Text-to-Speech
English
deno34 commited on
Commit
faaf61b
·
verified ·
1 Parent(s): 0ebaec6

Upload VOICES.md

Browse files
Files changed (1) hide show
  1. VOICES.md +161 -0
VOICES.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Voices
2
+
3
+ - 🇺🇸 [American English](#american-english): 11F 9M
4
+ - 🇬🇧 [British English](#british-english): 4F 4M
5
+ - 🇯🇵 [Japanese](#japanese): 4F 1M
6
+ - 🇨🇳 [Mandarin Chinese](#mandarin-chinese): 4F 4M
7
+ - 🇪🇸 [Spanish](#spanish): 1F 2M
8
+ - 🇫🇷 [French](#french): 1F
9
+ - 🇮🇳 [Hindi](#hindi): 2F 2M
10
+ - 🇮🇹 [Italian](#italian): 1F 1M
11
+ - 🇧🇷 [Brazilian Portuguese](#brazilian-portuguese): 1F 2M
12
+
13
+ For each voice, the given grades are intended to be estimates of the **quality and quantity** of its associated training data, both of which impact overall inference quality.
14
+
15
+ Subjectively, voices will sound better or worse to different people.
16
+
17
+ Support for non-English languages may be absent or thin due to weak G2P and/or lack of training data. Some languages are only represented by a small handful or even just one voice (French).
18
+
19
+ Most voices perform best on a "goldilocks range" of 100-200 tokens out of ~500 possible. Voices may perform worse at the extremes:
20
+ - **Weakness** on short utterances, especially less than 10-20 tokens. Root cause could be lack of short-utterance training data and/or model architecture. One possible inference mitigation is to bundle shorter utterances together.
21
+ - **Rushing** on long utterances, especially over 400 tokens. You can chunk down to shorter utterances or adjust the `speed` parameter to mitigate this.
22
+
23
+ **Target Quality**
24
+ - How high quality is the reference voice? This grade may be impacted by audio quality, artifacts, compression, & sample rate.
25
+ - How well do the text labels match the audio? Text/audio misalignment (e.g. from hallucinations) will lower this grade.
26
+
27
+ **Training Duration**
28
+ - How much audio was seen during training? Smaller durations result in a lower overall grade.
29
+ - 10 hours <= **HH hours** < 100 hours
30
+ - 1 hour <= H hours < 10 hours
31
+ - 10 minutes <= MM minutes < 100 minutes
32
+ - 1 minute <= _M minutes_ 🤏 < 10 minutes
33
+
34
+ ### American English
35
+
36
+ - `lang_code='a'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
37
+ - espeak-ng `en-us` fallback
38
+
39
+ | Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
40
+ | ---- | ------ | -------------- | ----------------- | ------------- | ------ |
41
+ | **af\_heart** | 🚺❤️ | | | **A** | `0ab5709b` |
42
+ | af_alloy | 🚺 | B | MM minutes | C | `6d877149` |
43
+ | af_aoede | 🚺 | B | H hours | C+ | `c03bd1a4` |
44
+ | af_bella | 🚺🔥 | **A** | **HH hours** | **A-** | `8cb64e02` |
45
+ | af_jessica | 🚺 | C | MM minutes | D | `cdfdccb8` |
46
+ | af_kore | 🚺 | B | H hours | C+ | `8bfbc512` |
47
+ | af_nicole | 🚺🎧 | B | **HH hours** | B- | `c5561808` |
48
+ | af_nova | 🚺 | B | MM minutes | C | `e0233676` |
49
+ | af_river | 🚺 | C | MM minutes | D | `e149459b` |
50
+ | af_sarah | 🚺 | B | H hours | C+ | `49bd364e` |
51
+ | af_sky | 🚺 | B | _M minutes_ 🤏 | C- | `c799548a` |
52
+ | am_adam | 🚹 | D | H hours | F+ | `ced7e284` |
53
+ | am_echo | 🚹 | C | MM minutes | D | `8bcfdc85` |
54
+ | am_eric | 🚹 | C | MM minutes | D | `ada66f0e` |
55
+ | am_fenrir | 🚹 | B | H hours | C+ | `98e507ec` |
56
+ | am_liam | 🚹 | C | MM minutes | D | `c8255075` |
57
+ | am_michael | 🚹 | B | H hours | C+ | `9a443b79` |
58
+ | am_onyx | 🚹 | C | MM minutes | D | `e8452be1` |
59
+ | am_puck | 🚹 | B | H hours | C+ | `dd1d8973` |
60
+ | am_santa | 🚹 | C | _M minutes_ 🤏 | D- | `7f2f7582` |
61
+
62
+ ### British English
63
+
64
+ - `lang_code='b'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
65
+ - espeak-ng `en-gb` fallback
66
+
67
+ | Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
68
+ | ---- | ------ | -------------- | ----------------- | ------------- | ------ |
69
+ | bf_alice | 🚺 | C | MM minutes | D | `d292651b` |
70
+ | bf_emma | 🚺 | B | **HH hours** | B- | `d0a423de` |
71
+ | bf_isabella | 🚺 | B | MM minutes | C | `cdd4c370` |
72
+ | bf_lily | 🚺 | C | MM minutes | D | `6e09c2e4` |
73
+ | bm_daniel | 🚹 | C | MM minutes | D | `fc3fce4e` |
74
+ | bm_fable | 🚹 | B | MM minutes | C | `d44935f3` |
75
+ | bm_george | 🚹 | B | MM minutes | C | `f1bc8122` |
76
+ | bm_lewis | 🚹 | C | H hours | D+ | `b5204750` |
77
+
78
+ ### Japanese
79
+
80
+ - `lang_code='j'` in [`misaki[ja]`](https://github.com/hexgrad/misaki)
81
+ - Total Japanese training data: H hours
82
+
83
+ | Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | CC BY |
84
+ | ---- | ------ | -------------- | ----------------- | ------------- | ------ | ----- |
85
+ | jf_alpha | 🚺 | B | H hours | C+ | `1bf4c9dc` | |
86
+ | jf_gongitsune | 🚺 | B | MM minutes | C | `1b171917` | [gongitsune](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__gongitsune.txt) |
87
+ | jf_nezumi | 🚺 | B | _M minutes_ 🤏 | C- | `d83f007a` | [nezuminoyomeiri](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__nezuminoyomeiri.txt) |
88
+ | jf_tebukuro | 🚺 | B | MM minutes | C | `0d691790` | [tebukurowokaini](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__tebukurowokaini.txt) |
89
+ | jm_kumo | 🚹 | B | _M minutes_ 🤏 | C- | `98340afd` | [kumonoito](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__kumonoito.txt) |
90
+
91
+ ### Mandarin Chinese
92
+
93
+ - `lang_code='z'` in [`misaki[zh]`](https://github.com/hexgrad/misaki)
94
+ - Total Mandarin Chinese training data: H hours
95
+
96
+ | Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
97
+ | ---- | ------ | -------------- | ----------------- | ------------- | ------ |
98
+ | zf_xiaobei | 🚺 | C | MM minutes | D | `9b76be63` |
99
+ | zf_xiaoni | 🚺 | C | MM minutes | D | `95b49f16` |
100
+ | zf_xiaoxiao | 🚺 | C | MM minutes | D | `cfaf6f2d` |
101
+ | zf_xiaoyi | 🚺 | C | MM minutes | D | `b5235dba` |
102
+ | zm_yunjian | 🚹 | C | MM minutes | D | `76cbf8ba` |
103
+ | zm_yunxi | 🚹 | C | MM minutes | D | `dbe6e1ce` |
104
+ | zm_yunxia | 🚹 | C | MM minutes | D | `bb2b03b0` |
105
+ | zm_yunyang | 🚹 | C | MM minutes | D | `5238ac22` |
106
+
107
+ ### Spanish
108
+
109
+ - `lang_code='e'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
110
+ - espeak-ng `es`
111
+
112
+ | Name | Traits | SHA256 |
113
+ | ---- | ------ | ------ |
114
+ | ef_dora | 🚺 | `d9d69b0f` |
115
+ | em_alex | 🚹 | `5eac53f7` |
116
+ | em_santa | 🚹 | `aa8620cb` |
117
+
118
+ ### French
119
+
120
+ - `lang_code='f'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
121
+ - espeak-ng `fr-fr`
122
+ - Total French training data: <11 hours
123
+
124
+ | Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | CC BY |
125
+ | ---- | ------ | -------------- | ----------------- | ------------- | ------ | ----- |
126
+ | ff_siwis | 🚺 | B | <11 hours | B- | `8073bf2d` | [SIWIS](https://datashare.ed.ac.uk/handle/10283/2353) |
127
+
128
+ ### Hindi
129
+
130
+ - `lang_code='h'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
131
+ - espeak-ng `hi`
132
+ - Total Hindi training data: H hours
133
+
134
+ | Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
135
+ | ---- | ------ | -------------- | ----------------- | ------------- | ------ |
136
+ | hf_alpha | 🚺 | B | MM minutes | C | `06906fe0` |
137
+ | hf_beta | 🚺 | B | MM minutes | C | `63c0a1a6` |
138
+ | hm_omega | 🚹 | B | MM minutes | C | `b55f02a8` |
139
+ | hm_psi | 🚹 | B | MM minutes | C | `2f0f055c` |
140
+
141
+ ### Italian
142
+
143
+ - `lang_code='i'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
144
+ - espeak-ng `it`
145
+ - Total Italian training data: H hours
146
+
147
+ | Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
148
+ | ---- | ------ | -------------- | ----------------- | ------------- | ------ |
149
+ | if_sara | 🚺 | B | MM minutes | C | `6c0b253b` |
150
+ | im_nicola | 🚹 | B | MM minutes | C | `234ed066` |
151
+
152
+ ### Brazilian Portuguese
153
+
154
+ - `lang_code='p'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
155
+ - espeak-ng `pt-br`
156
+
157
+ | Name | Traits | SHA256 |
158
+ | ---- | ------ | ------ |
159
+ | pf_dora | 🚺 | `07e4ff98` |
160
+ | pm_alex | 🚹 | `cf0ba8c5` |
161
+ | pm_santa | 🚹 | `d4210316` |