Commit
·
43d3864
1
Parent(s):
7b69d18
Upload README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- generated_from_trainer
|
| 4 |
+
- code
|
| 5 |
+
- coding
|
| 6 |
+
- llama-2
|
| 7 |
+
model-index:
|
| 8 |
+
- name: Llama-2-7b-4bit-python-coder
|
| 9 |
+
results: []
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
language:
|
| 12 |
+
- code
|
| 13 |
+
datasets:
|
| 14 |
+
- iamtarun/python_code_instructions_18k_alpaca
|
| 15 |
+
pipeline_tag: text-generation
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# LlaMa 2 7b 4-bit Python Coder 👩💻
|
| 20 |
+
|
| 21 |
+
**LlaMa-2 7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** in 4-bit with [PEFT](https://github.com/huggingface/peft) library.
|
| 22 |
+
|
| 23 |
+
## Pretrained description
|
| 24 |
+
|
| 25 |
+
[Llama-2](https://huggingface.co/meta-llama/Llama-2-7b)
|
| 26 |
+
|
| 27 |
+
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters.
|
| 28 |
+
|
| 29 |
+
Model Architecture Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety
|
| 30 |
+
|
| 31 |
+
## Training data
|
| 32 |
+
|
| 33 |
+
[python_code_instructions_18k_alpaca](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca)
|
| 34 |
+
|
| 35 |
+
The dataset contains problem descriptions and code in python language. This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.
|
| 36 |
+
|
| 37 |
+
### Training hyperparameters
|
| 38 |
+
|
| 39 |
+
The following `bitsandbytes` quantization config was used during training:
|
| 40 |
+
- load_in_8bit: False
|
| 41 |
+
- load_in_4bit: True
|
| 42 |
+
- llm_int8_threshold: 6.0
|
| 43 |
+
- llm_int8_skip_modules: None
|
| 44 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
| 45 |
+
- llm_int8_has_fp16_weight: False
|
| 46 |
+
- bnb_4bit_quant_type: nf4
|
| 47 |
+
- bnb_4bit_use_double_quant: False
|
| 48 |
+
- bnb_4bit_compute_dtype: float16
|
| 49 |
+
|
| 50 |
+
**SFTTrainer arguments**
|
| 51 |
+
```py
|
| 52 |
+
# Number of training epochs
|
| 53 |
+
num_train_epochs = 1
|
| 54 |
+
# Enable fp16/bf16 training (set bf16 to True with an A100)
|
| 55 |
+
fp16 = False
|
| 56 |
+
bf16 = True
|
| 57 |
+
# Batch size per GPU for training
|
| 58 |
+
per_device_train_batch_size = 4
|
| 59 |
+
# Number of update steps to accumulate the gradients for
|
| 60 |
+
gradient_accumulation_steps = 1
|
| 61 |
+
# Enable gradient checkpointing
|
| 62 |
+
gradient_checkpointing = True
|
| 63 |
+
# Maximum gradient normal (gradient clipping)
|
| 64 |
+
max_grad_norm = 0.3
|
| 65 |
+
# Initial learning rate (AdamW optimizer)
|
| 66 |
+
learning_rate = 2e-4
|
| 67 |
+
# Weight decay to apply to all layers except bias/LayerNorm weights
|
| 68 |
+
weight_decay = 0.001
|
| 69 |
+
# Optimizer to use
|
| 70 |
+
optim = "paged_adamw_32bit"
|
| 71 |
+
# Learning rate schedule
|
| 72 |
+
lr_scheduler_type = "cosine" #"constant"
|
| 73 |
+
# Ratio of steps for a linear warmup (from 0 to learning rate)
|
| 74 |
+
warmup_ratio = 0.03
|
| 75 |
+
```
|
| 76 |
+
### Framework versions
|
| 77 |
+
- PEFT 0.4.0
|
| 78 |
+
|
| 79 |
+
### Example of usage
|
| 80 |
+
```py
|
| 81 |
+
import torch
|
| 82 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 83 |
+
|
| 84 |
+
model_id = "mrm8488/llama-2-coder-7b"
|
| 85 |
+
|
| 86 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 87 |
+
|
| 88 |
+
model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
|
| 89 |
+
|
| 90 |
+
sample = dataset[randrange(len(dataset))]
|
| 91 |
+
|
| 92 |
+
prompt = f"""### Instruction:
|
| 93 |
+
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.
|
| 94 |
+
|
| 95 |
+
### Task:
|
| 96 |
+
{sample['instruction']}
|
| 97 |
+
|
| 98 |
+
### Input:
|
| 99 |
+
{sample['input']}
|
| 100 |
+
|
| 101 |
+
### Response:
|
| 102 |
+
"""
|
| 103 |
+
|
| 104 |
+
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
|
| 105 |
+
# with torch.inference_mode():
|
| 106 |
+
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.5)
|
| 107 |
+
|
| 108 |
+
print(f"Prompt:\n{prompt}\n")
|
| 109 |
+
print(f"Generated instruction:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")
|
| 110 |
+
print(f"Ground truth:\n{sample['output']}")
|
| 111 |
+
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
### Citation
|
| 115 |
+
|
| 116 |
+
```
|
| 117 |
+
@misc {edumunozsala_2023,
|
| 118 |
+
author = { {Eduardo Muñoz} },
|
| 119 |
+
title = { llama-2-7b-int4-python-coder (Revision d30d193) },
|
| 120 |
+
year = 2023,
|
| 121 |
+
url = { https://huggingface.co/edumunozsala/llama-2-7b-int4-python-18k-alpaca },
|
| 122 |
+
doi = { 10.57967/hf/0931 },
|
| 123 |
+
publisher = { Hugging Face }
|
| 124 |
+
}
|
| 125 |
+
```
|