File size: 6,548 Bytes
e5c924e 6886580 a585f92 6886580 e5c924e 6886580 04207f5 ac01a3e 6886580 ac01a3e 6886580 ac01a3e 70c8f6f ac01a3e 70c8f6f 6886580 14be679 6886580 70c8f6f 6886580 70c8f6f 6886580 70c8f6f 935acbd 70c8f6f ac01a3e 935acbd 6886580 70c8f6f 6886580 ac01a3e 6886580 ac01a3e 6886580 ac01a3e 6886580 a585f92 70c8f6f 935acbd 70c8f6f ac01a3e 6886580 a585f92 6886580 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
license: unknown
library_name: peft
tags:
- mistral
datasets:
- ehartford/dolphin
- garage-bAInd/Open-Platypus
inference: false
pipeline_tag: text-generation
base_model: mistralai/Mistral-7B-v0.1
---
# mistral-7b-instruct-v0.1
General instruction-following llm finetuned from [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1).
## Model Details
### Model Description
This instruction-following llm was built via parameter-efficient QLoRA finetuning of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin). Finetuning was executed on 1x A100 (40 GB SXM) for roughly 1 hour on Google Colab. **Only** the `peft` adapter weights are included in this model repo, alonside the tokenizer.
- **Developed by:** Daniel Furman
- **Model type:** Decoder-only
- **Language(s) (NLP):** English
- **License:** Yi model license
- **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
### Model Sources
- **Repository:** [github.com/daniel-furman/sft-demos](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/one_gpu/mistral/sft-mistral-7b-instruct-peft.ipynb)
### Evaluation
| Metric | Value |
|-----------------------|-------|
| MMLU (5-shot) | Coming |
| ARC (25-shot) | Coming |
| HellaSwag (10-shot) | Coming |
| TruthfulQA (0-shot) | Coming |
| Avg. | Coming |
We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
## Training
It took ~1 hour to train 1 epoch on 1x A100.
Prompt format:
This model (and all my future releases) use [ChatML](https://huggingface.co/docs/transformers/chat_templating#what-template-should-i-use) prompt format.
```
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
### Training Hyperparameters
```
We use the [`SFTTrainer`] (https://huggingface.co/docs/trl/main/en/sft_trainer) from 🤗's TRL package to easily fine-tune llms on instruction-following datasets.
The following `TrainingArguments` config was used:
- num_train_epochs = 1
- auto_find_batch_size = True
- gradient_accumulation_steps = 1
- optim = "paged_adamw_32bit"
- save_strategy = "epoch"
- learning_rate = 3e-4
- lr_scheduler_type = "cosine"
- warmup_ratio = 0.03
- logging_strategy = "steps"
- logging_steps = 25
- bf16 = True
The following `bitsandbytes` quantization config was used:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16
## How to Get Started with the Model
Use the code below to get started with the model.
```python
!pip install -q -U transformers peft torch accelerate bitsandbytes einops sentencepiece
import torch
from peft import PeftModel, PeftConfig
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
```
```python
peft_model_id = "dfurman/mistral-7b-instruct-v0.1"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(
config.base_model_name_or_path,
use_fast=True,
trust_remote_code=True,
)
model = PeftModel.from_pretrained(model, peft_model_id)
format_template = "You are a helpful assistant. Write a response that appropriately completes the request. {query}\n"
```
```python
query = "Write a short email inviting my friends to a dinner party on Friday. Respond succinctly."
prompt = format_template.format(query=query)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
with torch.autocast("cuda", dtype=torch.bfloat16):
output = model.generate(
input_ids=input_ids,
max_new_tokens=512,
do_sample=True,
temperature=0.1,
return_dict_in_generate=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
repetition_penalty=1.2,
no_repeat_ngram_size=5,
)
print("\n\n*** Generate:")
print(tokenizer.decode(output["sequences"][0][len(input_ids[0]):], skip_special_tokens=True))
```
<details>
<summary>Output</summary>
**Prompt**: Write a short email inviting my friends to a dinner party on Friday. Respond succinctly.
**Generation**: The invitation should be brief and to-the-point, so it's best to use simple language and avoid unnecessary details or long explanations. Here is an example of a concise invitation:
Dear Friends,
I hope you can join me for a fun evening at my place this Friday! We'll have delicious food, great conversation, and maybe even some games if we feel like it. Please RSVP by Wednesday night so I know who will be there.
Looking forward to seeing you all soon!
Best regards,
Your Name
This message clearly communicates the essential information about the event while maintaining a friendly tone. It also includes a specific date (Friday) and timeframe (evening), as well as a clear call to action (RSVP). The closing line adds a personal touch and expresses excitement for the gathering. Overall, this invitation strikes a good balance between being informative and engaging without overwhelming the reader with too much text.
Remember, when writing emails, always keep in mind your audience and their preferences. If they prefer more detailed information or additional context, adjust accordingly. However, try not to make the invitation overly complicated or lengthy – simplicity often makes for a better experience. Happy emailing!
</details>
### Speeds, Sizes, Times
| runtime / 50 tokens (sec) | GPU | attn | torch dtype | VRAM (GB) |
|:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:|
| 3.1 | 1x A100 (40 GB SXM) | torch | fp16 | 13 |
## Model Card Contact
dryanfurman at gmail
## Framework versions
- PEFT 0.6.0.dev0
|