Upload VOICES.md
Browse files
VOICES.md
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Voices
|
2 |
+
|
3 |
+
- 🇺🇸 [American English](#american-english): 11F 9M
|
4 |
+
- 🇬🇧 [British English](#british-english): 4F 4M
|
5 |
+
- 🇯🇵 [Japanese](#japanese): 4F 1M
|
6 |
+
- 🇨🇳 [Mandarin Chinese](#mandarin-chinese): 4F 4M
|
7 |
+
- 🇪🇸 [Spanish](#spanish): 1F 2M
|
8 |
+
- 🇫🇷 [French](#french): 1F
|
9 |
+
- 🇮🇳 [Hindi](#hindi): 2F 2M
|
10 |
+
- 🇮🇹 [Italian](#italian): 1F 1M
|
11 |
+
- 🇧🇷 [Brazilian Portuguese](#brazilian-portuguese): 1F 2M
|
12 |
+
|
13 |
+
For each voice, the given grades are intended to be estimates of the **quality and quantity** of its associated training data, both of which impact overall inference quality.
|
14 |
+
|
15 |
+
Subjectively, voices will sound better or worse to different people.
|
16 |
+
|
17 |
+
Support for non-English languages may be absent or thin due to weak G2P and/or lack of training data. Some languages are only represented by a small handful or even just one voice (French).
|
18 |
+
|
19 |
+
Most voices perform best on a "goldilocks range" of 100-200 tokens out of ~500 possible. Voices may perform worse at the extremes:
|
20 |
+
- **Weakness** on short utterances, especially less than 10-20 tokens. Root cause could be lack of short-utterance training data and/or model architecture. One possible inference mitigation is to bundle shorter utterances together.
|
21 |
+
- **Rushing** on long utterances, especially over 400 tokens. You can chunk down to shorter utterances or adjust the `speed` parameter to mitigate this.
|
22 |
+
|
23 |
+
**Target Quality**
|
24 |
+
- How high quality is the reference voice? This grade may be impacted by audio quality, artifacts, compression, & sample rate.
|
25 |
+
- How well do the text labels match the audio? Text/audio misalignment (e.g. from hallucinations) will lower this grade.
|
26 |
+
|
27 |
+
**Training Duration**
|
28 |
+
- How much audio was seen during training? Smaller durations result in a lower overall grade.
|
29 |
+
- 10 hours <= **HH hours** < 100 hours
|
30 |
+
- 1 hour <= H hours < 10 hours
|
31 |
+
- 10 minutes <= MM minutes < 100 minutes
|
32 |
+
- 1 minute <= _M minutes_ 🤏 < 10 minutes
|
33 |
+
|
34 |
+
### American English
|
35 |
+
|
36 |
+
- `lang_code='a'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
|
37 |
+
- espeak-ng `en-us` fallback
|
38 |
+
|
39 |
+
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
40 |
+
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
41 |
+
| **af\_heart** | 🚺❤️ | | | **A** | `0ab5709b` |
|
42 |
+
| af_alloy | 🚺 | B | MM minutes | C | `6d877149` |
|
43 |
+
| af_aoede | 🚺 | B | H hours | C+ | `c03bd1a4` |
|
44 |
+
| af_bella | 🚺🔥 | **A** | **HH hours** | **A-** | `8cb64e02` |
|
45 |
+
| af_jessica | 🚺 | C | MM minutes | D | `cdfdccb8` |
|
46 |
+
| af_kore | 🚺 | B | H hours | C+ | `8bfbc512` |
|
47 |
+
| af_nicole | 🚺🎧 | B | **HH hours** | B- | `c5561808` |
|
48 |
+
| af_nova | 🚺 | B | MM minutes | C | `e0233676` |
|
49 |
+
| af_river | 🚺 | C | MM minutes | D | `e149459b` |
|
50 |
+
| af_sarah | 🚺 | B | H hours | C+ | `49bd364e` |
|
51 |
+
| af_sky | 🚺 | B | _M minutes_ 🤏 | C- | `c799548a` |
|
52 |
+
| am_adam | 🚹 | D | H hours | F+ | `ced7e284` |
|
53 |
+
| am_echo | 🚹 | C | MM minutes | D | `8bcfdc85` |
|
54 |
+
| am_eric | 🚹 | C | MM minutes | D | `ada66f0e` |
|
55 |
+
| am_fenrir | 🚹 | B | H hours | C+ | `98e507ec` |
|
56 |
+
| am_liam | 🚹 | C | MM minutes | D | `c8255075` |
|
57 |
+
| am_michael | 🚹 | B | H hours | C+ | `9a443b79` |
|
58 |
+
| am_onyx | 🚹 | C | MM minutes | D | `e8452be1` |
|
59 |
+
| am_puck | 🚹 | B | H hours | C+ | `dd1d8973` |
|
60 |
+
| am_santa | 🚹 | C | _M minutes_ 🤏 | D- | `7f2f7582` |
|
61 |
+
|
62 |
+
### British English
|
63 |
+
|
64 |
+
- `lang_code='b'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
|
65 |
+
- espeak-ng `en-gb` fallback
|
66 |
+
|
67 |
+
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
68 |
+
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
69 |
+
| bf_alice | 🚺 | C | MM minutes | D | `d292651b` |
|
70 |
+
| bf_emma | 🚺 | B | **HH hours** | B- | `d0a423de` |
|
71 |
+
| bf_isabella | 🚺 | B | MM minutes | C | `cdd4c370` |
|
72 |
+
| bf_lily | 🚺 | C | MM minutes | D | `6e09c2e4` |
|
73 |
+
| bm_daniel | 🚹 | C | MM minutes | D | `fc3fce4e` |
|
74 |
+
| bm_fable | 🚹 | B | MM minutes | C | `d44935f3` |
|
75 |
+
| bm_george | 🚹 | B | MM minutes | C | `f1bc8122` |
|
76 |
+
| bm_lewis | 🚹 | C | H hours | D+ | `b5204750` |
|
77 |
+
|
78 |
+
### Japanese
|
79 |
+
|
80 |
+
- `lang_code='j'` in [`misaki[ja]`](https://github.com/hexgrad/misaki)
|
81 |
+
- Total Japanese training data: H hours
|
82 |
+
|
83 |
+
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | CC BY |
|
84 |
+
| ---- | ------ | -------------- | ----------------- | ------------- | ------ | ----- |
|
85 |
+
| jf_alpha | 🚺 | B | H hours | C+ | `1bf4c9dc` | |
|
86 |
+
| jf_gongitsune | 🚺 | B | MM minutes | C | `1b171917` | [gongitsune](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__gongitsune.txt) |
|
87 |
+
| jf_nezumi | 🚺 | B | _M minutes_ 🤏 | C- | `d83f007a` | [nezuminoyomeiri](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__nezuminoyomeiri.txt) |
|
88 |
+
| jf_tebukuro | 🚺 | B | MM minutes | C | `0d691790` | [tebukurowokaini](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__tebukurowokaini.txt) |
|
89 |
+
| jm_kumo | 🚹 | B | _M minutes_ 🤏 | C- | `98340afd` | [kumonoito](https://github.com/koniwa/koniwa/blob/master/source/tnc/tnc__kumonoito.txt) |
|
90 |
+
|
91 |
+
### Mandarin Chinese
|
92 |
+
|
93 |
+
- `lang_code='z'` in [`misaki[zh]`](https://github.com/hexgrad/misaki)
|
94 |
+
- Total Mandarin Chinese training data: H hours
|
95 |
+
|
96 |
+
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
97 |
+
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
98 |
+
| zf_xiaobei | 🚺 | C | MM minutes | D | `9b76be63` |
|
99 |
+
| zf_xiaoni | 🚺 | C | MM minutes | D | `95b49f16` |
|
100 |
+
| zf_xiaoxiao | 🚺 | C | MM minutes | D | `cfaf6f2d` |
|
101 |
+
| zf_xiaoyi | 🚺 | C | MM minutes | D | `b5235dba` |
|
102 |
+
| zm_yunjian | 🚹 | C | MM minutes | D | `76cbf8ba` |
|
103 |
+
| zm_yunxi | 🚹 | C | MM minutes | D | `dbe6e1ce` |
|
104 |
+
| zm_yunxia | 🚹 | C | MM minutes | D | `bb2b03b0` |
|
105 |
+
| zm_yunyang | 🚹 | C | MM minutes | D | `5238ac22` |
|
106 |
+
|
107 |
+
### Spanish
|
108 |
+
|
109 |
+
- `lang_code='e'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
|
110 |
+
- espeak-ng `es`
|
111 |
+
|
112 |
+
| Name | Traits | SHA256 |
|
113 |
+
| ---- | ------ | ------ |
|
114 |
+
| ef_dora | 🚺 | `d9d69b0f` |
|
115 |
+
| em_alex | 🚹 | `5eac53f7` |
|
116 |
+
| em_santa | 🚹 | `aa8620cb` |
|
117 |
+
|
118 |
+
### French
|
119 |
+
|
120 |
+
- `lang_code='f'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
|
121 |
+
- espeak-ng `fr-fr`
|
122 |
+
- Total French training data: <11 hours
|
123 |
+
|
124 |
+
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 | CC BY |
|
125 |
+
| ---- | ------ | -------------- | ----------------- | ------------- | ------ | ----- |
|
126 |
+
| ff_siwis | 🚺 | B | <11 hours | B- | `8073bf2d` | [SIWIS](https://datashare.ed.ac.uk/handle/10283/2353) |
|
127 |
+
|
128 |
+
### Hindi
|
129 |
+
|
130 |
+
- `lang_code='h'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
|
131 |
+
- espeak-ng `hi`
|
132 |
+
- Total Hindi training data: H hours
|
133 |
+
|
134 |
+
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
135 |
+
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
136 |
+
| hf_alpha | 🚺 | B | MM minutes | C | `06906fe0` |
|
137 |
+
| hf_beta | 🚺 | B | MM minutes | C | `63c0a1a6` |
|
138 |
+
| hm_omega | 🚹 | B | MM minutes | C | `b55f02a8` |
|
139 |
+
| hm_psi | 🚹 | B | MM minutes | C | `2f0f055c` |
|
140 |
+
|
141 |
+
### Italian
|
142 |
+
|
143 |
+
- `lang_code='i'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
|
144 |
+
- espeak-ng `it`
|
145 |
+
- Total Italian training data: H hours
|
146 |
+
|
147 |
+
| Name | Traits | Target Quality | Training Duration | Overall Grade | SHA256 |
|
148 |
+
| ---- | ------ | -------------- | ----------------- | ------------- | ------ |
|
149 |
+
| if_sara | 🚺 | B | MM minutes | C | `6c0b253b` |
|
150 |
+
| im_nicola | 🚹 | B | MM minutes | C | `234ed066` |
|
151 |
+
|
152 |
+
### Brazilian Portuguese
|
153 |
+
|
154 |
+
- `lang_code='p'` in [`misaki[en]`](https://github.com/hexgrad/misaki)
|
155 |
+
- espeak-ng `pt-br`
|
156 |
+
|
157 |
+
| Name | Traits | SHA256 |
|
158 |
+
| ---- | ------ | ------ |
|
159 |
+
| pf_dora | 🚺 | `07e4ff98` |
|
160 |
+
| pm_alex | 🚹 | `cf0ba8c5` |
|
161 |
+
| pm_santa | 🚹 | `d4210316` |
|