Upload basic_inference_llama_2_13b_dolphin.ipynb
Browse files
assets/basic_inference_llama_2_13b_dolphin.ipynb
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": [],
|
| 7 |
+
"gpuType": "A100"
|
| 8 |
+
},
|
| 9 |
+
"kernelspec": {
|
| 10 |
+
"name": "python3",
|
| 11 |
+
"display_name": "Python 3"
|
| 12 |
+
},
|
| 13 |
+
"language_info": {
|
| 14 |
+
"name": "python"
|
| 15 |
+
},
|
| 16 |
+
"accelerator": "GPU"
|
| 17 |
+
},
|
| 18 |
+
"cells": [
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "code",
|
| 21 |
+
"execution_count": null,
|
| 22 |
+
"metadata": {
|
| 23 |
+
"id": "LqFeWyhye38d"
|
| 24 |
+
},
|
| 25 |
+
"outputs": [],
|
| 26 |
+
"source": [
|
| 27 |
+
"!pip install -q -U huggingface_hub peft transformers torch accelerate"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"source": [
|
| 33 |
+
"!nvidia-smi\n"
|
| 34 |
+
],
|
| 35 |
+
"metadata": {
|
| 36 |
+
"id": "y5FkaLZcfAHm"
|
| 37 |
+
},
|
| 38 |
+
"execution_count": null,
|
| 39 |
+
"outputs": []
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"source": [
|
| 44 |
+
"import torch\n",
|
| 45 |
+
"from peft import PeftModel, PeftConfig\n",
|
| 46 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer\n"
|
| 47 |
+
],
|
| 48 |
+
"metadata": {
|
| 49 |
+
"id": "EKXLttEgf06g"
|
| 50 |
+
},
|
| 51 |
+
"execution_count": null,
|
| 52 |
+
"outputs": []
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "code",
|
| 56 |
+
"source": [
|
| 57 |
+
"!huggingface-cli login"
|
| 58 |
+
],
|
| 59 |
+
"metadata": {
|
| 60 |
+
"id": "Q_8EpxK4gUZI"
|
| 61 |
+
},
|
| 62 |
+
"execution_count": null,
|
| 63 |
+
"outputs": []
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"cell_type": "code",
|
| 67 |
+
"source": [
|
| 68 |
+
"peft_model_id = \"dfurman/llama-2-13b-dolphin-peft\"\n",
|
| 69 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"tokenizer = AutoTokenizer.from_pretrained(\n",
|
| 72 |
+
" config.base_model_name_or_path,\n",
|
| 73 |
+
" use_auth_token=True\n",
|
| 74 |
+
")\n",
|
| 75 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
| 76 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
| 77 |
+
" config.base_model_name_or_path,\n",
|
| 78 |
+
" torch_dtype=torch.bfloat16,\n",
|
| 79 |
+
" device_map=\"auto\",\n",
|
| 80 |
+
" use_auth_token=True,\n",
|
| 81 |
+
")\n",
|
| 82 |
+
"\n",
|
| 83 |
+
"# Load the Lora model\n",
|
| 84 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
| 85 |
+
],
|
| 86 |
+
"metadata": {
|
| 87 |
+
"id": "AGxrbUqDgD8D"
|
| 88 |
+
},
|
| 89 |
+
"execution_count": null,
|
| 90 |
+
"outputs": []
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"cell_type": "code",
|
| 94 |
+
"source": [
|
| 95 |
+
"def llama_generate(\n",
|
| 96 |
+
" model: AutoModelForCausalLM,\n",
|
| 97 |
+
" tokenizer: AutoTokenizer,\n",
|
| 98 |
+
" prompt: str,\n",
|
| 99 |
+
" max_new_tokens: int = 128,\n",
|
| 100 |
+
" temperature: int = 1.0,\n",
|
| 101 |
+
") -> str:\n",
|
| 102 |
+
" \"\"\"\n",
|
| 103 |
+
" Initialize the pipeline\n",
|
| 104 |
+
" Uses Hugging Face GenerationConfig defaults\n",
|
| 105 |
+
" https://huggingface.co/docs/transformers/v4.29.1/en/main_classes/text_generation#transformers.GenerationConfig\n",
|
| 106 |
+
" Args:\n",
|
| 107 |
+
" model (transformers.AutoModelForCausalLM): Falcon model for text generation\n",
|
| 108 |
+
" tokenizer (transformers.AutoTokenizer): Tokenizer for model\n",
|
| 109 |
+
" prompt (str): Prompt for text generation\n",
|
| 110 |
+
" max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 128.\n",
|
| 111 |
+
" temperature (float, optional): The value used to modulate the next token probabilities.\n",
|
| 112 |
+
" Defaults to 1.0\n",
|
| 113 |
+
" \"\"\"\n",
|
| 114 |
+
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 115 |
+
"\n",
|
| 116 |
+
" inputs = tokenizer(\n",
|
| 117 |
+
" [prompt],\n",
|
| 118 |
+
" return_tensors=\"pt\",\n",
|
| 119 |
+
" return_token_type_ids=False,\n",
|
| 120 |
+
" ).to(\n",
|
| 121 |
+
" device\n",
|
| 122 |
+
" ) # tokenize inputs, load on device\n",
|
| 123 |
+
"\n",
|
| 124 |
+
" # when running Torch modules in lower precision, it is best practice to use the torch.autocast context manager.\n",
|
| 125 |
+
" with torch.autocast(\"cuda\", dtype=torch.bfloat16):\n",
|
| 126 |
+
" response = model.generate(\n",
|
| 127 |
+
" **inputs,\n",
|
| 128 |
+
" max_new_tokens=max_new_tokens,\n",
|
| 129 |
+
" temperature=temperature,\n",
|
| 130 |
+
" return_dict_in_generate=True,\n",
|
| 131 |
+
" eos_token_id=tokenizer.eos_token_id,\n",
|
| 132 |
+
" pad_token_id=tokenizer.pad_token_id,\n",
|
| 133 |
+
" )\n",
|
| 134 |
+
"\n",
|
| 135 |
+
" decoded_output = tokenizer.decode(\n",
|
| 136 |
+
" response[\"sequences\"][0],\n",
|
| 137 |
+
" skip_special_tokens=True,\n",
|
| 138 |
+
" ) # grab output in natural language\n",
|
| 139 |
+
"\n",
|
| 140 |
+
" return decoded_output[len(prompt) :] # remove prompt from output\n"
|
| 141 |
+
],
|
| 142 |
+
"metadata": {
|
| 143 |
+
"id": "OQD_s1-egFjB"
|
| 144 |
+
},
|
| 145 |
+
"execution_count": null,
|
| 146 |
+
"outputs": []
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "code",
|
| 150 |
+
"source": [
|
| 151 |
+
"prompt = \"Your are a helpful AI assistant. Write me a numbered list of things to do in New York City.\\n\"\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"response = llama_generate(\n",
|
| 154 |
+
" model,\n",
|
| 155 |
+
" tokenizer,\n",
|
| 156 |
+
" prompt,\n",
|
| 157 |
+
" max_new_tokens=150,\n",
|
| 158 |
+
" temperature=0.92,\n",
|
| 159 |
+
")\n",
|
| 160 |
+
"\n",
|
| 161 |
+
"print(response)"
|
| 162 |
+
],
|
| 163 |
+
"metadata": {
|
| 164 |
+
"id": "mKXUkc6BgjdL"
|
| 165 |
+
},
|
| 166 |
+
"execution_count": null,
|
| 167 |
+
"outputs": []
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "code",
|
| 171 |
+
"source": [],
|
| 172 |
+
"metadata": {
|
| 173 |
+
"id": "JOgPF_UdgnWr"
|
| 174 |
+
},
|
| 175 |
+
"execution_count": null,
|
| 176 |
+
"outputs": []
|
| 177 |
+
}
|
| 178 |
+
]
|
| 179 |
+
}
|