Delete encoder.py
Browse files- encoder.py +0 -101
encoder.py
DELETED
|
@@ -1,101 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from transformers import CLIPTextModel, RobertaModel, CLIPVisionModel
|
| 4 |
-
from timm import create_model
|
| 5 |
-
EMBEDDING_DIM = 512
|
| 6 |
-
class ImageEncoder(nn.Module):
|
| 7 |
-
def __init__(self):
|
| 8 |
-
super(ImageEncoder, self).__init__()
|
| 9 |
-
# Load the Swin Transformer with features_only=True
|
| 10 |
-
self.swin = create_model("swin-tiny-patch4-window7-224", pretrained=True, features_only=True)
|
| 11 |
-
for param in self.swin.parameters():
|
| 12 |
-
param.requires_grad = True
|
| 13 |
-
|
| 14 |
-
# Get the feature size of the final stage
|
| 15 |
-
self.swin_output_dim = self.swin.feature_info.channels()[-1] # Last stage: 1024 channels
|
| 16 |
-
|
| 17 |
-
# Define FC layer
|
| 18 |
-
self.fc1 = nn.Linear(self.swin_output_dim * 7 * 7, EMBEDDING_DIM) # Flattened input size
|
| 19 |
-
nn.init.xavier_uniform_(self.fc1.weight)
|
| 20 |
-
nn.init.zeros_(self.fc1.bias)
|
| 21 |
-
for param in self.fc1.parameters():
|
| 22 |
-
param.requires_grad = True
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def forward(self, x):
|
| 26 |
-
# Extract features from Swin
|
| 27 |
-
swin_features = self.swin(x)[-1] # Use the last stage feature map (e.g., [B, 1024, 7, 7])
|
| 28 |
-
|
| 29 |
-
# Flatten feature map
|
| 30 |
-
swin_features = swin_features.view(swin_features.size(0), -1) # Shape: (B, 1024*7*7)
|
| 31 |
-
|
| 32 |
-
# Pass through FC layer
|
| 33 |
-
output = self.fc1(swin_features) # Shape: (B, embedding_dim)
|
| 34 |
-
return output
|
| 35 |
-
|
| 36 |
-
from transformers import RobertaModel
|
| 37 |
-
|
| 38 |
-
class RobertaEncoder(nn.Module):
|
| 39 |
-
def __init__(self, roberta_model_path="roberta-base"):
|
| 40 |
-
super(RobertaEncoder, self).__init__()
|
| 41 |
-
# Load pre-trained RoBERTa model
|
| 42 |
-
self.roberta = RobertaModel.from_pretrained(roberta_model_path)
|
| 43 |
-
|
| 44 |
-
# Add a linear projection layer to reduce dimensionality
|
| 45 |
-
self.projection = nn.Linear(self.roberta.config.hidden_size, EMBEDDING_DIM)
|
| 46 |
-
|
| 47 |
-
# Initialize the projection layer weights
|
| 48 |
-
nn.init.xavier_uniform_(self.projection.weight)
|
| 49 |
-
nn.init.zeros_(self.projection.bias)
|
| 50 |
-
|
| 51 |
-
# Allow fine-tuning of the RoBERTa model
|
| 52 |
-
for param in self.roberta.parameters():
|
| 53 |
-
param.requires_grad = True
|
| 54 |
-
|
| 55 |
-
def forward(self, input_ids, attention_mask):
|
| 56 |
-
"""
|
| 57 |
-
Forward pass through RoBERTa.
|
| 58 |
-
Args:
|
| 59 |
-
input_ids: Tensor of shape (batch_size, seq_length)
|
| 60 |
-
attention_mask: Tensor of shape (batch_size, seq_length)
|
| 61 |
-
|
| 62 |
-
Returns:
|
| 63 |
-
Embedding: Tensor of shape (batch_size, EMBEDDING_DIM)
|
| 64 |
-
"""
|
| 65 |
-
roberta_output = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
|
| 66 |
-
cls_token = roberta_output.last_hidden_state[:, 0, :] # Use CLS token
|
| 67 |
-
pooled_output = torch.mean(roberta_output.last_hidden_state, dim=1) # Mean pooling
|
| 68 |
-
|
| 69 |
-
return self.projection(cls_token+pooled_output)
|
| 70 |
-
|
| 71 |
-
from transformers import AutoTokenizer, Siglip2TextModel,AutoModel
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
class SigLIP2TextEncoder(nn.Module):
|
| 75 |
-
def __init__(self, embedding_dim=512):
|
| 76 |
-
super(SigLIP2TextEncoder, self).__init__()
|
| 77 |
-
model = AutoModel.from_pretrained("google/siglip2-base-patch16-224")
|
| 78 |
-
self.text_encoder = model.text_model
|
| 79 |
-
hidden_size = self.text_encoder.config.hidden_size
|
| 80 |
-
self.projection = nn.Linear(hidden_size, embedding_dim)
|
| 81 |
-
|
| 82 |
-
nn.init.xavier_uniform_(self.projection.weight)
|
| 83 |
-
nn.init.zeros_(self.projection.bias)
|
| 84 |
-
|
| 85 |
-
for param in self.text_encoder.parameters():
|
| 86 |
-
param.requires_grad = True
|
| 87 |
-
for param in self.projection.parameters():
|
| 88 |
-
param.requires_grad = True
|
| 89 |
-
|
| 90 |
-
def forward(self, tokens):
|
| 91 |
-
"""
|
| 92 |
-
Args:
|
| 93 |
-
tokens:
|
| 94 |
-
|
| 95 |
-
Returns:
|
| 96 |
-
Tensor of shape (batch_size, embedding_dim)
|
| 97 |
-
"""
|
| 98 |
-
|
| 99 |
-
outputs = self.text_encoder(**tokens)
|
| 100 |
-
|
| 101 |
-
return self.projection(outputs.pooler_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|