Create gpt2_sequence_length.py
Browse files
prompt_injection/evaluators/gpt2_sequence_length.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from gettext import npgettext
|
| 3 |
+
from prompt_injection.evaluators.base import PromptEvaluator
|
| 4 |
+
|
| 5 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel,GPT2Model
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class GPT2SequenceLengthPromptEvaluator(PromptEvaluator):
|
| 10 |
+
def __init__(self) -> None:
|
| 11 |
+
super().__init__()
|
| 12 |
+
|
| 13 |
+
def __calculate_sequence_length(self,sentence, model_name='gpt2'):
|
| 14 |
+
# Load pre-trained model and tokenizer
|
| 15 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 16 |
+
inputs = tokenizer(sentence, return_tensors='pt')
|
| 17 |
+
return inputs['input_ids'].shape[1]
|
| 18 |
+
|
| 19 |
+
def eval_sample(self,sample):
|
| 20 |
+
try:
|
| 21 |
+
return self.__calculate_sequence_length(sample)
|
| 22 |
+
except Exception as err:
|
| 23 |
+
print(err)
|
| 24 |
+
|
| 25 |
+
return npgettext.nan
|
| 26 |
+
|
| 27 |
+
def get_name(self):
|
| 28 |
+
return 'Length'
|