enalis commited on
Commit
c7f8d64
·
verified ·
1 Parent(s): 68060ae

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +102 -0
model.py CHANGED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from timm import create_model
2
+ import torch
3
+ import torch.nn as nn
4
+ from transformers import RobertaModel
5
+
6
+ EMBEDDING_DIM = 512
7
+
8
+ class ImageEncoder(nn.Module):
9
+ def __init__(self):
10
+ super(ImageEncoder, self).__init__()
11
+ # Load the Swin Transformer with features_only=True
12
+ self.swin = create_model("swin_base_patch4_window7_224.ms_in22k", pretrained=True, features_only=True)
13
+ for param in self.swin.parameters():
14
+ param.requires_grad = True
15
+
16
+ # Get the feature size of the final stage
17
+ self.swin_output_dim = self.swin.feature_info.channels()[-1] # Last stage: 1024 channels
18
+
19
+ # Define FC layer
20
+ self.fc1 = nn.Linear(self.swin_output_dim * 7 * 7, EMBEDDING_DIM) # Flattened input size
21
+ nn.init.xavier_uniform_(self.fc1.weight)
22
+ nn.init.zeros_(self.fc1.bias)
23
+ for param in self.fc1.parameters():
24
+ param.requires_grad = True
25
+
26
+
27
+ def forward(self, x):
28
+ # Extract features from Swin
29
+ swin_features = self.swin(x)[-1] # Use the last stage feature map (e.g., [B, 1024, 7, 7])
30
+
31
+ # Flatten feature map
32
+ swin_features = swin_features.view(swin_features.size(0), -1) # Shape: (B, 1024*7*7)
33
+
34
+ # Pass through FC layer
35
+ output = self.fc1(swin_features) # Shape: (B, embedding_dim)
36
+ return output
37
+
38
+ class RobertaEncoder(nn.Module):
39
+ def __init__(self, roberta_model_path="roberta-base"):
40
+ super(RobertaEncoder, self).__init__()
41
+ # Load pre-trained RoBERTa model
42
+ self.roberta = RobertaModel.from_pretrained(roberta_model_path)
43
+
44
+ # Add a linear projection layer to reduce dimensionality
45
+ self.projection = nn.Linear(self.roberta.config.hidden_size, EMBEDDING_DIM)
46
+
47
+ # Initialize the projection layer weights
48
+ nn.init.xavier_uniform_(self.projection.weight)
49
+ nn.init.zeros_(self.projection.bias)
50
+
51
+ # Allow fine-tuning of the RoBERTa model
52
+ for param in self.roberta.parameters():
53
+ param.requires_grad = True
54
+
55
+ def forward(self, input_ids, attention_mask):
56
+ """
57
+ Forward pass through RoBERTa.
58
+ Args:
59
+ input_ids: Tensor of shape (batch_size, seq_length)
60
+ attention_mask: Tensor of shape (batch_size, seq_length)
61
+
62
+ Returns:
63
+ Embedding: Tensor of shape (batch_size, EMBEDDING_DIM)
64
+ """
65
+ roberta_output = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
66
+ cls_token = roberta_output.last_hidden_state[:, 0, :] # Use CLS token
67
+ pooled_output = torch.mean(roberta_output.last_hidden_state, dim=1) # Mean pooling
68
+
69
+ return self.projection(cls_token+pooled_output)
70
+
71
+ class LVL(nn.Module):
72
+ def __init__(self):
73
+ super(LVL, self).__init__()
74
+ self.image_encoder = ImageEncoder()
75
+ self.text_encoder = RobertaEncoder()
76
+ self.t_prime = nn.Parameter(torch.ones([]) * np.log(0.07))
77
+ self.b = nn.Parameter(torch.ones([]) * 0)
78
+
79
+ def get_images_features(self,images):
80
+ image_embeddings = self.image_encoder(images) # (batch_size, EMBEDDING_DIM)
81
+ image_embeddings = nn.functional.normalize(image_embeddings, p=2, dim=-1)
82
+ return image_embeddings
83
+
84
+ def get_texts_feature(self,input_ids,attention_mask):
85
+ text_embeddings = self.text_encoder(input_ids, attention_mask) # (batch_size, EMBEDDING_DIM)
86
+ text_embeddings = nn.functional.normalize(text_embeddings, p=2, dim=-1)
87
+ return text_embeddings
88
+
89
+ def forward(self, images, input_ids, attention_mask):
90
+ """
91
+ Args:
92
+ images: Tensor of shape (batch_size, 3, 224, 224)
93
+ input_ids: Tensor of shape (batch_size, seq_length)
94
+ attention_mask: Tensor of shape (batch_size, seq_length)
95
+
96
+ Returns:
97
+ Image and text embeddings normalized for similarity calculation
98
+ """
99
+
100
+ image_embeddings = self.get_images_features(images)
101
+ text_embeddings = self.get_texts_feature(input_ids, attention_mask)
102
+ return image_embeddings, text_embeddings