Push model using huggingface_hub.
Browse files- README.md +3 -3
- pytorch_model.bin +1 -1
README.md
CHANGED
|
@@ -24,7 +24,7 @@ You can then generate text as follows:
|
|
| 24 |
```python
|
| 25 |
from transformers import pipeline
|
| 26 |
|
| 27 |
-
generator = pipeline("text-generation", model="dshin//tmp/
|
| 28 |
outputs = generator("Hello, my llama is cute")
|
| 29 |
```
|
| 30 |
|
|
@@ -34,8 +34,8 @@ If you want to use the model for training or to obtain the outputs from the valu
|
|
| 34 |
from transformers import AutoTokenizer
|
| 35 |
from trl import AutoModelForCausalLMWithValueHead
|
| 36 |
|
| 37 |
-
tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/
|
| 38 |
-
model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/
|
| 39 |
|
| 40 |
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
|
| 41 |
outputs = model(**inputs, labels=inputs["input_ids"])
|
|
|
|
| 24 |
```python
|
| 25 |
from transformers import pipeline
|
| 26 |
|
| 27 |
+
generator = pipeline("text-generation", model="dshin//tmp/tmp3l_wgjg2/dshin/flan-t5-ppo")
|
| 28 |
outputs = generator("Hello, my llama is cute")
|
| 29 |
```
|
| 30 |
|
|
|
|
| 34 |
from transformers import AutoTokenizer
|
| 35 |
from trl import AutoModelForCausalLMWithValueHead
|
| 36 |
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained("dshin//tmp/tmp3l_wgjg2/dshin/flan-t5-ppo")
|
| 38 |
+
model = AutoModelForCausalLMWithValueHead.from_pretrained("dshin//tmp/tmp3l_wgjg2/dshin/flan-t5-ppo")
|
| 39 |
|
| 40 |
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
|
| 41 |
outputs = model(**inputs, labels=inputs["input_ids"])
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 990412605
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9033f0f57a7cd4983b4b26826dc4f84862b6e4216c197f1c8215b7f38d871a18
|
| 3 |
size 990412605
|