Small fix
Browse files- config.json +0 -3
- configuration_deepseek.py +0 -11
- modeling_deepseek.py +1 -2
config.json
CHANGED
|
@@ -9,7 +9,6 @@
|
|
| 9 |
"AutoModel": "modeling_deepseek.DeepseekV3Model",
|
| 10 |
"AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
|
| 11 |
},
|
| 12 |
-
"aux_loss_alpha": 0.001,
|
| 13 |
"bos_token_id": 0,
|
| 14 |
"eos_token_id": 1,
|
| 15 |
"ep_size": 1,
|
|
@@ -32,7 +31,6 @@
|
|
| 32 |
"num_hidden_layers": 61,
|
| 33 |
"num_key_value_heads": 128,
|
| 34 |
"num_nextn_predict_layers": 1,
|
| 35 |
-
"pretraining_tp": 1,
|
| 36 |
"q_lora_rank": 1536,
|
| 37 |
"qk_nope_head_dim": 128,
|
| 38 |
"qk_rope_head_dim": 64,
|
|
@@ -58,7 +56,6 @@
|
|
| 58 |
"rope_theta": 10000,
|
| 59 |
"routed_scaling_factor": 2.5,
|
| 60 |
"scoring_func": "sigmoid",
|
| 61 |
-
"seq_aux": true,
|
| 62 |
"tie_word_embeddings": false,
|
| 63 |
"topk_group": 4,
|
| 64 |
"topk_method": "noaux_tc",
|
|
|
|
| 9 |
"AutoModel": "modeling_deepseek.DeepseekV3Model",
|
| 10 |
"AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
|
| 11 |
},
|
|
|
|
| 12 |
"bos_token_id": 0,
|
| 13 |
"eos_token_id": 1,
|
| 14 |
"ep_size": 1,
|
|
|
|
| 31 |
"num_hidden_layers": 61,
|
| 32 |
"num_key_value_heads": 128,
|
| 33 |
"num_nextn_predict_layers": 1,
|
|
|
|
| 34 |
"q_lora_rank": 1536,
|
| 35 |
"qk_nope_head_dim": 128,
|
| 36 |
"qk_rope_head_dim": 64,
|
|
|
|
| 56 |
"rope_theta": 10000,
|
| 57 |
"routed_scaling_factor": 2.5,
|
| 58 |
"scoring_func": "sigmoid",
|
|
|
|
| 59 |
"tie_word_embeddings": false,
|
| 60 |
"topk_group": 4,
|
| 61 |
"topk_method": "noaux_tc",
|
configuration_deepseek.py
CHANGED
|
@@ -82,11 +82,6 @@ class DeepseekV3Config(PretrainedConfig):
|
|
| 82 |
Beginning of stream token id.
|
| 83 |
eos_token_id (`int`, *optional*, defaults to 2):
|
| 84 |
End of stream token id.
|
| 85 |
-
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 86 |
-
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 87 |
-
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
| 88 |
-
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
| 89 |
-
issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 90 |
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 91 |
Whether to tie weight embeddings
|
| 92 |
rope_theta (`float`, *optional*, defaults to 10000.0):
|
|
@@ -141,8 +136,6 @@ class DeepseekV3Config(PretrainedConfig):
|
|
| 141 |
first_k_dense_replace = 3,
|
| 142 |
norm_topk_prob = True,
|
| 143 |
scoring_func = 'sigmoid',
|
| 144 |
-
aux_loss_alpha = 0.001,
|
| 145 |
-
seq_aux = True,
|
| 146 |
hidden_act="silu",
|
| 147 |
max_position_embeddings=4096,
|
| 148 |
initializer_range=0.02,
|
|
@@ -151,7 +144,6 @@ class DeepseekV3Config(PretrainedConfig):
|
|
| 151 |
pad_token_id=None,
|
| 152 |
bos_token_id=0,
|
| 153 |
eos_token_id=1,
|
| 154 |
-
pretraining_tp=1,
|
| 155 |
tie_word_embeddings=False,
|
| 156 |
rope_theta=10000.0,
|
| 157 |
rope_scaling=None,
|
|
@@ -184,8 +176,6 @@ class DeepseekV3Config(PretrainedConfig):
|
|
| 184 |
self.first_k_dense_replace = first_k_dense_replace
|
| 185 |
self.norm_topk_prob = norm_topk_prob
|
| 186 |
self.scoring_func = scoring_func
|
| 187 |
-
self.aux_loss_alpha = aux_loss_alpha
|
| 188 |
-
self.seq_aux = seq_aux
|
| 189 |
# for backward compatibility
|
| 190 |
if num_key_value_heads is None:
|
| 191 |
num_key_value_heads = num_attention_heads
|
|
@@ -194,7 +184,6 @@ class DeepseekV3Config(PretrainedConfig):
|
|
| 194 |
self.hidden_act = hidden_act
|
| 195 |
self.initializer_range = initializer_range
|
| 196 |
self.rms_norm_eps = rms_norm_eps
|
| 197 |
-
self.pretraining_tp = pretraining_tp
|
| 198 |
self.use_cache = use_cache
|
| 199 |
self.rope_theta = rope_theta
|
| 200 |
self.rope_scaling = rope_scaling
|
|
|
|
| 82 |
Beginning of stream token id.
|
| 83 |
eos_token_id (`int`, *optional*, defaults to 2):
|
| 84 |
End of stream token id.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 86 |
Whether to tie weight embeddings
|
| 87 |
rope_theta (`float`, *optional*, defaults to 10000.0):
|
|
|
|
| 136 |
first_k_dense_replace = 3,
|
| 137 |
norm_topk_prob = True,
|
| 138 |
scoring_func = 'sigmoid',
|
|
|
|
|
|
|
| 139 |
hidden_act="silu",
|
| 140 |
max_position_embeddings=4096,
|
| 141 |
initializer_range=0.02,
|
|
|
|
| 144 |
pad_token_id=None,
|
| 145 |
bos_token_id=0,
|
| 146 |
eos_token_id=1,
|
|
|
|
| 147 |
tie_word_embeddings=False,
|
| 148 |
rope_theta=10000.0,
|
| 149 |
rope_scaling=None,
|
|
|
|
| 176 |
self.first_k_dense_replace = first_k_dense_replace
|
| 177 |
self.norm_topk_prob = norm_topk_prob
|
| 178 |
self.scoring_func = scoring_func
|
|
|
|
|
|
|
| 179 |
# for backward compatibility
|
| 180 |
if num_key_value_heads is None:
|
| 181 |
num_key_value_heads = num_attention_heads
|
|
|
|
| 184 |
self.hidden_act = hidden_act
|
| 185 |
self.initializer_range = initializer_range
|
| 186 |
self.rms_norm_eps = rms_norm_eps
|
|
|
|
| 187 |
self.use_cache = use_cache
|
| 188 |
self.rope_theta = rope_theta
|
| 189 |
self.rope_scaling = rope_scaling
|
modeling_deepseek.py
CHANGED
|
@@ -398,7 +398,6 @@ class MoEGate(nn.Module):
|
|
| 398 |
self.n_routed_experts = config.n_routed_experts
|
| 399 |
self.routed_scaling_factor = config.routed_scaling_factor
|
| 400 |
self.scoring_func = config.scoring_func
|
| 401 |
-
self.seq_aux = config.seq_aux
|
| 402 |
self.topk_method = config.topk_method
|
| 403 |
self.n_group = config.n_group
|
| 404 |
self.topk_group = config.topk_group
|
|
@@ -455,7 +454,7 @@ class MoEGate(nn.Module):
|
|
| 455 |
)
|
| 456 |
.reshape(bsz * seq_len, -1)
|
| 457 |
) # [n, e]
|
| 458 |
-
tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(),
|
| 459 |
_, topk_idx = torch.topk(
|
| 460 |
tmp_scores, k=self.top_k, dim=-1, sorted=False
|
| 461 |
)
|
|
|
|
| 398 |
self.n_routed_experts = config.n_routed_experts
|
| 399 |
self.routed_scaling_factor = config.routed_scaling_factor
|
| 400 |
self.scoring_func = config.scoring_func
|
|
|
|
| 401 |
self.topk_method = config.topk_method
|
| 402 |
self.n_group = config.n_group
|
| 403 |
self.topk_group = config.topk_group
|
|
|
|
| 454 |
)
|
| 455 |
.reshape(bsz * seq_len, -1)
|
| 456 |
) # [n, e]
|
| 457 |
+
tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), float("-inf")) # [n, e]
|
| 458 |
_, topk_idx = torch.topk(
|
| 459 |
tmp_scores, k=self.top_k, dim=-1, sorted=False
|
| 460 |
)
|