Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- sw
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
datasets:
|
| 6 |
+
- masakhaner
|
| 7 |
+
pipeline_tag: token-classification
|
| 8 |
+
examples: null
|
| 9 |
+
widget:
|
| 10 |
+
- text: Joe Bidden ni rais wa marekani.
|
| 11 |
+
example_title: Sentence 1
|
| 12 |
+
- text: Tumefanya mabadiliko muhimu katika sera zetu za faragha na vidakuzi.
|
| 13 |
+
example_title: Sentence 2
|
| 14 |
+
- text: Mtoto anaweza kupoteza muda kabisa.
|
| 15 |
+
example_title: Sentence 3
|
| 16 |
+
metrics:
|
| 17 |
+
- accuracy
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# TUS Named Entity Recognition
|
| 21 |
+
|
| 22 |
+
- **TUS-NER-sw** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **state-of-the-art performance 😀**
|
| 23 |
+
- Finetuned from model: [eolang/SW-v1](https://huggingface.co/eolang/SW-v1)
|
| 24 |
+
|
| 25 |
+
## Intended uses & limitations
|
| 26 |
+
|
| 27 |
+
#### How to use
|
| 28 |
+
|
| 29 |
+
You can use this model with Transformers *pipeline* for NER.
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
from transformers import pipeline
|
| 33 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 34 |
+
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained("eolang/SW-NER-v1")
|
| 36 |
+
model = AutoModelForTokenClassification.from_pretrained("eolang/SW-NER-v1")
|
| 37 |
+
|
| 38 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
| 39 |
+
example = "Tumefanya mabadiliko muhimu katika sera zetu za faragha na vidakuzi"
|
| 40 |
+
|
| 41 |
+
ner_results = nlp(example)
|
| 42 |
+
print(ner_results)
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
## Training data
|
| 46 |
+
|
| 47 |
+
This model was fine-tuned on the Swahili Version of the [Masakhane Dataset](https://github.com/masakhane-io/masakhane-ner/tree/main/MasakhaNER2.0/data/swa) from the [MasakhaneNER Project](https://github.com/masakhane-io/masakhane-ner).
|
| 48 |
+
MasakhaNER is a collection of Named Entity Recognition (NER) datasets for 10 different African languages.
|
| 49 |
+
The languages forming this dataset are: Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Luo, Nigerian-Pidgin, Swahili, Wolof, and Yorùbá.
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
## Training procedure
|
| 53 |
+
|
| 54 |
+
This model was trained on a single NVIDIA RTX 3090 GPU with recommended hyperparameters from the [original BERT paper](https://arxiv.org/pdf/1810.04805) which trained & evaluated the model on CoNLL-2003 NER task.
|