval_mean_token_accuracy": 0.9679264332797076,
|
160 |
+
"eval_num_tokens": 2223513.0,
|
161 |
+
"eval_runtime": 60.431,
|
162 |
+
"eval_samples_per_second": 6.106,
|
163 |
+
"eval_steps_per_second": 3.061,
|
164 |
+
"step": 415
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 1.024140012070006,
|
168 |
+
"grad_norm": 0.31214025616645813,
|
169 |
+
"learning_rate": 0.0002895917377569438,
|
170 |
+
"loss": 0.127,
|
171 |
+
"mean_token_accuracy": 0.966964461139797,
|
172 |
+
"num_tokens": 2291189.0,
|
173 |
+
"step": 425
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 1.0844900422450212,
|
177 |
+
"grad_norm": 0.4406073987483978,
|
178 |
+
"learning_rate": 0.00028800700216752875,
|
179 |
+
"loss": 0.0904,
|
180 |
+
"mean_token_accuracy": 0.9758492666482925,
|
181 |
+
"num_tokens": 2426566.0,
|
182 |
+
"step": 450
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 1.1448400724200363,
|
186 |
+
"grad_norm": 0.4013468325138092,
|
187 |
+
"learning_rate": 0.00028631499638607285,
|
188 |
+
"loss": 0.114,
|
189 |
+
"mean_token_accuracy": 0.9697561454772949,
|
190 |
+
"num_tokens": 2560245.0,
|
191 |
+
"step": 475
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 1.2051901025950513,
|
195 |
+
"grad_norm": 0.3366129994392395,
|
196 |
+
"learning_rate": 0.0002845170355761712,
|
197 |
+
"loss": 0.0827,
|
198 |
+
"mean_token_accuracy": 0.9783335107564927,
|
199 |
+
"num_tokens": 2695786.0,
|
200 |
+
"step": 500
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 1.2655401327700664,
|
204 |
+
"grad_norm": 0.33777478337287903,
|
205 |
+
"learning_rate": 0.0002826145172582274,
|
206 |
+
"loss": 0.1049,
|
207 |
+
"mean_token_accuracy": 0.9726521408557892,
|
208 |
+
"num_tokens": 2827828.0,
|
209 |
+
"step": 525
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 1.3258901629450814,
|
213 |
+
"grad_norm": 0.34536224603652954,
|
214 |
+
"learning_rate": 0.00028060892022318764,
|
215 |
+
"loss": 0.0827,
|
216 |
+
"mean_token_accuracy": 0.9780162799358368,
|
217 |
+
"num_tokens": 2959671.0,
|
218 |
+
"step": 550
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 1.3862401931200965,
|
222 |
+
"grad_norm": 0.34014376997947693,
|
223 |
+
"learning_rate": 0.0002785018033831051,
|
224 |
+
"loss": 0.1,
|
225 |
+
"mean_token_accuracy": 0.9745338922739029,
|
226 |
+
"num_tokens": 3092256.0,
|
227 |
+
"step": 575
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 1.4465902232951118,
|
231 |
+
"grad_norm": 0.26126986742019653,
|
232 |
+
"learning_rate": 0.0002762948045594276,
|
233 |
+
"loss": 0.0784,
|
234 |
+
"mean_token_accuracy": 0.98013427734375,
|
235 |
+
"num_tokens": 3225551.0,
|
236 |
+
"step": 600
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 1.5069402534701268,
|
240 |
+
"grad_norm": 0.25581225752830505,
|
241 |
+
"learning_rate": 0.0002739896392099502,
|
242 |
+
"loss": 0.0992,
|
243 |
+
"mean_token_accuracy": 0.9744413161277771,
|
244 |
+
"num_tokens": 3358590.0,
|
245 |
+
"step": 625
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 1.567290283645142,
|
249 |
+
"grad_norm": 0.38688021898269653,
|
250 |
+
"learning_rate": 0.00027158809909542307,
|
251 |
+
"loss": 0.0746,
|
252 |
+
"mean_token_accuracy": 0.9804132694005966,
|
253 |
+
"num_tokens": 3494044.0,
|
254 |
+
"step": 650
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 1.627640313820157,
|
258 |
+
"grad_norm": 0.2373267114162445,
|
259 |
+
"learning_rate": 0.00026909205088685,
|
260 |
+
"loss": 0.0976,
|
261 |
+
"mean_token_accuracy": 0.9745747190713883,
|
262 |
+
"num_tokens": 3627751.0,
|
263 |
+
"step": 675
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 1.687990343995172,
|
267 |
+
"grad_norm": 0.37386244535446167,
|
268 |
+
"learning_rate": 0.0002665034347145612,
|
269 |
+
"loss": 0.0751,
|
270 |
+
"mean_token_accuracy": 0.9802791184186935,
|
271 |
+
"num_tokens": 3762776.0,
|
272 |
+
"step": 700
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 1.748340374170187,
|
276 |
+
"grad_norm": 0.276994526386261,
|
277 |
+
"learning_rate": 0.000263824262660187,
|
278 |
+
"loss": 0.097,
|
279 |
+
"mean_token_accuracy": 0.9747868567705155,
|
280 |
+
"num_tokens": 3896978.0,
|
281 |
+
"step": 725
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 1.8086904043452021,
|
285 |
+
"grad_norm": 0.4135245978832245,
|
286 |
+
"learning_rate": 0.0002610566171927056,
|
287 |
+
"loss": 0.0706,
|
288 |
+
"mean_token_accuracy": 0.9817547309398651,
|
289 |
+
"num_tokens": 4034768.0,
|
290 |
+
"step": 750
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 1.8690404345202172,
|
294 |
+
"grad_norm": 0.15843796730041504,
|
295 |
+
"learning_rate": 0.00025820264954977976,
|
296 |
+
"loss": 0.0889,
|
297 |
+
"mean_token_accuracy": 0.9776063919067383,
|
298 |
+
"num_tokens": 4169906.0,
|
299 |
+
"step": 775
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 1.9293904646952322,
|
303 |
+
"grad_norm": 0.30585798621177673,
|
304 |
+
"learning_rate": 0.00025526457806564136,
|
305 |
+
"loss": 0.0668,
|
306 |
+
"mean_token_accuracy": 0.9821723079681397,
|
307 |
+
"num_tokens": 4305541.0,
|
308 |
+
"step": 800
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 1.9897404948702473,
|
312 |
+
"grad_norm": 0.23672625422477722,
|
313 |
+
"learning_rate": 0.00025224468644682245,
|
314 |
+
"loss": 0.0777,
|
315 |
+
"mean_token_accuracy": 0.9801788556575776,
|
316 |
+
"num_tokens": 4429095.0,
|
317 |
+
"step": 825
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 2.0,
|
321 |
+
"eval_loss": 0.08333630114793777,
|
322 |
+
"eval_mean_token_accuracy": 0.9790130283381487,
|
323 |
+
"eval_num_tokens": 4447026.0,
|
324 |
+
"eval_runtime": 60.4769,
|
325 |
+
"eval_samples_per_second": 6.101,
|
326 |
+
"eval_steps_per_second": 3.059,
|
327 |
+
"step": 830
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 2.048280024140012,
|
331 |
+
"grad_norm": 0.2790965139865875,
|
332 |
+
"learning_rate": 0.00024914532199707444,
|
333 |
+
"loss": 0.0737,
|
334 |
+
"mean_token_accuracy": 0.9818082832798516,
|
335 |
+
"num_tokens": 4573150.0,
|
336 |
+
"step": 850
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 2.1086300543150274,
|
340 |
+
"grad_norm": 0.38501349091529846,
|
341 |
+
"learning_rate": 0.00024596889379285353,
|
342 |
+
"loss": 0.0609,
|
343 |
+
"mean_token_accuracy": 0.9846205246448517,
|
344 |
+
"num_tokens": 4696253.0,
|
345 |
+
"step": 875
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 2.1689800844900424,
|
349 |
+
"grad_norm": 0.3383895754814148,
|
350 |
+
"learning_rate": 0.00024271787081079228,
|
351 |
+
"loss": 0.0731,
|
352 |
+
"mean_token_accuracy": 0.9802233374118805,
|
353 |
+
"num_tokens": 4842241.0,
|
354 |
+
"step": 900
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 2.2293301146650575,
|
358 |
+
"grad_norm": 0.21086572110652924,
|
359 |
+
"learning_rate": 0.00023939478000861117,
|
360 |
+
"loss": 0.0596,
|
361 |
+
"mean_token_accuracy": 0.9851127731800079,
|
362 |
+
"num_tokens": 4965545.0,
|
363 |
+
"step": 925
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 2.2896801448400725,
|
367 |
+
"grad_norm": 0.20826084911823273,
|
368 |
+
"learning_rate": 0.00023600220436096318,
|
369 |
+
"loss": 0.0759,
|
370 |
+
"mean_token_accuracy": 0.9797697293758393,
|
371 |
+
"num_tokens": 5111070.0,
|
372 |
+
"step": 950
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 2.3500301750150876,
|
376 |
+
"grad_norm": 0.2537970244884491,
|
377 |
+
"learning_rate": 0.00023254278085173684,
|
378 |
+
"loss": 0.059,
|
379 |
+
"mean_token_accuracy": 0.9851009005308151,
|
380 |
+
"num_tokens": 5235251.0,
|
381 |
+
"step": 975
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 2.4103802051901027,
|
385 |
+
"grad_norm": 0.2794428765773773,
|
386 |
+
"learning_rate": 0.00022901919842437972,
|
387 |
+
"loss": 0.0671,
|
388 |
+
"mean_token_accuracy": 0.9823657035827636,
|
389 |
+
"num_tokens": 5379177.0,
|
390 |
+
"step": 1000
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 2.4707302353651177,
|
394 |
+
"grad_norm": 0.23955030739307404,
|
395 |
+
"learning_rate": 0.00022543419589183397,
|
396 |
+
"loss": 0.06,
|
397 |
+
"mean_token_accuracy": 0.9847251123189926,
|
398 |
+
"num_tokens": 5501778.0,
|
399 |
+
"step": 1025
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 2.5310802655401328,
|
403 |
+
"grad_norm": 0.24202412366867065,
|
404 |
+
"learning_rate": 0.00022179055980770993,
|
405 |
+
"loss": 0.0702,
|
406 |
+
"mean_token_accuracy": 0.9814589565992355,
|
407 |
+
"num_tokens": 5646414.0,
|
408 |
+
"step": 1050
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 2.591430295715148,
|
412 |
+
"grad_norm": 0.18459561467170715,
|
413 |
+
"learning_rate": 0.0002180911223003513,
|
414 |
+
"loss": 0.062,
|
415 |
+
"mean_token_accuracy": 0.9842818379402161,
|
416 |
+
"num_tokens": 5771178.0,
|
417 |
+
"step": 1075
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 2.651780325890163,
|
421 |
+
"grad_norm": 0.21107763051986694,
|
422 |
+
"learning_rate": 0.00021433875887147627,
|
423 |
+
"loss": 0.0656,
|
424 |
+
"mean_token_accuracy": 0.982610120177269,
|
425 |
+
"num_tokens": 5916367.0,
|
426 |
+
"step": 1100
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 2.712130356065178,
|
430 |
+
"grad_norm": 0.12310996651649475,
|
431 |
+
"learning_rate": 0.00021053638616110525,
|
432 |
+
"loss": 0.056,
|
433 |
+
"mean_token_accuracy": 0.9858221507072449,
|
434 |
+
"num_tokens": 6039601.0,
|
435 |
+
"step": 1125
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 2.772480386240193,
|
439 |
+
"grad_norm": 0.0949612483382225,
|
440 |
+
"learning_rate": 0.00020668695968051274,
|
441 |
+
"loss": 0.062,
|
442 |
+
"mean_token_accuracy": 0.9835014945268631,
|
443 |
+
"num_tokens": 6183454.0,
|
444 |
+
"step": 1150
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 2.832830416415208,
|
448 |
+
"grad_norm": 0.23207980394363403,
|
449 |
+
"learning_rate": 0.00020279347151496482,
|
450 |
+
"loss": 0.0546,
|
451 |
+
"mean_token_accuracy": 0.9864810138940812,
|
452 |
+
"num_tokens": 6305513.0,
|
453 |
+
"step": 1175
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 2.8931804465902236,
|
457 |
+
"grad_norm": 0.14339599013328552,
|
458 |
+
"learning_rate": 0.00019885894799802922,
|
459 |
+
"loss": 0.0665,
|
460 |
+
"mean_token_accuracy": 0.982457509636879,
|
461 |
+
"num_tokens": 6450956.0,
|
462 |
+
"step": 1200
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 2.9535304767652386,
|
466 |
+
"grad_norm": 0.10236950218677521,
|
467 |
+
"learning_rate": 0.00019488644735926396,
|
468 |
+
"loss": 0.0538,
|
469 |
+
"mean_token_accuracy": 0.9864566326141357,
|
470 |
+
"num_tokens": 6574055.0,
|
471 |
+
"step": 1225
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 3.0,
|
475 |
+
"eval_loss": 0.0698639452457428,
|
476 |
+
"eval_mean_token_accuracy": 0.9828434982815304,
|
477 |
+
"eval_num_tokens": 6670539.0,
|
478 |
+
"eval_runtime": 60.4557,
|
479 |
+
"eval_samples_per_second": 6.104,
|
480 |
+
"eval_steps_per_second": 3.06,
|
481 |
+
"step": 1245
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 3.012070006035003,
|
485 |
+
"grad_norm": 0.19694368541240692,
|
486 |
+
"learning_rate": 0.00019087905734711452,
|
487 |
+
"loss": 0.0664,
|
488 |
+
"mean_token_accuracy": 0.98261449324716,
|
489 |
+
"num_tokens": 6707839.0,
|
490 |
+
"step": 1250
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 3.0724200362100182,
|
494 |
+
"grad_norm": 0.11810697615146637,
|
495 |
+
"learning_rate": 0.00018683989282886613,
|
496 |
+
"loss": 0.0468,
|
497 |
+
"mean_token_accuracy": 0.988110933303833,
|
498 |
+
"num_tokens": 6850375.0,
|
499 |
+
"step": 1275
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 3.1327700663850333,
|
503 |
+
"grad_norm": 0.18672189116477966,
|
504 |
+
"learning_rate": 0.0001827720933695173,
|
505 |
+
"loss": 0.054,
|
506 |
+
"mean_token_accuracy": 0.9859074687957764,
|
507 |
+
"num_tokens": 6976640.0,
|
508 |
+
"step": 1300
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 3.1931200965600484,
|
512 |
+
"grad_norm": 0.0706477090716362,
|
513 |
+
"learning_rate": 0.00017867882079145627,
|
514 |
+
"loss": 0.0458,
|
515 |
+
"mean_token_accuracy": 0.9881710064411163,
|
516 |
+
"num_tokens": 7116531.0,
|
517 |
+
"step": 1325
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 3.2534701267350634,
|
521 |
+
"grad_norm": 0.19763106107711792,
|
522 |
+
"learning_rate": 0.00017456325671683724,
|
523 |
+
"loss": 0.0542,
|
524 |
+
"mean_token_accuracy": 0.9864082312583924,
|
525 |
+
"num_tokens": 7244136.0,
|
526 |
+
"step": 1350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 3.3138201569100785,
|
530 |
+
"grad_norm": 0.14251746237277985,
|
531 |
+
"learning_rate": 0.00017042860009456638,
|
532 |
+
"loss": 0.046,
|
533 |
+
"mean_token_accuracy": 0.9879621362686157,
|
534 |
+
"num_tokens": 7386096.0,
|
535 |
+
"step": 1375
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 3.3741701870850935,
|
539 |
+
"grad_norm": 0.1693497598171234,
|
540 |
+
"learning_rate": 0.00016627806471382066,
|
541 |
+
"loss": 0.0529,
|
542 |
+
"mean_token_accuracy": 0.9869521266222,
|
543 |
+
"num_tokens": 7513742.0,
|
544 |
+
"step": 1400
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 3.4345202172601086,
|
548 |
+
"grad_norm": 0.08023709058761597,
|
549 |
+
"learning_rate": 0.00016211487670603078,
|
550 |
+
"loss": 0.0459,
|
551 |
+
"mean_token_accuracy": 0.9879424357414246,
|
552 |
+
"num_tokens": 7655678.0,
|
553 |
+
"step": 1425
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 3.4948702474351236,
|
557 |
+
"grad_norm": 0.19639359414577484,
|
558 |
+
"learning_rate": 0.0001579422720372715,
|
559 |
+
"loss": 0.0567,
|
560 |
+
"mean_token_accuracy": 0.9857883536815644,
|
561 |
+
"num_tokens": 7780221.0,
|
562 |
+
"step": 1450
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 3.5552202776101387,
|
566 |
+
"grad_norm": 0.07502614706754684,
|
567 |
+
"learning_rate": 0.00015376349399300745,
|
568 |
+
"loss": 0.0452,
|
569 |
+
"mean_token_accuracy": 0.9880510932207107,
|
570 |
+
"num_tokens": 7919857.0,
|
571 |
+
"step": 1475
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 3.6155703077851538,
|
575 |
+
"grad_norm": 0.15008965134620667,
|
576 |
+
"learning_rate": 0.0001495817906571492,
|
577 |
+
"loss": 0.055,
|
578 |
+
"mean_token_accuracy": 0.9859279471635819,
|
579 |
+
"num_tokens": 8045749.0,
|
580 |
+
"step": 1500
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 3.675920337960169,
|
584 |
+
"grad_norm": 0.08942336589097977,
|
585 |
+
"learning_rate": 0.00014540041238738055,
|
586 |
+
"loss": 0.0456,
|
587 |
+
"mean_token_accuracy": 0.9880678504705429,
|
588 |
+
"num_tokens": 8186860.0,
|
589 |
+
"step": 1525
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 3.736270368135184,
|
593 |
+
"grad_norm": 0.15885671973228455,
|
594 |
+
"learning_rate": 0.00014122260928871734,
|
595 |
+
"loss": 0.0546,
|
596 |
+
"mean_token_accuracy": 0.9859816372394562,
|
597 |
+
"num_tokens": 8314411.0,
|
598 |
+
"step": 1550
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 3.796620398310199,
|
602 |
+
"grad_norm": 0.08140072971582413,
|
603 |
+
"learning_rate": 0.00013705162868726396,
|
604 |
+
"loss": 0.0448,
|
605 |
+
"mean_token_accuracy": 0.9879288977384567,
|
606 |
+
"num_tokens": 8459434.0,
|
607 |
+
"step": 1575
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 3.856970428485214,
|
611 |
+
"grad_norm": 0.14952507615089417,
|
612 |
+
"learning_rate": 0.00013289071260612855,
|
613 |
+
"loss": 0.0509,
|
614 |
+
"mean_token_accuracy": 0.9866566967964172,
|
615 |
+
"num_tokens": 8588677.0,
|
616 |
+
"step": 1600
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 3.9173204586602295,
|
620 |
+
"grad_norm": 0.08463295549154282,
|
621 |
+
"learning_rate": 0.00012874309524546083,
|
622 |
+
"loss": 0.0434,
|
623 |
+
"mean_token_accuracy": 0.9884845250844956,
|
624 |
+
"num_tokens": 8728697.0,
|
625 |
+
"step": 1625
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 3.9776704888352445,
|
629 |
+
"grad_norm": 0.14282330870628357,
|
630 |
+
"learning_rate": 0.00012461200046857084,
|
631 |
+
"loss": 0.0489,
|
632 |
+
"mean_token_accuracy": 0.9877329683303833,
|
633 |
+
"num_tokens": 8849522.0,
|
634 |
+
"step": 1650
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 4.0,
|
638 |
+
"eval_loss": 0.06439081579446793,
|
639 |
+
"eval_mean_token_accuracy": 0.9848004015716346,
|
640 |
+
"eval_num_tokens": 8894052.0,
|
641 |
+
"eval_runtime": 60.4081,
|
642 |
+
"eval_samples_per_second": 6.108,
|
643 |
+
"eval_steps_per_second": 3.063,
|
644 |
+
"step": 1660
|
645 |
+
}
|
646 |
+
],
|
647 |
+
"logging_steps": 25,
|
648 |
+
"max_steps": 2905,
|
649 |
+
"num_input_tokens_seen": 0,
|
650 |
+
"num_train_epochs": 7,
|
651 |
+
"save_steps": 500,
|
652 |
+
"stateful_callbacks": {
|
653 |
+
"TrainerControl": {
|
654 |
+
"args": {
|
655 |
+
"should_epoch_stop": false,
|
656 |
+
"should_evaluate": false,
|
657 |
+
"should_log": false,
|
658 |
+
"should_save": true,
|
659 |
+
"should_training_stop": false
|
660 |
+
},
|
661 |
+
"attributes": {}
|
662 |
+
}
|
663 |
+
},
|
664 |
+
"total_flos": 3.846569346121482e+17,
|
665 |
+
"train_batch_size": 2,
|
666 |
+
"trial_name": null,
|
667 |
+
"trial_params": null
|
668 |
+
}
|
checkpoint-1660/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:837f73e1808d10388c3e9d0067719323e5731b8387ed3c99bcbeb463cf7ac167
|
3 |
+
size 6033
|
checkpoint-2075/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.3
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.2
|
checkpoint-2075/adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 16,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.1,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 32,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"gate_proj",
|
28 |
+
"k_proj",
|
29 |
+
"down_proj",
|
30 |
+
"o_proj",
|
31 |
+
"v_proj",
|
32 |
+
"up_proj",
|
33 |
+
"q_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": false
|
39 |
+
}
|
checkpoint-2075/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f87878abe8fc25118a61dae8fae29bb09797be18f9af4649f241b3ea3c450bed
|
3 |
+
size 335604696
|
checkpoint-2075/chat_template.jinja
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if messages[0]["role"] == "system" %}
|
2 |
+
{%- set system_message = messages[0]["content"] %}
|
3 |
+
{%- set loop_messages = messages[1:] %}
|
4 |
+
{%- else %}
|
5 |
+
{%- set loop_messages = messages %}
|
6 |
+
{%- endif %}
|
7 |
+
{%- if not tools is defined %}
|
8 |
+
{%- set tools = none %}
|
9 |
+
{%- endif %}
|
10 |
+
{%- set user_messages = loop_messages | selectattr("role", "equalto", "user") | list %}
|
11 |
+
|
12 |
+
{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}
|
13 |
+
{%- set ns = namespace() %}
|
14 |
+
{%- set ns.index = 0 %}
|
15 |
+
{%- for message in loop_messages %}
|
16 |
+
{%- if not (message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
|
17 |
+
{%- if (message["role"] == "user") != (ns.index % 2 == 0) %}
|
18 |
+
{{- raise_exception("After the optional system message, conversation roles must alternate user/assistant/user/assistant/...") }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- set ns.index = ns.index + 1 %}
|
21 |
+
{%- endif %}
|
22 |
+
{%- endfor %}
|
23 |
+
|
24 |
+
{{- bos_token }}
|
25 |
+
{%- for message in loop_messages %}
|
26 |
+
{%- if message["role"] == "user" %}
|
27 |
+
{%- if tools is not none and (message == user_messages[-1]) %}
|
28 |
+
{{- "[AVAILABLE_TOOLS] [" }}
|
29 |
+
{%- for tool in tools %}
|
30 |
+
{%- set tool = tool.function %}
|
31 |
+
{{- '{"type": "function", "function": {' }}
|
32 |
+
{%- for key, val in tool.items() if key != "return" %}
|
33 |
+
{%- if val is string %}
|
34 |
+
{{- '"' + key + '": "' + val + '"' }}
|
35 |
+
{%- else %}
|
36 |
+
{{- '"' + key + '": ' + val|tojson }}
|
37 |
+
{%- endif %}
|
38 |
+
{%- if not loop.last %}
|
39 |
+
{{- ", " }}
|
40 |
+
{%- endif %}
|
41 |
+
{%- endfor %}
|
42 |
+
{{- "}}" }}
|
43 |
+
{%- if not loop.last %}
|
44 |
+
{{- ", " }}
|
45 |
+
{%- else %}
|
46 |
+
{{- "]" }}
|
47 |
+
{%- endif %}
|
48 |
+
{%- endfor %}
|
49 |
+
{{- "[/AVAILABLE_TOOLS]" }}
|
50 |
+
{%- endif %}
|
51 |
+
{%- if loop.last and system_message is defined %}
|
52 |
+
{{- "[INST] " + system_message + "\n\n" + message["content"] + "[/INST]" }}
|
53 |
+
{%- else %}
|
54 |
+
{{- "[INST] " + message["content"] + "[/INST]" }}
|
55 |
+
{%- endif %}
|
56 |
+
{%- elif message.tool_calls is defined and message.tool_calls is not none %}
|
57 |
+
{{- "[TOOL_CALLS] [" }}
|
58 |
+
{%- for tool_call in message.tool_calls %}
|
59 |
+
{%- set out = tool_call.function|tojson %}
|
60 |
+
{{- out[:-1] }}
|
61 |
+
{%- if not tool_call.id is defined or tool_call.id|length != 9 %}
|
62 |
+
{{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
|
63 |
+
{%- endif %}
|
64 |
+
{{- ', "id": "' + tool_call.id + '"}' }}
|
65 |
+
{%- if not loop.last %}
|
66 |
+
{{- ", " }}
|
67 |
+
{%- else %}
|
68 |
+
{{- "]" + eos_token }}
|
69 |
+
{%- endif %}
|
70 |
+
{%- endfor %}
|
71 |
+
{%- elif message["role"] == "assistant" %}
|
72 |
+
{{- " " + message["content"]|trim + eos_token}}
|
73 |
+
{%- elif message["role"] == "tool_results" or message["role"] == "tool" %}
|
74 |
+
{%- if message.content is defined and message.content.content is defined %}
|
75 |
+
{%- set content = message.content.content %}
|
76 |
+
{%- else %}
|
77 |
+
{%- set content = message.content %}
|
78 |
+
{%- endif %}
|
79 |
+
{{- '[TOOL_RESULTS] {"content": ' + content|string + ", " }}
|
80 |
+
{%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}
|
81 |
+
{{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
|
82 |
+
{%- endif %}
|
83 |
+
{{- '"call_id": "' + message.tool_call_id + '"}[/TOOL_RESULTS]' }}
|
84 |
+
{%- else %}
|
85 |
+
{{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}
|
86 |
+
{%- endif %}
|
87 |
+
{%- endfor %}
|
checkpoint-2075/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad8b1950f0a03fccf96aaa7714d530286a40b928653ee3a0a027fc757dc73c45
|
3 |
+
size 671365003
|
checkpoint-2075/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d71e41eac1a5e8e2ae08863b02b737b57e8a9608788d7b8ce5e609159c7384fb
|
3 |
+
size 14645
|
checkpoint-2075/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdeac6d1a7910e1e533a39a2d59ab67f6fb22254f41224ded16d311412dbc0b1
|
3 |
+
size 1465
|
checkpoint-2075/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-2075/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2075/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
|
3 |
+
size 587404
|
checkpoint-2075/tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2075/trainer_state.json
ADDED
@@ -0,0 +1,831 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 5.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 2075,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.060350030175015085,
|
14 |
+
"grad_norm": 0.915810763835907,
|
15 |
+
"learning_rate": 8.18181818181818e-05,
|
16 |
+
"loss": 1.5579,
|
17 |
+
"mean_token_accuracy": 0.6726609909534454,
|
18 |
+
"num_tokens": 156451.0,
|
19 |
+
"step": 25
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"epoch": 0.12070006035003017,
|
23 |
+
"grad_norm": 0.8468347191810608,
|
24 |
+
"learning_rate": 0.00016704545454545452,
|
25 |
+
"loss": 0.8806,
|
26 |
+
"mean_token_accuracy": 0.7797876751422882,
|
27 |
+
"num_tokens": 273996.0,
|
28 |
+
"step": 50
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 0.18105009052504525,
|
32 |
+
"grad_norm": 0.6957323551177979,
|
33 |
+
"learning_rate": 0.0002522727272727273,
|
34 |
+
"loss": 0.5904,
|
35 |
+
"mean_token_accuracy": 0.8393249285221099,
|
36 |
+
"num_tokens": 425859.0,
|
37 |
+
"step": 75
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.24140012070006034,
|
41 |
+
"grad_norm": 0.7738164663314819,
|
42 |
+
"learning_rate": 0.0002999887132933212,
|
43 |
+
"loss": 0.4572,
|
44 |
+
"mean_token_accuracy": 0.8712374359369278,
|
45 |
+
"num_tokens": 542080.0,
|
46 |
+
"step": 100
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.30175015087507545,
|
50 |
+
"grad_norm": 0.6000323295593262,
|
51 |
+
"learning_rate": 0.0002998791256978121,
|
52 |
+
"loss": 0.3441,
|
53 |
+
"mean_token_accuracy": 0.9016327333450317,
|
54 |
+
"num_tokens": 690749.0,
|
55 |
+
"step": 125
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.3621001810500905,
|
59 |
+
"grad_norm": 0.8241934776306152,
|
60 |
+
"learning_rate": 0.0002996530399366737,
|
61 |
+
"loss": 0.3391,
|
62 |
+
"mean_token_accuracy": 0.9067233097553253,
|
63 |
+
"num_tokens": 804498.0,
|
64 |
+
"step": 150
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 0.4224502112251056,
|
68 |
+
"grad_norm": 0.6018714308738708,
|
69 |
+
"learning_rate": 0.00029931063174202567,
|
70 |
+
"loss": 0.2403,
|
71 |
+
"mean_token_accuracy": 0.9311208426952362,
|
72 |
+
"num_tokens": 956805.0,
|
73 |
+
"step": 175
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.4828002414001207,
|
77 |
+
"grad_norm": 0.6791284680366516,
|
78 |
+
"learning_rate": 0.00029885216726118104,
|
79 |
+
"loss": 0.2405,
|
80 |
+
"mean_token_accuracy": 0.9332937943935394,
|
81 |
+
"num_tokens": 1073182.0,
|
82 |
+
"step": 200
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.5431502715751357,
|
86 |
+
"grad_norm": 0.4105781614780426,
|
87 |
+
"learning_rate": 0.00029827800284977474,
|
88 |
+
"loss": 0.1788,
|
89 |
+
"mean_token_accuracy": 0.9502924716472626,
|
90 |
+
"num_tokens": 1223675.0,
|
91 |
+
"step": 225
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.6035003017501509,
|
95 |
+
"grad_norm": 0.6441053152084351,
|
96 |
+
"learning_rate": 0.00029758858479477575,
|
97 |
+
"loss": 0.1834,
|
98 |
+
"mean_token_accuracy": 0.9509575897455216,
|
99 |
+
"num_tokens": 1340505.0,
|
100 |
+
"step": 250
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.663850331925166,
|
104 |
+
"grad_norm": 0.6117656230926514,
|
105 |
+
"learning_rate": 0.0002967844489675963,
|
106 |
+
"loss": 0.164,
|
107 |
+
"mean_token_accuracy": 0.9560773247480392,
|
108 |
+
"num_tokens": 1494591.0,
|
109 |
+
"step": 275
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.724200362100181,
|
113 |
+
"grad_norm": 0.6707085967063904,
|
114 |
+
"learning_rate": 0.00029586622040756957,
|
115 |
+
"loss": 0.1596,
|
116 |
+
"mean_token_accuracy": 0.9571379733085632,
|
117 |
+
"num_tokens": 1611141.0,
|
118 |
+
"step": 300
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 0.7845503922751962,
|
122 |
+
"grad_norm": 0.3164249658584595,
|
123 |
+
"learning_rate": 0.0002948346128361186,
|
124 |
+
"loss": 0.1361,
|
125 |
+
"mean_token_accuracy": 0.9637150484323501,
|
126 |
+
"num_tokens": 1764271.0,
|
127 |
+
"step": 325
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 0.8449004224502112,
|
131 |
+
"grad_norm": 0.7695516347885132,
|
132 |
+
"learning_rate": 0.00029369042810199416,
|
133 |
+
"loss": 0.1453,
|
134 |
+
"mean_token_accuracy": 0.9618589824438095,
|
135 |
+
"num_tokens": 1880091.0,
|
136 |
+
"step": 350
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.9052504526252263,
|
140 |
+
"grad_norm": 0.4800753593444824,
|
141 |
+
"learning_rate": 0.0002924345555580135,
|
142 |
+
"loss": 0.1227,
|
143 |
+
"mean_token_accuracy": 0.9672258603572845,
|
144 |
+
"num_tokens": 2031547.0,
|
145 |
+
"step": 375
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.9656004828002414,
|
149 |
+
"grad_norm": 0.5669476985931396,
|
150 |
+
"learning_rate": 0.000291067971369783,
|
151 |
+
"loss": 0.1207,
|
152 |
+
"mean_token_accuracy": 0.96809639275074,
|
153 |
+
"num_tokens": 2147237.0,
|
154 |
+
"step": 400
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 1.0,
|
158 |
+
"eval_loss": 0.12038072198629379,
|
159 |
+
"eval_mean_token_accuracy": 0.9679264332797076,
|
160 |
+
"eval_num_tokens": 2223513.0,
|
161 |
+
"eval_runtime": 60.431,
|
162 |
+
"eval_samples_per_second": 6.106,
|
163 |
+
"eval_steps_per_second": 3.061,
|
164 |
+
"step": 415
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 1.024140012070006,
|
168 |
+
"grad_norm": 0.31214025616645813,
|
169 |
+
"learning_rate": 0.0002895917377569438,
|
170 |
+
"loss": 0.127,
|
171 |
+
"mean_token_accuracy": 0.966964461139797,
|
172 |
+
"num_tokens": 2291189.0,
|
173 |
+
"step": 425
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 1.0844900422450212,
|
177 |
+
"grad_norm": 0.4406073987483978,
|
178 |
+
"learning_rate": 0.00028800700216752875,
|
179 |
+
"loss": 0.0904,
|
180 |
+
"mean_token_accuracy": 0.9758492666482925,
|
181 |
+
"num_tokens": 2426566.0,
|
182 |
+
"step": 450
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 1.1448400724200363,
|
186 |
+
"grad_norm": 0.4013468325138092,
|
187 |
+
"learning_rate": 0.00028631499638607285,
|
188 |
+
"loss": 0.114,
|
189 |
+
"mean_token_accuracy": 0.9697561454772949,
|
190 |
+
"num_tokens": 2560245.0,
|
191 |
+
"step": 475
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 1.2051901025950513,
|
195 |
+
"grad_norm": 0.3366129994392395,
|
196 |
+
"learning_rate": 0.0002845170355761712,
|
197 |
+
"loss": 0.0827,
|
198 |
+
"mean_token_accuracy": 0.9783335107564927,
|
199 |
+
"num_tokens": 2695786.0,
|
200 |
+
"step": 500
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 1.2655401327700664,
|
204 |
+
"grad_norm": 0.33777478337287903,
|
205 |
+
"learning_rate": 0.0002826145172582274,
|
206 |
+
"loss": 0.1049,
|
207 |
+
"mean_token_accuracy": 0.9726521408557892,
|
208 |
+
"num_tokens": 2827828.0,
|
209 |
+
"step": 525
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 1.3258901629450814,
|
213 |
+
"grad_norm": 0.34536224603652954,
|
214 |
+
"learning_rate": 0.00028060892022318764,
|
215 |
+
"loss": 0.0827,
|
216 |
+
"mean_token_accuracy": 0.9780162799358368,
|
217 |
+
"num_tokens": 2959671.0,
|
218 |
+
"step": 550
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 1.3862401931200965,
|
222 |
+
"grad_norm": 0.34014376997947693,
|
223 |
+
"learning_rate": 0.0002785018033831051,
|
224 |
+
"loss": 0.1,
|
225 |
+
"mean_token_accuracy": 0.9745338922739029,
|
226 |
+
"num_tokens": 3092256.0,
|
227 |
+
"step": 575
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 1.4465902232951118,
|
231 |
+
"grad_norm": 0.26126986742019653,
|
232 |
+
"learning_rate": 0.0002762948045594276,
|
233 |
+
"loss": 0.0784,
|
234 |
+
"mean_token_accuracy": 0.98013427734375,
|
235 |
+
"num_tokens": 3225551.0,
|
236 |
+
"step": 600
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 1.5069402534701268,
|
240 |
+
"grad_norm": 0.25581225752830505,
|
241 |
+
"learning_rate": 0.0002739896392099502,
|
242 |
+
"loss": 0.0992,
|
243 |
+
"mean_token_accuracy": 0.9744413161277771,
|
244 |
+
"num_tokens": 3358590.0,
|
245 |
+
"step": 625
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 1.567290283645142,
|
249 |
+
"grad_norm": 0.38688021898269653,
|
250 |
+
"learning_rate": 0.00027158809909542307,
|
251 |
+
"loss": 0.0746,
|
252 |
+
"mean_token_accuracy": 0.9804132694005966,
|
253 |
+
"num_tokens": 3494044.0,
|
254 |
+
"step": 650
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 1.627640313820157,
|
258 |
+
"grad_norm": 0.2373267114162445,
|
259 |
+
"learning_rate": 0.00026909205088685,
|
260 |
+
"loss": 0.0976,
|
261 |
+
"mean_token_accuracy": 0.9745747190713883,
|
262 |
+
"num_tokens": 3627751.0,
|
263 |
+
"step": 675
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 1.687990343995172,
|
267 |
+
"grad_norm": 0.37386244535446167,
|
268 |
+
"learning_rate": 0.0002665034347145612,
|
269 |
+
"loss": 0.0751,
|
270 |
+
"mean_token_accuracy": 0.9802791184186935,
|
271 |
+
"num_tokens": 3762776.0,
|
272 |
+
"step": 700
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 1.748340374170187,
|
276 |
+
"grad_norm": 0.276994526386261,
|
277 |
+
"learning_rate": 0.000263824262660187,
|
278 |
+
"loss": 0.097,
|
279 |
+
"mean_token_accuracy": 0.9747868567705155,
|
280 |
+
"num_tokens": 3896978.0,
|
281 |
+
"step": 725
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 1.8086904043452021,
|
285 |
+
"grad_norm": 0.4135245978832245,
|
286 |
+
"learning_rate": 0.0002610566171927056,
|
287 |
+
"loss": 0.0706,
|
288 |
+
"mean_token_accuracy": 0.9817547309398651,
|
289 |
+
"num_tokens": 4034768.0,
|
290 |
+
"step": 750
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 1.8690404345202172,
|
294 |
+
"grad_norm": 0.15843796730041504,
|
295 |
+
"learning_rate": 0.00025820264954977976,
|
296 |
+
"loss": 0.0889,
|
297 |
+
"mean_token_accuracy": 0.9776063919067383,
|
298 |
+
"num_tokens": 4169906.0,
|
299 |
+
"step": 775
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 1.9293904646952322,
|
303 |
+
"grad_norm": 0.30585798621177673,
|
304 |
+
"learning_rate": 0.00025526457806564136,
|
305 |
+
"loss": 0.0668,
|
306 |
+
"mean_token_accuracy": 0.9821723079681397,
|
307 |
+
"num_tokens": 4305541.0,
|
308 |
+
"step": 800
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 1.9897404948702473,
|
312 |
+
"grad_norm": 0.23672625422477722,
|
313 |
+
"learning_rate": 0.00025224468644682245,
|
314 |
+
"loss": 0.0777,
|
315 |
+
"mean_token_accuracy": 0.9801788556575776,
|
316 |
+
"num_tokens": 4429095.0,
|
317 |
+
"step": 825
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 2.0,
|
321 |
+
"eval_loss": 0.08333630114793777,
|
322 |
+
"eval_mean_token_accuracy": 0.9790130283381487,
|
323 |
+
"eval_num_tokens": 4447026.0,
|
324 |
+
"eval_runtime": 60.4769,
|
325 |
+
"eval_samples_per_second": 6.101,
|
326 |
+
"eval_steps_per_second": 3.059,
|
327 |
+
"step": 830
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 2.048280024140012,
|
331 |
+
"grad_norm": 0.2790965139865875,
|
332 |
+
"learning_rate": 0.00024914532199707444,
|
333 |
+
"loss": 0.0737,
|
334 |
+
"mean_token_accuracy": 0.9818082832798516,
|
335 |
+
"num_tokens": 4573150.0,
|
336 |
+
"step": 850
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 2.1086300543150274,
|
340 |
+
"grad_norm": 0.38501349091529846,
|
341 |
+
"learning_rate": 0.00024596889379285353,
|
342 |
+
"loss": 0.0609,
|
343 |
+
"mean_token_accuracy": 0.9846205246448517,
|
344 |
+
"num_tokens": 4696253.0,
|
345 |
+
"step": 875
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 2.1689800844900424,
|
349 |
+
"grad_norm": 0.3383895754814148,
|
350 |
+
"learning_rate": 0.00024271787081079228,
|
351 |
+
"loss": 0.0731,
|
352 |
+
"mean_token_accuracy": 0.9802233374118805,
|
353 |
+
"num_tokens": 4842241.0,
|
354 |
+
"step": 900
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 2.2293301146650575,
|
358 |
+
"grad_norm": 0.21086572110652924,
|
359 |
+
"learning_rate": 0.00023939478000861117,
|
360 |
+
"loss": 0.0596,
|
361 |
+
"mean_token_accuracy": 0.9851127731800079,
|
362 |
+
"num_tokens": 4965545.0,
|
363 |
+
"step": 925
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 2.2896801448400725,
|
367 |
+
"grad_norm": 0.20826084911823273,
|
368 |
+
"learning_rate": 0.00023600220436096318,
|
369 |
+
"loss": 0.0759,
|
370 |
+
"mean_token_accuracy": 0.9797697293758393,
|
371 |
+
"num_tokens": 5111070.0,
|
372 |
+
"step": 950
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 2.3500301750150876,
|
376 |
+
"grad_norm": 0.2537970244884491,
|
377 |
+
"learning_rate": 0.00023254278085173684,
|
378 |
+
"loss": 0.059,
|
379 |
+
"mean_token_accuracy": 0.9851009005308151,
|
380 |
+
"num_tokens": 5235251.0,
|
381 |
+
"step": 975
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 2.4103802051901027,
|
385 |
+
"grad_norm": 0.2794428765773773,
|
386 |
+
"learning_rate": 0.00022901919842437972,
|
387 |
+
"loss": 0.0671,
|
388 |
+
"mean_token_accuracy": 0.9823657035827636,
|
389 |
+
"num_tokens": 5379177.0,
|
390 |
+
"step": 1000
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 2.4707302353651177,
|
394 |
+
"grad_norm": 0.23955030739307404,
|
395 |
+
"learning_rate": 0.00022543419589183397,
|
396 |
+
"loss": 0.06,
|
397 |
+
"mean_token_accuracy": 0.9847251123189926,
|
398 |
+
"num_tokens": 5501778.0,
|
399 |
+
"step": 1025
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 2.5310802655401328,
|
403 |
+
"grad_norm": 0.24202412366867065,
|
404 |
+
"learning_rate": 0.00022179055980770993,
|
405 |
+
"loss": 0.0702,
|
406 |
+
"mean_token_accuracy": 0.9814589565992355,
|
407 |
+
"num_tokens": 5646414.0,
|
408 |
+
"step": 1050
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 2.591430295715148,
|
412 |
+
"grad_norm": 0.18459561467170715,
|
413 |
+
"learning_rate": 0.0002180911223003513,
|
414 |
+
"loss": 0.062,
|
415 |
+
"mean_token_accuracy": 0.9842818379402161,
|
416 |
+
"num_tokens": 5771178.0,
|
417 |
+
"step": 1075
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 2.651780325890163,
|
421 |
+
"grad_norm": 0.21107763051986694,
|
422 |
+
"learning_rate": 0.00021433875887147627,
|
423 |
+
"loss": 0.0656,
|
424 |
+
"mean_token_accuracy": 0.982610120177269,
|
425 |
+
"num_tokens": 5916367.0,
|
426 |
+
"step": 1100
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 2.712130356065178,
|
430 |
+
"grad_norm": 0.12310996651649475,
|
431 |
+
"learning_rate": 0.00021053638616110525,
|
432 |
+
"loss": 0.056,
|
433 |
+
"mean_token_accuracy": 0.9858221507072449,
|
434 |
+
"num_tokens": 6039601.0,
|
435 |
+
"step": 1125
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 2.772480386240193,
|
439 |
+
"grad_norm": 0.0949612483382225,
|
440 |
+
"learning_rate": 0.00020668695968051274,
|
441 |
+
"loss": 0.062,
|
442 |
+
"mean_token_accuracy": 0.9835014945268631,
|
443 |
+
"num_tokens": 6183454.0,
|
444 |
+
"step": 1150
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 2.832830416415208,
|
448 |
+
"grad_norm": 0.23207980394363403,
|
449 |
+
"learning_rate": 0.00020279347151496482,
|
450 |
+
"loss": 0.0546,
|
451 |
+
"mean_token_accuracy": 0.9864810138940812,
|
452 |
+
"num_tokens": 6305513.0,
|
453 |
+
"step": 1175
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 2.8931804465902236,
|
457 |
+
"grad_norm": 0.14339599013328552,
|
458 |
+
"learning_rate": 0.00019885894799802922,
|
459 |
+
"loss": 0.0665,
|
460 |
+
"mean_token_accuracy": 0.982457509636879,
|
461 |
+
"num_tokens": 6450956.0,
|
462 |
+
"step": 1200
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 2.9535304767652386,
|
466 |
+
"grad_norm": 0.10236950218677521,
|
467 |
+
"learning_rate": 0.00019488644735926396,
|
468 |
+
"loss": 0.0538,
|
469 |
+
"mean_token_accuracy": 0.9864566326141357,
|
470 |
+
"num_tokens": 6574055.0,
|
471 |
+
"step": 1225
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 3.0,
|
475 |
+
"eval_loss": 0.0698639452457428,
|
476 |
+
"eval_mean_token_accuracy": 0.9828434982815304,
|
477 |
+
"eval_num_tokens": 6670539.0,
|
478 |
+
"eval_runtime": 60.4557,
|
479 |
+
"eval_samples_per_second": 6.104,
|
480 |
+
"eval_steps_per_second": 3.06,
|
481 |
+
"step": 1245
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 3.012070006035003,
|
485 |
+
"grad_norm": 0.19694368541240692,
|
486 |
+
"learning_rate": 0.00019087905734711452,
|
487 |
+
"loss": 0.0664,
|
488 |
+
"mean_token_accuracy": 0.98261449324716,
|
489 |
+
"num_tokens": 6707839.0,
|
490 |
+
"step": 1250
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 3.0724200362100182,
|
494 |
+
"grad_norm": 0.11810697615146637,
|
495 |
+
"learning_rate": 0.00018683989282886613,
|
496 |
+
"loss": 0.0468,
|
497 |
+
"mean_token_accuracy": 0.988110933303833,
|
498 |
+
"num_tokens": 6850375.0,
|
499 |
+
"step": 1275
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 3.1327700663850333,
|
503 |
+
"grad_norm": 0.18672189116477966,
|
504 |
+
"learning_rate": 0.0001827720933695173,
|
505 |
+
"loss": 0.054,
|
506 |
+
"mean_token_accuracy": 0.9859074687957764,
|
507 |
+
"num_tokens": 6976640.0,
|
508 |
+
"step": 1300
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 3.1931200965600484,
|
512 |
+
"grad_norm": 0.0706477090716362,
|
513 |
+
"learning_rate": 0.00017867882079145627,
|
514 |
+
"loss": 0.0458,
|
515 |
+
"mean_token_accuracy": 0.9881710064411163,
|
516 |
+
"num_tokens": 7116531.0,
|
517 |
+
"step": 1325
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 3.2534701267350634,
|
521 |
+
"grad_norm": 0.19763106107711792,
|
522 |
+
"learning_rate": 0.00017456325671683724,
|
523 |
+
"loss": 0.0542,
|
524 |
+
"mean_token_accuracy": 0.9864082312583924,
|
525 |
+
"num_tokens": 7244136.0,
|
526 |
+
"step": 1350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 3.3138201569100785,
|
530 |
+
"grad_norm": 0.14251746237277985,
|
531 |
+
"learning_rate": 0.00017042860009456638,
|
532 |
+
"loss": 0.046,
|
533 |
+
"mean_token_accuracy": 0.9879621362686157,
|
534 |
+
"num_tokens": 7386096.0,
|
535 |
+
"step": 1375
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 3.3741701870850935,
|
539 |
+
"grad_norm": 0.1693497598171234,
|
540 |
+
"learning_rate": 0.00016627806471382066,
|
541 |
+
"loss": 0.0529,
|
542 |
+
"mean_token_accuracy": 0.9869521266222,
|
543 |
+
"num_tokens": 7513742.0,
|
544 |
+
"step": 1400
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 3.4345202172601086,
|
548 |
+
"grad_norm": 0.08023709058761597,
|
549 |
+
"learning_rate": 0.00016211487670603078,
|
550 |
+
"loss": 0.0459,
|
551 |
+
"mean_token_accuracy": 0.9879424357414246,
|
552 |
+
"num_tokens": 7655678.0,
|
553 |
+
"step": 1425
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 3.4948702474351236,
|
557 |
+
"grad_norm": 0.19639359414577484,
|
558 |
+
"learning_rate": 0.0001579422720372715,
|
559 |
+
"loss": 0.0567,
|
560 |
+
"mean_token_accuracy": 0.9857883536815644,
|
561 |
+
"num_tokens": 7780221.0,
|
562 |
+
"step": 1450
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 3.5552202776101387,
|
566 |
+
"grad_norm": 0.07502614706754684,
|
567 |
+
"learning_rate": 0.00015376349399300745,
|
568 |
+
"loss": 0.0452,
|
569 |
+
"mean_token_accuracy": 0.9880510932207107,
|
570 |
+
"num_tokens": 7919857.0,
|
571 |
+
"step": 1475
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 3.6155703077851538,
|
575 |
+
"grad_norm": 0.15008965134620667,
|
576 |
+
"learning_rate": 0.0001495817906571492,
|
577 |
+
"loss": 0.055,
|
578 |
+
"mean_token_accuracy": 0.9859279471635819,
|
579 |
+
"num_tokens": 8045749.0,
|
580 |
+
"step": 1500
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 3.675920337960169,
|
584 |
+
"grad_norm": 0.08942336589097977,
|
585 |
+
"learning_rate": 0.00014540041238738055,
|
586 |
+
"loss": 0.0456,
|
587 |
+
"mean_token_accuracy": 0.9880678504705429,
|
588 |
+
"num_tokens": 8186860.0,
|
589 |
+
"step": 1525
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 3.736270368135184,
|
593 |
+
"grad_norm": 0.15885671973228455,
|
594 |
+
"learning_rate": 0.00014122260928871734,
|
595 |
+
"loss": 0.0546,
|
596 |
+
"mean_token_accuracy": 0.9859816372394562,
|
597 |
+
"num_tokens": 8314411.0,
|
598 |
+
"step": 1550
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 3.796620398310199,
|
602 |
+
"grad_norm": 0.08140072971582413,
|
603 |
+
"learning_rate": 0.00013705162868726396,
|
604 |
+
"loss": 0.0448,
|
605 |
+
"mean_token_accuracy": 0.9879288977384567,
|
606 |
+
"num_tokens": 8459434.0,
|
607 |
+
"step": 1575
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 3.856970428485214,
|
611 |
+
"grad_norm": 0.14952507615089417,
|
612 |
+
"learning_rate": 0.00013289071260612855,
|
613 |
+
"loss": 0.0509,
|
614 |
+
"mean_token_accuracy": 0.9866566967964172,
|
615 |
+
"num_tokens": 8588677.0,
|
616 |
+
"step": 1600
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 3.9173204586602295,
|
620 |
+
"grad_norm": 0.08463295549154282,
|
621 |
+
"learning_rate": 0.00012874309524546083,
|
622 |
+
"loss": 0.0434,
|
623 |
+
"mean_token_accuracy": 0.9884845250844956,
|
624 |
+
"num_tokens": 8728697.0,
|
625 |
+
"step": 1625
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 3.9776704888352445,
|
629 |
+
"grad_norm": 0.14282330870628357,
|
630 |
+
"learning_rate": 0.00012461200046857084,
|
631 |
+
"loss": 0.0489,
|
632 |
+
"mean_token_accuracy": 0.9877329683303833,
|
633 |
+
"num_tokens": 8849522.0,
|
634 |
+
"step": 1650
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 4.0,
|
638 |
+
"eval_loss": 0.06439081579446793,
|
639 |
+
"eval_mean_token_accuracy": 0.9848004015716346,
|
640 |
+
"eval_num_tokens": 8894052.0,
|
641 |
+
"eval_runtime": 60.4081,
|
642 |
+
"eval_samples_per_second": 6.108,
|
643 |
+
"eval_steps_per_second": 3.063,
|
644 |
+
"step": 1660
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 4.036210018105009,
|
648 |
+
"grad_norm": 0.09698522090911865,
|
649 |
+
"learning_rate": 0.00012050063929608123,
|
650 |
+
"loss": 0.0455,
|
651 |
+
"mean_token_accuracy": 0.9885102627203637,
|
652 |
+
"num_tokens": 8991994.0,
|
653 |
+
"step": 1675
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 4.096560048280024,
|
657 |
+
"grad_norm": 0.0668676421046257,
|
658 |
+
"learning_rate": 0.0001164122074100633,
|
659 |
+
"loss": 0.041,
|
660 |
+
"mean_token_accuracy": 0.9895569503307342,
|
661 |
+
"num_tokens": 9121732.0,
|
662 |
+
"step": 1700
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 4.15691007845504,
|
666 |
+
"grad_norm": 0.0820237323641777,
|
667 |
+
"learning_rate": 0.00011234988267009415,
|
668 |
+
"loss": 0.0443,
|
669 |
+
"mean_token_accuracy": 0.9885162824392318,
|
670 |
+
"num_tokens": 9262923.0,
|
671 |
+
"step": 1725
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 4.217260108630055,
|
675 |
+
"grad_norm": 0.07873061299324036,
|
676 |
+
"learning_rate": 0.00010831682264316787,
|
677 |
+
"loss": 0.0417,
|
678 |
+
"mean_token_accuracy": 0.9893530422449112,
|
679 |
+
"num_tokens": 9391281.0,
|
680 |
+
"step": 1750
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 4.27761013880507,
|
684 |
+
"grad_norm": 0.14161907136440277,
|
685 |
+
"learning_rate": 0.00010431616214937911,
|
686 |
+
"loss": 0.044,
|
687 |
+
"mean_token_accuracy": 0.9886807698011398,
|
688 |
+
"num_tokens": 9528910.0,
|
689 |
+
"step": 1775
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 4.337960168980085,
|
693 |
+
"grad_norm": 0.11667165160179138,
|
694 |
+
"learning_rate": 0.00010035101082528777,
|
695 |
+
"loss": 0.0411,
|
696 |
+
"mean_token_accuracy": 0.9895562261343003,
|
697 |
+
"num_tokens": 9657454.0,
|
698 |
+
"step": 1800
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 4.3983101991551,
|
702 |
+
"grad_norm": 0.1089748963713646,
|
703 |
+
"learning_rate": 9.642445070685809e-05,
|
704 |
+
"loss": 0.0445,
|
705 |
+
"mean_token_accuracy": 0.9886202031373977,
|
706 |
+
"num_tokens": 9797754.0,
|
707 |
+
"step": 1825
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"epoch": 4.458660229330115,
|
711 |
+
"grad_norm": 0.11159568279981613,
|
712 |
+
"learning_rate": 9.253953383385157e-05,
|
713 |
+
"loss": 0.041,
|
714 |
+
"mean_token_accuracy": 0.9896017628908157,
|
715 |
+
"num_tokens": 9926999.0,
|
716 |
+
"step": 1850
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 4.51901025950513,
|
720 |
+
"grad_norm": 0.06931650638580322,
|
721 |
+
"learning_rate": 8.869927987753459e-05,
|
722 |
+
"loss": 0.0445,
|
723 |
+
"mean_token_accuracy": 0.9883027869462967,
|
724 |
+
"num_tokens": 10067224.0,
|
725 |
+
"step": 1875
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 4.579360289680145,
|
729 |
+
"grad_norm": 0.06088819354772568,
|
730 |
+
"learning_rate": 8.490667379354661e-05,
|
731 |
+
"loss": 0.0411,
|
732 |
+
"mean_token_accuracy": 0.9894358485937118,
|
733 |
+
"num_tokens": 10196460.0,
|
734 |
+
"step": 1900
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 4.63971031985516,
|
738 |
+
"grad_norm": 0.09456664323806763,
|
739 |
+
"learning_rate": 8.116466350175079e-05,
|
740 |
+
"loss": 0.0436,
|
741 |
+
"mean_token_accuracy": 0.9884065991640091,
|
742 |
+
"num_tokens": 10335320.0,
|
743 |
+
"step": 1925
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 4.700060350030175,
|
747 |
+
"grad_norm": 0.06058884039521217,
|
748 |
+
"learning_rate": 7.747615759487304e-05,
|
749 |
+
"loss": 0.0412,
|
750 |
+
"mean_token_accuracy": 0.9891911673545838,
|
751 |
+
"num_tokens": 10465180.0,
|
752 |
+
"step": 1950
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 4.76041038020519,
|
756 |
+
"grad_norm": 0.08679672330617905,
|
757 |
+
"learning_rate": 7.38440230777085e-05,
|
758 |
+
"loss": 0.042,
|
759 |
+
"mean_token_accuracy": 0.988958535194397,
|
760 |
+
"num_tokens": 10603341.0,
|
761 |
+
"step": 1975
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 4.820760410380205,
|
765 |
+
"grad_norm": 0.1154605895280838,
|
766 |
+
"learning_rate": 7.027108313865378e-05,
|
767 |
+
"loss": 0.0409,
|
768 |
+
"mean_token_accuracy": 0.9893914723396301,
|
769 |
+
"num_tokens": 10730981.0,
|
770 |
+
"step": 2000
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 4.88111044055522,
|
774 |
+
"grad_norm": 0.06791651248931885,
|
775 |
+
"learning_rate": 6.676011495529687e-05,
|
776 |
+
"loss": 0.0446,
|
777 |
+
"mean_token_accuracy": 0.9883267271518708,
|
778 |
+
"num_tokens": 10870777.0,
|
779 |
+
"step": 2025
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 4.941460470730235,
|
783 |
+
"grad_norm": 0.08565431088209152,
|
784 |
+
"learning_rate": 6.331384753577056e-05,
|
785 |
+
"loss": 0.0399,
|
786 |
+
"mean_token_accuracy": 0.9895966738462448,
|
787 |
+
"num_tokens": 11000621.0,
|
788 |
+
"step": 2050
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 5.0,
|
792 |
+
"grad_norm": 0.22377392649650574,
|
793 |
+
"learning_rate": 5.993495959754631e-05,
|
794 |
+
"loss": 0.0455,
|
795 |
+
"mean_token_accuracy": 0.9887414543899065,
|
796 |
+
"num_tokens": 11117565.0,
|
797 |
+
"step": 2075
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 5.0,
|
801 |
+
"eval_loss": 0.06433924287557602,
|
802 |
+
"eval_mean_token_accuracy": 0.9855138524158581,
|
803 |
+
"eval_num_tokens": 11117565.0,
|
804 |
+
"eval_runtime": 60.4738,
|
805 |
+
"eval_samples_per_second": 6.102,
|
806 |
+
"eval_steps_per_second": 3.059,
|
807 |
+
"step": 2075
|
808 |
+
}
|
809 |
+
],
|
810 |
+
"logging_steps": 25,
|
811 |
+
"max_steps": 2905,
|
812 |
+
"num_input_tokens_seen": 0,
|
813 |
+
"num_train_epochs": 7,
|
814 |
+
"save_steps": 500,
|
815 |
+
"stateful_callbacks": {
|
816 |
+
"TrainerControl": {
|
817 |
+
"args": {
|
818 |
+
"should_epoch_stop": false,
|
819 |
+
"should_evaluate": false,
|
820 |
+
"should_log": false,
|
821 |
+
"should_save": true,
|
822 |
+
"should_training_stop": false
|
823 |
+
},
|
824 |
+
"attributes": {}
|
825 |
+
}
|
826 |
+
},
|
827 |
+
"total_flos": 4.8081582397894656e+17,
|
828 |
+
"train_batch_size": 2,
|
829 |
+
"trial_name": null,
|
830 |
+
"trial_params": null
|
831 |
+
}
|
checkpoint-2075/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:837f73e1808d10388c3e9d0067719323e5731b8387ed3c99bcbeb463cf7ac167
|
3 |
+
size 6033
|
checkpoint-2490/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.3
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.2
|
checkpoint-2490/adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 16,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.1,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 32,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"gate_proj",
|
28 |
+
"k_proj",
|
29 |
+
"down_proj",
|
30 |
+
"o_proj",
|
31 |
+
"v_proj",
|
32 |
+
"up_proj",
|
33 |
+
"q_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": false
|
39 |
+
}
|
checkpoint-2490/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21284563332ac6b7d0b3e27cc6d544abda6cc5b517c15108a0ed40c6d6970bfe
|
3 |
+
size 335604696
|
checkpoint-2490/chat_template.jinja
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if messages[0]["role"] == "system" %}
|
2 |
+
{%- set system_message = messages[0]["content"] %}
|
3 |
+
{%- set loop_messages = messages[1:] %}
|
4 |
+
{%- else %}
|
5 |
+
{%- set loop_messages = messages %}
|
6 |
+
{%- endif %}
|
7 |
+
{%- if not tools is defined %}
|
8 |
+
{%- set tools = none %}
|
9 |
+
{%- endif %}
|
10 |
+
{%- set user_messages = loop_messages | selectattr("role", "equalto", "user") | list %}
|
11 |
+
|
12 |
+
{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}
|
13 |
+
{%- set ns = namespace() %}
|
14 |
+
{%- set ns.index = 0 %}
|
15 |
+
{%- for message in loop_messages %}
|
16 |
+
{%- if not (message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
|
17 |
+
{%- if (message["role"] == "user") != (ns.index % 2 == 0) %}
|
18 |
+
{{- raise_exception("After the optional system message, conversation roles must alternate user/assistant/user/assistant/...") }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- set ns.index = ns.index + 1 %}
|
21 |
+
{%- endif %}
|
22 |
+
{%- endfor %}
|
23 |
+
|
24 |
+
{{- bos_token }}
|
25 |
+
{%- for message in loop_messages %}
|
26 |
+
{%- if message["role"] == "user" %}
|
27 |
+
{%- if tools is not none and (message == user_messages[-1]) %}
|
28 |
+
{{- "[AVAILABLE_TOOLS] [" }}
|
29 |
+
{%- for tool in tools %}
|
30 |
+
{%- set tool = tool.function %}
|
31 |
+
{{- '{"type": "function", "function": {' }}
|
32 |
+
{%- for key, val in tool.items() if key != "return" %}
|
33 |
+
{%- if val is string %}
|
34 |
+
{{- '"' + key + '": "' + val + '"' }}
|
35 |
+
{%- else %}
|
36 |
+
{{- '"' + key + '": ' + val|tojson }}
|
37 |
+
{%- endif %}
|
38 |
+
{%- if not loop.last %}
|
39 |
+
{{- ", " }}
|
40 |
+
{%- endif %}
|
41 |
+
{%- endfor %}
|
42 |
+
{{- "}}" }}
|
43 |
+
{%- if not loop.last %}
|
44 |
+
{{- ", " }}
|
45 |
+
{%- else %}
|
46 |
+
{{- "]" }}
|
47 |
+
{%- endif %}
|
48 |
+
{%- endfor %}
|
49 |
+
{{- "[/AVAILABLE_TOOLS]" }}
|
50 |
+
{%- endif %}
|
51 |
+
{%- if loop.last and system_message is defined %}
|
52 |
+
{{- "[INST] " + system_message + "\n\n" + message["content"] + "[/INST]" }}
|
53 |
+
{%- else %}
|
54 |
+
{{- "[INST] " + message["content"] + "[/INST]" }}
|
55 |
+
{%- endif %}
|
56 |
+
{%- elif message.tool_calls is defined and message.tool_calls is not none %}
|
57 |
+
{{- "[TOOL_CALLS] [" }}
|
58 |
+
{%- for tool_call in message.tool_calls %}
|
59 |
+
{%- set out = tool_call.function|tojson %}
|
60 |
+
{{- out[:-1] }}
|
61 |
+
{%- if not tool_call.id is defined or tool_call.id|length != 9 %}
|
62 |
+
{{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
|
63 |
+
{%- endif %}
|
64 |
+
{{- ', "id": "' + tool_call.id + '"}' }}
|
65 |
+
{%- if not loop.last %}
|
66 |
+
{{- ", " }}
|
67 |
+
{%- else %}
|
68 |
+
{{- "]" + eos_token }}
|
69 |
+
{%- endif %}
|
70 |
+
{%- endfor %}
|
71 |
+
{%- elif message["role"] == "assistant" %}
|
72 |
+
{{- " " + message["content"]|trim + eos_token}}
|
73 |
+
{%- elif message["role"] == "tool_results" or message["role"] == "tool" %}
|
74 |
+
{%- if message.content is defined and message.content.content is defined %}
|
75 |
+
{%- set content = message.content.content %}
|
76 |
+
{%- else %}
|
77 |
+
{%- set content = message.content %}
|
78 |
+
{%- endif %}
|
79 |
+
{{- '[TOOL_RESULTS] {"content": ' + content|string + ", " }}
|
80 |
+
{%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}
|
81 |
+
{{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}
|
82 |
+
{%- endif %}
|
83 |
+
{{- '"call_id": "' + message.tool_call_id + '"}[/TOOL_RESULTS]' }}
|
84 |
+
{%- else %}
|
85 |
+
{{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}
|
86 |
+
{%- endif %}
|
87 |
+
{%- endfor %}
|
checkpoint-2490/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c14e94a2e599bd6ac51f7077a7077bb284d2df427919d7efb6964628731e3ca2
|
3 |
+
size 671365003
|
checkpoint-2490/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7379eeeecc1695daae9e68d92129c493d60f18222f595ec263b6505459c689e3
|
3 |
+
size 14645
|
checkpoint-2490/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b41bfa144f42e80c8ff5d37b29a2644e1a27e71ffa4c3224a8b4db5b2151dea
|
3 |
+
size 1465
|
checkpoint-2490/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-2490/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|