File size: 6,033 Bytes
b4f4f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "21111b1f-7cce-4e8b-8337-8f0cdab5804e",
   "metadata": {},
   "source": [
    "# AutoTrain"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dd09a9fd-4b90-48f3-b61c-d2349eb7f43e",
   "metadata": {},
   "source": [
    "## Imports"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "52543575-f92e-4038-ad13-30967f47eb7a",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import subprocess\n",
    "\n",
    "import yaml"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "74987944-abfb-44f8-9331-ffbb2f7698bb",
   "metadata": {},
   "source": [
    "## Config"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "97c25070-775a-4fb1-9694-4579250686a6",
   "metadata": {},
   "source": [
    "### Template\n",
    "Im creating a template so we can iterate through each of our experiments.\n",
    "\n",
    "Here you can see a few design decisions:\n",
    "- We leave `project_name` and `text_column` empty to overwrite later per experiment\n",
    "- We log in tensorboard, you can use wandb, but you will need to install it in the AutoTrain env that is run on spaces, which gets complex\n",
    "- I choose an `l4x1` from [these options](https://github.com/huggingface/autotrain-advanced/blob/2d787b2033414d06f1e9be2ea0caacad3097f5e8/src/autotrain/backends/base.py#L21)\n",
    "    - This is a [well priced](https://huggingface.co/pricing#spaces) way of training a 7B moodel \n",
    "    - It's very efficient as well at 24GB VRAM\n",
    "- It's becoming less common to use a `valid_split` \n",
    "- I run 2 epochs as the loss still decreases steadily, but some say for LoRAs you should just do 1\n",
    "- Its a good idea use `all-linear` when using LoRA "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dc2a8514-51c1-404b-8cfa-6637cc810668",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Base config\n",
    "config_template = {\n",
    "    \"task\": \"llm-sft\",\n",
    "    \"base_model\": \"mistralai/Mistral-7B-Instruct-v0.3\",\n",
    "    \"project_name\": \"\",\n",
    "    \"log\": \"tensorboard\",\n",
    "    \"backend\": \"spaces-l4x1\",\n",
    "    \"data\": {\n",
    "        \"path\": \"derek-thomas/labeled-multiple-choice-explained-mistral-tokenized\",\n",
    "        \"train_split\": \"train\",\n",
    "        \"valid_split\": None,\n",
    "        \"chat_template\": \"none\",\n",
    "        \"column_mapping\": {\n",
    "            \"text_column\": \"\"\n",
    "            },\n",
    "        },\n",
    "    \"params\": {\n",
    "        \"block_size\": 1024,\n",
    "        \"model_max_length\": 1024,\n",
    "        \"epochs\": 2,\n",
    "        \"batch_size\": 1,\n",
    "        \"lr\": 3e-5,\n",
    "        \"peft\": True,\n",
    "        \"quantization\": \"int4\",\n",
    "        \"target_modules\": \"all-linear\",\n",
    "        \"padding\": \"left\",\n",
    "        \"optimizer\": \"adamw_torch\",\n",
    "        \"scheduler\": \"linear\",\n",
    "        \"gradient_accumulation\": 8,\n",
    "        \"mixed_precision\": \"bf16\",\n",
    "        },\n",
    "    \"hub\": {\n",
    "        \"username\": \"derek-thomas\",\n",
    "        \"token\": os.getenv('HF_TOKEN'),\n",
    "        \"push_to_hub\": True,\n",
    "        },\n",
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "22eb3d3a-0ab0-4f79-98c2-513a34ce1b6d",
   "metadata": {},
   "source": [
    "### Experiments\n",
    "Here we choose the `project_name` and `text_column` for each experiment."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "957eb2b7-feec-422f-ba46-b293d9a77c1b",
   "metadata": {},
   "outputs": [],
   "source": [
    "project_suffixes = [\"RFA-gpt3-5\", \"RFA-mistral\", \"FAR-gpt3-5\", \"FAR-mistral\", \"FA\"]\n",
    "text_columns = [\"conversation_RFA_gpt3_5\", \"conversation_RFA_mistral\", \"conversation_FAR_gpt3_5\",\n",
    "                \"conversation_FAR_mistral\", \"conversation_FA\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a5913085-83c9-4133-a90d-318fd13cc14e",
   "metadata": {},
   "source": [
    "Directory to store generated configs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b86702bf-f494-4951-863e-be5b8462fbd1",
   "metadata": {},
   "outputs": [],
   "source": [
    "output_dir = \"./autotrain_configs\"\n",
    "os.makedirs(output_dir, exist_ok=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3053d1e1-ca40-460c-8999-0787a1751d00",
   "metadata": {},
   "source": [
    "## AutoTrain for each Experiment"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "025ccd2f-de54-4ac2-9f36-f606876dcd3c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Generate configs and run commands\n",
    "for project_suffix, text_column in zip(project_suffixes, text_columns):\n",
    "    # Modify the config\n",
    "    config = config_template.copy()\n",
    "    config[\"project_name\"] = f\"mistral-v03-poe-{project_suffix}\"\n",
    "    config[\"data\"][\"column_mapping\"][\"text_column\"] = text_column\n",
    "\n",
    "    # Save the config to a YAML file\n",
    "    config_path = os.path.join(output_dir, f\"{text_column}.yml\")\n",
    "    with open(config_path, \"w\") as f:\n",
    "        yaml.dump(config, f)\n",
    "\n",
    "    # Run the command\n",
    "    print(f\"Running autotrain with config: {config_path}\")\n",
    "    subprocess.run([\"autotrain\", \"--config\", config_path])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}