Commit
·
5f12b41
1
Parent(s):
0127b45
up
Browse files- controlnet_img2img.py +77 -0
controlnet_img2img.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
+
from huggingface_hub import HfApi
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from diffusers.utils import load_image
|
| 7 |
+
import cv2
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
from diffusers import (
|
| 12 |
+
ControlNetModel,
|
| 13 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
| 14 |
+
StableDiffusionControlNetInpaintPipeline,
|
| 15 |
+
DiffusionPipeline,
|
| 16 |
+
UniPCMultistepScheduler,
|
| 17 |
+
)
|
| 18 |
+
import sys
|
| 19 |
+
|
| 20 |
+
checkpoint = sys.argv[1]
|
| 21 |
+
|
| 22 |
+
# image = load_image(
|
| 23 |
+
# "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
|
| 24 |
+
# )
|
| 25 |
+
|
| 26 |
+
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
| 27 |
+
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
| 28 |
+
image = load_image(img_url).resize((512, 512))
|
| 29 |
+
mask_image = load_image(mask_url).resize((512, 512))
|
| 30 |
+
|
| 31 |
+
np_image = np.array(image)
|
| 32 |
+
|
| 33 |
+
low_threshold = 100
|
| 34 |
+
high_threshold = 200
|
| 35 |
+
|
| 36 |
+
np_image = cv2.Canny(np_image, low_threshold, high_threshold)
|
| 37 |
+
np_image = np_image[:, :, None]
|
| 38 |
+
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
|
| 39 |
+
canny_image = Image.fromarray(np_image)
|
| 40 |
+
|
| 41 |
+
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
|
| 42 |
+
# pipe = DiffusionPipeline.from_pretrained(
|
| 43 |
+
# "runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16, custom_pipeline="stable_diffusion_controlnet_inpaint"
|
| 44 |
+
# )
|
| 45 |
+
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 46 |
+
"runwayml/stable-diffusion-inpainting",
|
| 47 |
+
controlnet=controlnet,
|
| 48 |
+
torch_dtype=torch.float16,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 52 |
+
pipe.enable_model_cpu_offload()
|
| 53 |
+
|
| 54 |
+
generator = torch.manual_seed(0)
|
| 55 |
+
text_prompt="a blue dog"
|
| 56 |
+
# out_image = pipe("A blue dog", num_inference_steps=50, generator=generator, image=image, mask_image=mask_image, controlnet_conditioning_image=canny_image).images[0]
|
| 57 |
+
out_image = pipe(
|
| 58 |
+
text_prompt,
|
| 59 |
+
num_inference_steps=20,
|
| 60 |
+
generator=generator,
|
| 61 |
+
image=image,
|
| 62 |
+
mask_image=mask_image,
|
| 63 |
+
control_image=canny_image,
|
| 64 |
+
).images[0]
|
| 65 |
+
|
| 66 |
+
path = os.path.join(Path.home(), "images", "aa.png")
|
| 67 |
+
out_image.save(path)
|
| 68 |
+
|
| 69 |
+
api = HfApi()
|
| 70 |
+
|
| 71 |
+
api.upload_file(
|
| 72 |
+
path_or_fileobj=path,
|
| 73 |
+
path_in_repo=path.split("/")[-1],
|
| 74 |
+
repo_id="patrickvonplaten/images",
|
| 75 |
+
repo_type="dataset",
|
| 76 |
+
)
|
| 77 |
+
print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
|