File size: 13,052 Bytes
032c0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import pandas as pd
import re

def load_indications(file_path):
    """
    Load indications from a TSV file.
    """
    try:
        # Read the TSV file
        df = pd.read_csv(file_path, sep='\t', na_values=['', 'NA', 'N/A'])
        return df
    except Exception as e:
        print(f"Error loading file: {e}")
        return None

def map_indication_to_organ(indication, areas=None):
    """
    Map a medical indication to an organ.
    Returns the organ name if a confident mapping exists, otherwise None.
    """
    # List of target organs
    target_organs = [
        'Bowel', 'Lung', 'Esophagus/Stomach', 'Pancreas', 'Skin', 
        'Uterus', 'Breast', 'Ovary/Fallopian Tube', 'Cervix', 
        'CNS/Brain', 'Liver', 'Kidney', 'Peripheral Nervous System', 
        'Vulva/Vagina', 'Bladder/Urinary Tract'
    ]
    
    # Dictionary mapping indication keywords to organs
    keyword_to_organ = {
        # Bowel related
        'bowel': 'Bowel',
        'intestinal': 'Bowel',
        'colon': 'Bowel',
        'colorectal': 'Bowel',
        'rectal': 'Bowel',
        'anus': 'Bowel',
        'colitis': 'Bowel',
        'crohn': 'Bowel',
        'inflammatory bowel': 'Bowel',
        'diverticulitis': 'Bowel',
        'ileus': 'Bowel',
        'short bowel': 'Bowel',
        
        # Lung related
        'lung': 'Lung',
        'pulmonary': 'Lung',
        'respiratory': 'Lung',
        'bronch': 'Lung',
        'pneumonia': 'Lung',
        'emphysema': 'Lung',
        'asthma': 'Lung',
        'chronic obstructive pulmonary': 'Lung',
        'idiopathic pulmonary fibrosis': 'Lung',
        
        # Esophagus/Stomach related
        'esophag': 'Esophagus/Stomach',
        'stomach': 'Esophagus/Stomach',
        'gastric': 'Esophagus/Stomach',
        'gastroesophageal': 'Esophagus/Stomach',
        'duodenal': 'Esophagus/Stomach',
        'peptic ulcer': 'Esophagus/Stomach',
        'gastritis': 'Esophagus/Stomach',
        'barrett': 'Esophagus/Stomach',
        
        # Pancreas related
        'pancrea': 'Pancreas',
        'exocrine pancreatic': 'Pancreas',
        
        # Skin related
        'skin': 'Skin',
        'dermat': 'Skin',
        'cutaneous': 'Skin',
        'melanoma': 'Skin',
        'psoriasis': 'Skin',
        'eczema': 'Skin',
        'acne': 'Skin',
        'rosacea': 'Skin',
        'alopecia': 'Skin',
        'vitiligo': 'Skin',
        'keratosis': 'Skin',
        'keloid': 'Skin',
        'ichthyosis': 'Skin',
        'pruritus': 'Skin',
        'urticaria': 'Skin',
        'pemphigus': 'Skin',
        'pemphigoid': 'Skin',
        'scleroderma': 'Skin',
        
        # Uterus related
        'uter': 'Uterus',
        'endometri': 'Uterus',
        'myometri': 'Uterus',
        'leiomyoma': 'Uterus',
        
        # Breast related
        'breast': 'Breast',
        'mammary': 'Breast',
        
        # Ovary/Fallopian tube related
        'ovar': 'Ovary/Fallopian Tube',
        'fallopian': 'Ovary/Fallopian Tube',
        'polycystic ovary': 'Ovary/Fallopian Tube',
        
        # Cervix related
        'cervix': 'Cervix',
        'cervical': 'Cervix',
        
        # CNS/Brain related
        'brain': 'CNS/Brain',
        'central nervous': 'CNS/Brain',
        'cns': 'CNS/Brain',
        'cerebr': 'CNS/Brain',
        'alzheimer': 'CNS/Brain',
        'parkinson': 'CNS/Brain',
        'glioma': 'CNS/Brain',
        'glioblastoma': 'CNS/Brain',
        'medulloblastoma': 'CNS/Brain',
        'meningioma': 'CNS/Brain',
        'epilepsy': 'CNS/Brain',
        'dementia': 'CNS/Brain',
        'encephalitis': 'CNS/Brain',
        'encephalopathy': 'CNS/Brain',
        'huntington': 'CNS/Brain',
        'multiple sclerosis': 'CNS/Brain',
        'stroke': 'CNS/Brain',
        
        # Liver related
        'liver': 'Liver',
        'hepat': 'Liver',
        'biliary': 'Liver',
        'cholang': 'Liver',
        'cirrhosis': 'Liver',
        'fatty liver': 'Liver',
        
        # Kidney related
        'kidney': 'Kidney',
        'renal': 'Kidney',
        'nephro': 'Kidney',
        'nephri': 'Kidney',
        'glomerulo': 'Kidney',
        'polycystic kidney': 'Kidney',
        
        # Peripheral Nervous System related
        'peripheral nervous': 'Peripheral Nervous System',
        'neuropathy': 'Peripheral Nervous System',
        'neuralgia': 'Peripheral Nervous System',
        
        # Vulva/Vagina related
        'vulva': 'Vulva/Vagina',
        'vagina': 'Vulva/Vagina',
        'vulvar': 'Vulva/Vagina',
        'vaginal': 'Vulva/Vagina',
        'vaginitis': 'Vulva/Vagina',
        
        # Bladder/Urinary Tract related
        'bladder': 'Bladder/Urinary Tract',
        'urinary': 'Bladder/Urinary Tract',
        'urethral': 'Bladder/Urinary Tract',
        'urethra': 'Bladder/Urinary Tract',
        'cystitis': 'Bladder/Urinary Tract',
    }
    
    # Indications that are too general or affect multiple systems
    too_general = [
        'Neoplasms', 'Inflammation', 'Pain', 'Infection', 'Fever', 
        'Autoimmune Diseases', 'Immune System Diseases', 
        'Nervous System Diseases', 'Metabolic Diseases', 
        'Arthritis', 'Diabetes Mellitus', 'Hypertension',
        'Depression', 'Anxiety Disorders', 'HIV Infections',
        'Sepsis', 'Wound Healing', 'Cachexia', 'Fatigue',
        'Nausea', 'Vomiting', 'Multiple Myeloma', 'Leukemia', 'Lymphoma'
    ]
    
    # Specific disease to organ mapping
    specific_disease_mapping = {
        'Ulcerative Colitis': 'Bowel',
        'Crohn Disease': 'Bowel',
        'Asthma': 'Lung',
        'Psoriasis': 'Skin',
        'Lupus Erythematosus, Cutaneous': 'Skin',
        'Lupus Nephritis': 'Kidney',
        'Alzheimer Disease': 'CNS/Brain',
        'Parkinson Disease': 'CNS/Brain',
        'Amyotrophic Lateral Sclerosis': 'CNS/Brain',
        'Huntington Disease': 'CNS/Brain',
        'Non-alcoholic Fatty Liver Disease': 'Liver',
        'Carcinoma, Non-Small-Cell Lung': 'Lung',
        'Small Cell Lung Carcinoma': 'Lung',
        'Liver Cirrhosis': 'Liver',
        'Liver Neoplasms': 'Liver',
        'Liver Cirrhosis, Biliary': 'Liver',
        'Breast Neoplasms': 'Breast',
        'Ovarian Neoplasms': 'Ovary/Fallopian Tube',
        'Brain Neoplasms': 'CNS/Brain',
        'Brain Injuries': 'CNS/Brain',
        'Brain Injuries, Traumatic': 'CNS/Brain',
        'Brain Ischemia': 'CNS/Brain',
        'Pancreatic Neoplasms': 'Pancreas',
        'Urinary Bladder Neoplasms': 'Bladder/Urinary Tract',
        'Stomach Neoplasms': 'Esophagus/Stomach',
        'Uterine Cervical Neoplasms': 'Cervix',
        'Endometrial Neoplasms': 'Uterus',
        'Kidney Neoplasms': 'Kidney',
        'Colorectal Neoplasms': 'Bowel',
        'Inflammatory Bowel Diseases': 'Bowel',
        'COVID-19': 'Lung',
        'Severe Acute Respiratory Syndrome': 'Lung',
        'Pulmonary Disease, Chronic Obstructive': 'Lung',
        'Idiopathic Pulmonary Fibrosis': 'Lung',
        'Respiratory Distress Syndrome': 'Lung',
        'Esophageal Neoplasms': 'Esophagus/Stomach',
        'Acne Vulgaris': 'Skin',
        'Psoriatic Arthritis': 'Skin',
        'Alopecia': 'Skin',
        'Alopecia Areata': 'Skin',
        'Vitiligo': 'Skin',
        'Rosacea': 'Skin',
        'Hidradenitis Suppurativa': 'Skin',
        'Pemphigus': 'Skin',
        'Pemphigoid, Bullous': 'Skin',
        'Scleroderma, Systemic': 'Skin',
        'Scleroderma, Diffuse': 'Skin',
        'Scleroderma, Limited': 'Skin',
        'Fallopian Tube Neoplasms': 'Ovary/Fallopian Tube',
        'Polycystic Ovary Syndrome': 'Ovary/Fallopian Tube',
        'Endometriosis': 'Uterus',
        'Leiomyoma': 'Uterus',
        'Carcinoma, Squamous Cell': 'Skin',
        'Neoplasms, Basal Cell': 'Skin',
        'Melanoma': 'Skin',
        'Glioblastoma': 'CNS/Brain',
        'Medulloblastoma': 'CNS/Brain',
        'Irritable Bowel Syndrome': 'Bowel',
        'Diabetic Nephropathies': 'Kidney',
        'Diabetic Neuropathies': 'Peripheral Nervous System',
        'Multiple Sclerosis': 'CNS/Brain',
    }
    
    # First, check if the indication is too general
    if indication in too_general:
        return None
        
    # Check if the indication is in our specific disease mapping
    if indication in specific_disease_mapping:
        return specific_disease_mapping[indication]
    
    # Check for keyword matches
    indication_lower = indication.lower()
    for keyword, organ in keyword_to_organ.items():
        if keyword in indication_lower:
            return organ
            
    # Use the 'areas' context for additional mapping
    if areas:
        areas_lower = str(areas).lower()
        if 'digestive' in areas_lower:
            if any(term in indication_lower for term in ['bowel', 'colon', 'rectal', 'intestin']):
                return 'Bowel'
            elif any(term in indication_lower for term in ['liver', 'hepat', 'biliary']):
                return 'Liver'
            elif 'pancrea' in indication_lower:
                return 'Pancreas'
            elif any(term in indication_lower for term in ['stomach', 'gastric', 'esophag']):
                return 'Esophagus/Stomach'
        elif 'respiratory' in areas_lower:
            return 'Lung'
        elif 'neurology' in areas_lower:
            if 'peripheral' in indication_lower:
                return 'Peripheral Nervous System'
            else:
                return 'CNS/Brain'
        elif 'dermatology' in areas_lower:
            return 'Skin'
        elif 'oncology' in areas_lower:
            # For oncology, need more specific organ information
            if any(term in indication_lower for term in ['lung', 'pulmonary', 'bronch']):
                return 'Lung'
            elif any(term in indication_lower for term in ['brain', 'glioma', 'cerebr']):
                return 'CNS/Brain'
            elif any(term in indication_lower for term in ['liver', 'hepatic']):
                return 'Liver'
            elif any(term in indication_lower for term in ['skin', 'melanoma', 'basal cell']):
                return 'Skin'
            elif any(term in indication_lower for term in ['breast', 'mammary']):
                return 'Breast'
            elif any(term in indication_lower for term in ['colon', 'rectal', 'colorectal']):
                return 'Bowel'
            elif any(term in indication_lower for term in ['pancreas', 'pancreatic']):
                return 'Pancreas'
            elif any(term in indication_lower for term in ['kidney', 'renal']):
                return 'Kidney'
            elif any(term in indication_lower for term in ['bladder', 'urinary']):
                return 'Bladder/Urinary Tract'
            elif any(term in indication_lower for term in ['cervix', 'cervical']):
                return 'Cervix'
            elif any(term in indication_lower for term in ['uterus', 'uterine', 'endometri']):
                return 'Uterus'
            elif any(term in indication_lower for term in ['ovary', 'ovarian', 'fallopian']):
                return 'Ovary/Fallopian Tube'
            
    # If no confident mapping is found, return None
    return None

def main():
    # Load indications from TSV file
    file_path = '../genetic_support/data/indic.tsv'  # Update this path if necessary
    indications_df = load_indications(file_path)
    indications_df = indications_df.dropna(subset=['indication_mesh_term'])
    
    if indications_df is not None:
        # Add a new column for organ mapping
        indications_df['organ'] = indications_df.apply(
            lambda row: map_indication_to_organ(row['indication_mesh_term'], row.get('areas')), 
            axis=1
        )
        
        # Display indications with their mapped organs
        mapped_df = indications_df[['indication_mesh_term', 'organ']]
        all_mappings = mapped_df.copy()  # Save all mappings for reference
        
        # Show only confident mappings
        mapped_df = mapped_df[mapped_df['organ'].notnull()]
        
        print(f"Successfully mapped {len(mapped_df)} out of {len(indications_df)} indications to organs.")
        print(mapped_df.head(20))  # Display first 20 mappings
        
        # Save the results to CSV files
        mapped_df.to_csv('indication_to_organ_mapping_confident.tsv', index=False, sep='\t')
        all_mappings.to_csv('indication_to_organ_mapping_all.tsv', index=False, sep='\t')
        print("Mappings saved to 'indication_to_organ_mapping_confident.tsv'")
        
        # Summary of organ distribution
        if not mapped_df.empty:
            organ_counts = mapped_df['organ'].value_counts()
            print("\nDistribution of indications across organs:")
            print(organ_counts)
            
            # Indications that couldn't be confidently mapped
            unmapped = indications_df[indications_df['organ'].isnull()]
            print(f"\nNumber of indications that couldn't be confidently mapped: {len(unmapped)}")

if __name__ == "__main__":
    main()