Update README.md
Browse files
README.md
CHANGED
|
@@ -1,10 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Encoder-Decoder model with DeBERTa decoder
|
| 2 |
|
| 3 |
## pre-trained models
|
| 4 |
|
| 5 |
-
Encoder: `microsoft/deberta-v3-small`
|
| 6 |
|
| 7 |
-
Decoder: `deliciouscat/deberta-v3-base-decoder-v0.1
|
| 8 |
|
| 9 |
## Data used
|
| 10 |
|
|
@@ -12,20 +18,23 @@ Decoder: `deliciouscat/deberta-v3-base-decoder-v0.1`; 6 transformer layers, 8 at
|
|
| 12 |
|
| 13 |
## Training hparams
|
| 14 |
|
| 15 |
-
optimizer: AdamW, lr=2.3e-5, betas=(0.875, 0.997)
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
## How to use
|
| 19 |
|
| 20 |
```
|
| 21 |
from transformers import AutoTokenizer, EncoderDecoderModel
|
| 22 |
|
| 23 |
-
model = EncoderDecoderModel.from_pretrained("
|
| 24 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 25 |
```
|
| 26 |
|
| 27 |
## Future work!
|
| 28 |
|
| 29 |
-
train more scientific data
|
| 30 |
|
| 31 |
-
fine-tune on keyword extraction task
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- HuggingFaceFW/fineweb
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
---
|
| 7 |
# Encoder-Decoder model with DeBERTa decoder
|
| 8 |
|
| 9 |
## pre-trained models
|
| 10 |
|
| 11 |
+
- Encoder: `microsoft/deberta-v3-small`
|
| 12 |
|
| 13 |
+
- Decoder: `deliciouscat/deberta-v3-base-decoder-v0.1` (6 transformer layers, 8 attention heads)
|
| 14 |
|
| 15 |
## Data used
|
| 16 |
|
|
|
|
| 18 |
|
| 19 |
## Training hparams
|
| 20 |
|
| 21 |
+
- optimizer: AdamW, lr=2.3e-5, betas=(0.875, 0.997)
|
| 22 |
+
|
| 23 |
+
- batch size: 12 (maximal on Colab pro A100 env)
|
| 24 |
+
|
| 25 |
+
-> training on denoising objective (BART)
|
| 26 |
|
| 27 |
## How to use
|
| 28 |
|
| 29 |
```
|
| 30 |
from transformers import AutoTokenizer, EncoderDecoderModel
|
| 31 |
|
| 32 |
+
model = EncoderDecoderModel.from_pretrained("deliciouscat/deberta-v3-base-encoder-decoder-v0.2")
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained("deliciouscat/deberta-v3-base-encoder-decoder-v0.2")
|
| 34 |
```
|
| 35 |
|
| 36 |
## Future work!
|
| 37 |
|
| 38 |
+
- train more scientific data
|
| 39 |
|
| 40 |
+
- fine-tune on keyword extraction task
|