mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify
/
classification_log_2025-06-16_18-00-57.log
2025-06-16 18:00:57,977 - INFO - ================================================================================ - [multilabel_classify.py:101:log_section] | |
2025-06-16 18:00:57,978 - INFO - = 📌 INITIALIZING TRAINING ENVIRONMENT = - [multilabel_classify.py:102:log_section] | |
2025-06-16 18:00:57,978 - INFO - ================================================================================ - [multilabel_classify.py:105:log_section] | |
2025-06-16 18:00:57,978 - INFO - 🚀 Setting up data paths and environment variables... - [multilabel_classify.py:3920:main] | |
2025-06-16 18:00:57,978 - INFO - 📂 Using output directory: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3926:main] | |
2025-06-16 18:00:57,978 - INFO - 🛠️ Command-line Arguments: - [multilabel_classify.py:369:print_args] | |
2025-06-16 18:00:57,978 - INFO - | |
🔹 output_dir: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b | |
🔹 source_url: XURLs.MIMIC4_DEMO | |
🔹 data: mimic4_icd10_full | |
🔹 logfile: classification_log | |
🔹 base_dir: ../tmp/MIMIC4_DEMO | |
🔹 hub_model_id: deb101/mistral-7b-instruct-v0.3-mimic4-adapt | |
🔹 model_name: mistralai/Mistral-7B-Instruct-v0.3 | |
🔹 max_length: 512 | |
🔹 do_fresh_training: True | |
🔹 load_from_checkpoint: False | |
🔹 task: multilabel-classify | |
🔹 num_train_epochs: 4 | |
🔹 per_device_train_batch_size: 8 | |
🔹 per_device_eval_batch_size: 8 | |
🔹 metric_for_best_model: precision_at_15 | |
🔹 learning_rate: 0.0001 | |
🔹 final_lr_scheduling: 1e-06 | |
🔹 warmup_steps: 500 | |
🔹 logfile_path: ../tmp/logs/classification_log_2025-06-16_18-00-57.log | |
🔹 source: /home/ubuntu/.xcube/data/mimic4_demo - [multilabel_classify.py:370:print_args] | |
2025-06-16 18:00:57,978 - INFO - ➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖ - [multilabel_classify.py:371:print_args] | |
2025-06-16 18:00:57,990 - INFO - | |
🚀 Quick Git Info: 📁 xcube | 🌿 plant | 🔍 cf8d41a | 👤 Debjyoti Saha Roy | ⚡ MIXED (1 staged, 3 unstaged) | 🔬 git show cf8d41a - [multilabel_classify.py:3932:main] | |
2025-06-16 18:00:57,990 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section] | |
2025-06-16 18:00:57,990 - INFO - + ✨ LOADING DATASETS + - [multilabel_classify.py:102:log_section] | |
2025-06-16 18:00:57,990 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section] | |
2025-06-16 18:00:57,990 - INFO - 📊 Loading main datasets.... - [multilabel_classify.py:3935:main] | |
2025-06-16 18:01:06,560 - INFO - 🔍 Total unique labels in dataset: 7942 - [multilabel_classify.py:3711:sample_df_with_full_label_coverage] | |
2025-06-16 18:01:06,573 - INFO - 🧪 Attempt 1: Sampled 122 rows covering 863 labels. - [multilabel_classify.py:3725:sample_df_with_full_label_coverage] | |
2025-06-16 18:01:06,583 - INFO - 🧪 Attempt 2: Sampled 122 rows covering 816 labels. - [multilabel_classify.py:3725:sample_df_with_full_label_coverage] | |
2025-06-16 18:01:06,593 - INFO - 🧪 Attempt 3: Sampled 122 rows covering 885 labels. - [multilabel_classify.py:3725:sample_df_with_full_label_coverage] | |
2025-06-16 18:01:06,602 - INFO - 🧪 Attempt 4: Sampled 122 rows covering 828 labels. - [multilabel_classify.py:3725:sample_df_with_full_label_coverage] | |
2025-06-16 18:01:06,611 - INFO - 🧪 Attempt 5: Sampled 122 rows covering 879 labels. - [multilabel_classify.py:3725:sample_df_with_full_label_coverage] | |
2025-06-16 18:01:06,620 - INFO - 🧪 Attempt 6: Sampled 122 rows covering 852 labels. - [multilabel_classify.py:3725:sample_df_with_full_label_coverage] | |
2025-06-16 18:01:06,629 - INFO - 🧪 Attempt 7: Sampled 122 rows covering 838 labels. - [multilabel_classify.py:3725:sample_df_with_full_label_coverage] | |
2025-06-16 18:01:06,637 - INFO - 🧪 Attempt 8: Sampled 122 rows covering 851 labels. - [multilabel_classify.py:3725:sample_df_with_full_label_coverage] | |
2025-06-16 18:01:06,646 - INFO - 🧪 Attempt 9: Sampled 122 rows covering 825 labels. - [multilabel_classify.py:3725:sample_df_with_full_label_coverage] | |
2025-06-16 18:01:06,655 - INFO - 🧪 Attempt 10: Sampled 122 rows covering 833 labels. - [multilabel_classify.py:3725:sample_df_with_full_label_coverage] | |
2025-06-16 18:01:06,659 - INFO - 🛠️ Fixing missing labels: 7109 remaining... - [multilabel_classify.py:3758:sample_df_with_full_label_coverage] | |
2025-06-16 18:04:43,351 - INFO - ✅ Added 1648 rows to achieve full label coverage. - [multilabel_classify.py:3790:sample_df_with_full_label_coverage] | |
2025-06-16 18:04:43,353 - INFO - 📊 Final total labels: 7942 - [multilabel_classify.py:3793:sample_df_with_full_label_coverage] | |
2025-06-16 18:04:43,354 - INFO - ✅ Final row count: 1770 (Valid: 420, Not-valid: 1350) - [multilabel_classify.py:3801:sample_df_with_full_label_coverage] | |
2025-06-16 18:04:44,124 - INFO - ******************************************************************************** - [multilabel_classify.py:101:log_section] | |
2025-06-16 18:04:44,125 - INFO - * 🌟 STARTING MULTI_LABEL CLASSIFICATION MODEL TRAINING * - [multilabel_classify.py:102:log_section] | |
2025-06-16 18:04:44,125 - INFO - ******************************************************************************** - [multilabel_classify.py:105:log_section] | |
2025-06-16 18:04:44,125 - INFO - 🔐 Loaded authentication token from environment - [multilabel_classify.py:3962:main] | |
2025-06-16 18:04:44,125 - INFO - 🏷️ Hub Model ID for this Classification task: deb101/mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify - [multilabel_classify.py:3966:main] | |
2025-06-16 18:04:44,125 - INFO - -------------------------------------------------------------------------------- - [multilabel_classify.py:101:log_section] | |
2025-06-16 18:04:44,125 - INFO - - 📋 MODEL EXISTENCE CHECK - - [multilabel_classify.py:102:log_section] | |
2025-06-16 18:04:44,125 - INFO - -------------------------------------------------------------------------------- - [multilabel_classify.py:105:log_section] | |
2025-06-16 18:04:44,125 - INFO - 🔍 Checking model existence locally and on Hugging Face Hub... - [multilabel_classify.py:3826:check_model_existence] | |
2025-06-16 18:04:44,125 - INFO - ❌ Model not found locally at: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3833:check_model_existence] | |
2025-06-16 18:05:03,454 - INFO - ✅ Model exists on Hugging Face Hub with ID: deb101/mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify - [multilabel_classify.py:3845:check_model_existence] | |
2025-06-16 18:05:03,455 - INFO - 📁 Model exists either locally or on Hub - [multilabel_classify.py:3871:check_model_existence] | |
2025-06-16 18:05:03,455 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section] | |
2025-06-16 18:05:03,455 - INFO - + ✨ STARTING FRESH TRAINING + - [multilabel_classify.py:102:log_section] | |
2025-06-16 18:05:03,455 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section] | |
2025-06-16 18:05:03,455 - INFO - 🔄 Starting fresh training (either forced or model not found)... - [multilabel_classify.py:3979:main] | |
2025-06-16 18:05:10,923 - WARNING - Note: Environment variable`HF_TOKEN` is set and is the current active token independently from the token you've just configured. - [_login.py:415:_login] | |
2025-06-16 18:05:10,924 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section] | |
2025-06-16 18:05:10,924 - INFO - + ✨ LOADING BASE MODEL + - [multilabel_classify.py:102:log_section] | |
2025-06-16 18:05:10,924 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section] | |
2025-06-16 18:05:10,924 - INFO - 📥 Loading pretrained model and tokenizer... - [multilabel_classify.py:4011:main] | |
2025-06-16 18:05:10,924 - INFO - 🚀 Starting model and tokenizer loading process... - [multilabel_classify.py:1583:load_base_model_and_tokenizer] | |
2025-06-16 18:05:10,925 - INFO - 📊 Quantization config: 4-bit, nf4, double_quant, bfloat16 - [multilabel_classify.py:1592:load_base_model_and_tokenizer] | |
2025-06-16 18:05:10,925 - INFO - 🔤 Loading tokenizer for model: deb101/mistral-7b-instruct-v0.3-mimic4-adapt... - [multilabel_classify.py:1596:load_base_model_and_tokenizer] | |
2025-06-16 18:05:21,210 - INFO - 🔍 Checking if deb101/mistral-7b-instruct-v0.3-mimic4-adapt is a PEFT model... - [multilabel_classify.py:1607:load_base_model_and_tokenizer] | |
2025-06-16 18:05:31,236 - INFO - ✅ Detected PEFT model. Base model: mistralai/Mistral-7B-Instruct-v0.3 - [multilabel_classify.py:1611:load_base_model_and_tokenizer] | |
2025-06-16 18:05:31,236 - INFO - 🔍 Loading model configuration for mistralai/Mistral-7B-Instruct-v0.3... - [multilabel_classify.py:1619:load_base_model_and_tokenizer] | |
2025-06-16 18:05:41,258 - INFO - Model type: mistral, Architectures: ['MistralForCausalLM'] - [multilabel_classify.py:1634:load_base_model_and_tokenizer] | |
2025-06-16 18:05:41,259 - INFO - 🧠 Loading base model: mistralai/Mistral-7B-Instruct-v0.3... - [multilabel_classify.py:1702:load_base_model_and_tokenizer] | |
2025-06-16 18:05:51,805 - INFO - We will use 90% of the memory on device 0 for storing the model, and 10% for the buffer to avoid OOM. You can set `max_memory` in to a higher value to use more memory (at your own risk). - [modeling.py:991:get_balanced_memory] | |
2025-06-16 18:06:07,166 - INFO - 🧩 Loading PEFT adapters for deb101/mistral-7b-instruct-v0.3-mimic4-adapt... - [multilabel_classify.py:1722:load_base_model_and_tokenizer] | |
2025-06-16 18:06:46,612 - INFO - 🔧 Before enabling PEFT adapters - [multilabel_classify.py:1724:load_base_model_and_tokenizer] | |
2025-06-16 18:06:46,614 - INFO - 📊 trainable params: 0 || all params: 7,254,839,296 || trainable%: 0.0000 - [multilabel_classify.py:160:log_print_output] | |
2025-06-16 18:06:46,617 - INFO - Enabled gradients for parameters: ['base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.0.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.0.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.1.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.1.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.2.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.2.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.3.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.3.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.4.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.4.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.5.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.5.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.6.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.6.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.7.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.7.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.8.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.8.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.9.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.9.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.10.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.10.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.11.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.11.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.12.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.12.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.13.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.13.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.14.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.14.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.15.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.15.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.16.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.16.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.17.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.17.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.18.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.18.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.19.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.19.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.20.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.20.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.21.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.21.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.22.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.22.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.23.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.23.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.24.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.24.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.25.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.25.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.26.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.26.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.27.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.27.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.28.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.28.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.29.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.29.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.30.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.30.self_attn.v_proj.lora_B.default.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_A.default.weight', 'base_model.model.model.layers.31.self_attn.q_proj.lora_B.default.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_A.default.weight', 'base_model.model.model.layers.31.self_attn.v_proj.lora_B.default.weight'] - [multilabel_classify.py:1734:load_base_model_and_tokenizer] | |
2025-06-16 18:06:46,617 - INFO - 🔧 After enabling PEFT adapters - [multilabel_classify.py:1735:load_base_model_and_tokenizer] | |
2025-06-16 18:06:46,619 - INFO - 📊 trainable params: 6,815,744 || all params: 7,254,839,296 || trainable%: 0.0939 - [multilabel_classify.py:160:log_print_output] | |
2025-06-16 18:06:46,620 - INFO - ✅ Model and tokenizer successfully loaded! - [multilabel_classify.py:1773:load_base_model_and_tokenizer] | |
2025-06-16 18:06:46,620 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section] | |
2025-06-16 18:06:46,621 - INFO - + ✨ DATA PREPROCESSING + - [multilabel_classify.py:102:log_section] | |
2025-06-16 18:06:46,621 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section] | |
2025-06-16 18:06:46,621 - INFO - 🔄 Loading and preprocessing training data... - [multilabel_classify.py:4021:main] | |
2025-06-16 18:06:46,799 - INFO - Total number of labels: 7942 - [multilabel_classify.py:1176:preprocess_data] | |
2025-06-16 18:06:46,800 - INFO - Rare labels (freq < 50): 7817 - [multilabel_classify.py:1177:preprocess_data] | |
2025-06-16 18:06:46,800 - INFO - Not rare labels (freq >= 50): 125 - [multilabel_classify.py:1178:preprocess_data] | |
2025-06-16 18:06:46,800 - INFO - Label partitions and classes saved to ../tmp/MIMIC4_DEMO/labels_partition.json - [multilabel_classify.py:1179:preprocess_data] | |
2025-06-16 18:07:43,902 - INFO - The size of training set: 8393 - [multilabel_classify.py:1275:preprocess_data] | |
2025-06-16 18:07:43,902 - INFO - The size of Evaluation set: 2528 - [multilabel_classify.py:1276:preprocess_data] | |
2025-06-16 18:07:44,309 - INFO - Number of unique ICD-10 codes: 7942 - [multilabel_classify.py:4027:main] | |
2025-06-16 18:07:44,311 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section] | |
2025-06-16 18:07:44,311 - INFO - + ✨ MODEL INITIALIZATION + - [multilabel_classify.py:102:log_section] | |
2025-06-16 18:07:44,311 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section] | |
2025-06-16 18:07:44,311 - INFO - 🧠 Initializing custom L2R model for outputting per-token relevance scores per ICD-10 codes. - [multilabel_classify.py:4030:main] | |
2025-06-16 18:07:44,312 - INFO - 🏥📊 Creating MultilabelICDClassifier - Standard multilabel medical classifier! 🔬💫 - [multilabel_classify.py:864:define_model] | |
2025-06-16 18:07:44,312 - INFO - Will now start to create Multilabel-Classification Model from the base model - [multilabel_classify.py:565:__init__] | |
2025-06-16 18:07:44,316 - INFO - 📊 trainable params: 6,815,744 || all params: 3,765,178,368 || trainable%: 0.1810 - [utils.py:474:compute_trainable_params] | |
2025-06-16 18:07:46,041 - INFO - Creating the Multi-Label Classification Model from base model mistralai/Mistral-7B-Instruct-v0.3 completed!!! - [multilabel_classify.py:607:__init__] | |
2025-06-16 18:07:46,045 - INFO - 📊 trainable params: 171,532,417 || all params: 3,929,895,041 || trainable%: 4.3648 - [utils.py:474:compute_trainable_params] | |
2025-06-16 18:07:46,045 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section] | |
2025-06-16 18:07:46,045 - INFO - + ✨ TRAINING PREPARATION + - [multilabel_classify.py:102:log_section] | |
2025-06-16 18:07:46,045 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section] | |
2025-06-16 18:07:46,045 - INFO - ⚙️ Preparing training components and optimizers... - [multilabel_classify.py:4037:main] | |
2025-06-16 18:07:46,130 - INFO - 🖥️ Device: NVIDIA GH200 480GB - [multilabel_classify.py:1023:log_training_configuration] | |
2025-06-16 18:07:46,130 - INFO - 🔋 CUDA Available: True - [multilabel_classify.py:1026:log_training_configuration] | |
2025-06-16 18:07:46,130 - INFO - 💾 CUDA Device Count: 1 - [multilabel_classify.py:1027:log_training_configuration] | |
2025-06-16 18:07:46,132 - INFO - | |
📋 Training Configuration 📋 | |
+----------+-----------------------------+------------------------------------------------------------------+ | |
| 🌟 Emoji | 🏷️ Parameter | 📊 Value | | |
+----------+-----------------------------+------------------------------------------------------------------+ | |
| 📁 | Output Directory | ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b | | |
| 🔁 | Training Epochs | 4 | | |
| 🏋️ | Train Batch Size | 8 | | |
| 🔍 | Eval Batch Size | 8 | | |
| 📊 | Gradient Accumulation Steps | 4 | | |
| 🚀 | Learning Rate | 0.0001 | | |
| 🌅 | Warmup Steps | 500 | | |
| 💾 | Save Strategy | epoch | | |
| 💾 | Save Total Limit | 10 | | |
| 📊 | Evaluation Strategy | epoch | | |
| 🎯 | Best Model Metric | precision_at_15 | | |
| 📝 | Logging Strategy | steps (every 10 steps) | | |
| 🌐 | Push to Hub | True | | |
| 🌐 | Hub Model ID | deb101/mistral-7b-instruct-v0.3-mimic4-adapt-multilabel-classify | | |
| 🔢 | Steps per Epoch | 262 | | |
| 🔢 | Total Training Steps | 1048 | | |
| 🔢 | Evaluation Steps | 316 | | |
| 📊 | Training Dataset Size | 8393 samples 🏋️ | | |
| 📊 | Evaluation Dataset Size | 2528 samples 🔍 | | |
+----------+-----------------------------+------------------------------------------------------------------+ - [multilabel_classify.py:1015:log_training_args] | |
2025-06-16 18:07:46,132 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section] | |
2025-06-16 18:07:46,132 - INFO - + ✨ MODEL TRAINING + - [multilabel_classify.py:102:log_section] | |
2025-06-16 18:07:46,132 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section] | |
2025-06-16 18:07:46,133 - INFO - 🏋️ Starting model training process... - [multilabel_classify.py:4059:main] | |
2025-06-16 18:08:46,629 - INFO - We are registering the tokenizer deb101/mistral-7b-instruct-v0.3-mimic4-adapt in Custom Trainer - [multilabel_classify.py:2344:__init__] | |
2025-06-16 18:08:46,892 - INFO - 🚀 Starting Training... - [multilabel_classify.py:1998:on_train_begin] | |
2025-06-16 18:09:10,541 - INFO - | |
[36m🚂 Training Metrics (Step 10) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.5786 | | |
+---------------+----------+ | |
| grad_norm | 6.61274 | | |
+---------------+----------+ | |
| learning_rate | 2e-06 | | |
+---------------+----------+ | |
| epoch | 0.038095 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:09:30,123 - INFO - | |
[36m🚂 Training Metrics (Step 20) 🚂 | |
+---------------+---------+ | |
| Metric | Value | | |
+===============+=========+ | |
| loss | 0.2979 | | |
+---------------+---------+ | |
| grad_norm | 2.50729 | | |
+---------------+---------+ | |
| learning_rate | 4e-06 | | |
+---------------+---------+ | |
| epoch | 0.07619 | | |
+---------------+---------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:09:49,704 - INFO - | |
[36m🚂 Training Metrics (Step 30) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0651 | | |
+---------------+----------+ | |
| grad_norm | 0.2233 | | |
+---------------+----------+ | |
| learning_rate | 6e-06 | | |
+---------------+----------+ | |
| epoch | 0.114286 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:10:09,181 - INFO - | |
[36m🚂 Training Metrics (Step 40) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0231 | | |
+---------------+----------+ | |
| grad_norm | 0.09893 | | |
+---------------+----------+ | |
| learning_rate | 8e-06 | | |
+---------------+----------+ | |
| epoch | 0.152381 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:10:28,675 - INFO - | |
[36m🚂 Training Metrics (Step 50) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0278 | | |
+---------------+----------+ | |
| grad_norm | 0.147324 | | |
+---------------+----------+ | |
| learning_rate | 1e-05 | | |
+---------------+----------+ | |
| epoch | 0.190476 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:10:48,153 - INFO - | |
[36m🚂 Training Metrics (Step 60) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0268 | | |
+---------------+----------+ | |
| grad_norm | 0.129953 | | |
+---------------+----------+ | |
| learning_rate | 1.2e-05 | | |
+---------------+----------+ | |
| epoch | 0.228571 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:11:07,647 - INFO - | |
[36m🚂 Training Metrics (Step 70) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0243 | | |
+---------------+----------+ | |
| grad_norm | 0.030411 | | |
+---------------+----------+ | |
| learning_rate | 1.4e-05 | | |
+---------------+----------+ | |
| epoch | 0.266667 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:11:27,127 - INFO - | |
[36m🚂 Training Metrics (Step 80) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0233 | | |
+---------------+----------+ | |
| grad_norm | 0.03486 | | |
+---------------+----------+ | |
| learning_rate | 1.6e-05 | | |
+---------------+----------+ | |
| epoch | 0.304762 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:11:46,621 - INFO - | |
[36m🚂 Training Metrics (Step 90) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0235 | | |
+---------------+----------+ | |
| grad_norm | 0.036425 | | |
+---------------+----------+ | |
| learning_rate | 1.8e-05 | | |
+---------------+----------+ | |
| epoch | 0.342857 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:12:06,120 - INFO - | |
[36m🚂 Training Metrics (Step 100) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0241 | | |
+---------------+----------+ | |
| grad_norm | 0.159289 | | |
+---------------+----------+ | |
| learning_rate | 2e-05 | | |
+---------------+----------+ | |
| epoch | 0.380952 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:12:25,607 - INFO - | |
[36m🚂 Training Metrics (Step 110) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0229 | | |
+---------------+----------+ | |
| grad_norm | 0.01171 | | |
+---------------+----------+ | |
| learning_rate | 2.2e-05 | | |
+---------------+----------+ | |
| epoch | 0.419048 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:12:45,093 - INFO - | |
[36m🚂 Training Metrics (Step 120) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0223 | | |
+---------------+----------+ | |
| grad_norm | 0.011407 | | |
+---------------+----------+ | |
| learning_rate | 2.4e-05 | | |
+---------------+----------+ | |
| epoch | 0.457143 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:13:04,597 - INFO - | |
[36m🚂 Training Metrics (Step 130) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0234 | | |
+---------------+----------+ | |
| grad_norm | 0.008729 | | |
+---------------+----------+ | |
| learning_rate | 2.6e-05 | | |
+---------------+----------+ | |
| epoch | 0.495238 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:13:24,089 - INFO - | |
[36m🚂 Training Metrics (Step 140) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0233 | | |
+---------------+----------+ | |
| grad_norm | 0.007958 | | |
+---------------+----------+ | |
| learning_rate | 2.8e-05 | | |
+---------------+----------+ | |
| epoch | 0.533333 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:13:43,573 - INFO - | |
[36m🚂 Training Metrics (Step 150) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0227 | | |
+---------------+----------+ | |
| grad_norm | 0.027206 | | |
+---------------+----------+ | |
| learning_rate | 3e-05 | | |
+---------------+----------+ | |
| epoch | 0.571429 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:14:03,062 - INFO - | |
[36m🚂 Training Metrics (Step 160) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0218 | | |
+---------------+----------+ | |
| grad_norm | 0.015988 | | |
+---------------+----------+ | |
| learning_rate | 3.2e-05 | | |
+---------------+----------+ | |
| epoch | 0.609524 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:14:22,517 - INFO - | |
[36m🚂 Training Metrics (Step 170) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0216 | | |
+---------------+----------+ | |
| grad_norm | 0.010847 | | |
+---------------+----------+ | |
| learning_rate | 3.4e-05 | | |
+---------------+----------+ | |
| epoch | 0.647619 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:14:41,988 - INFO - | |
[36m🚂 Training Metrics (Step 180) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0231 | | |
+---------------+----------+ | |
| grad_norm | 0.020155 | | |
+---------------+----------+ | |
| learning_rate | 3.6e-05 | | |
+---------------+----------+ | |
| epoch | 0.685714 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:15:01,468 - INFO - | |
[36m🚂 Training Metrics (Step 190) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0236 | | |
+---------------+----------+ | |
| grad_norm | 0.004788 | | |
+---------------+----------+ | |
| learning_rate | 3.8e-05 | | |
+---------------+----------+ | |
| epoch | 0.72381 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:15:20,960 - INFO - | |
[36m🚂 Training Metrics (Step 200) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0231 | | |
+---------------+----------+ | |
| grad_norm | 0.022587 | | |
+---------------+----------+ | |
| learning_rate | 4e-05 | | |
+---------------+----------+ | |
| epoch | 0.761905 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:15:40,446 - INFO - | |
[36m🚂 Training Metrics (Step 210) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0222 | | |
+---------------+----------+ | |
| grad_norm | 0.007002 | | |
+---------------+----------+ | |
| learning_rate | 4.2e-05 | | |
+---------------+----------+ | |
| epoch | 0.8 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:15:59,940 - INFO - | |
[36m🚂 Training Metrics (Step 220) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0225 | | |
+---------------+----------+ | |
| grad_norm | 0.011847 | | |
+---------------+----------+ | |
| learning_rate | 4.4e-05 | | |
+---------------+----------+ | |
| epoch | 0.838095 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:16:19,427 - INFO - | |
[36m🚂 Training Metrics (Step 230) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0238 | | |
+---------------+----------+ | |
| grad_norm | 0.007445 | | |
+---------------+----------+ | |
| learning_rate | 4.6e-05 | | |
+---------------+----------+ | |
| epoch | 0.87619 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:16:38,917 - INFO - | |
[36m🚂 Training Metrics (Step 240) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0222 | | |
+---------------+----------+ | |
| grad_norm | 0.005909 | | |
+---------------+----------+ | |
| learning_rate | 4.8e-05 | | |
+---------------+----------+ | |
| epoch | 0.914286 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:16:58,403 - INFO - | |
[36m🚂 Training Metrics (Step 250) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0232 | | |
+---------------+----------+ | |
| grad_norm | 0.01134 | | |
+---------------+----------+ | |
| learning_rate | 5e-05 | | |
+---------------+----------+ | |
| epoch | 0.952381 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:17:17,886 - INFO - | |
[36m🚂 Training Metrics (Step 260) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0229 | | |
+---------------+----------+ | |
| grad_norm | 0.010347 | | |
+---------------+----------+ | |
| learning_rate | 5.2e-05 | | |
+---------------+----------+ | |
| epoch | 0.990476 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:17:22,267 - INFO - Removing 'token_type_ids' from eval_dataset as they are not needed. - [multilabel_classify.py:2356:evaluate] | |
2025-06-16 18:30:57,773 - INFO - | |
[33m🔍 Evaluation Metrics 🔍 | |
+-------------------------------+----------+ | |
| Metric | Value | | |
+===============================+==========+ | |
| eval_f1_micro | 0 | | |
+-------------------------------+----------+ | |
| eval_f1_macro | 0 | | |
+-------------------------------+----------+ | |
| eval_precision_at_5 | 0.276899 | | |
+-------------------------------+----------+ | |
| eval_recall_at_5 | 0.064377 | | |
+-------------------------------+----------+ | |
| eval_precision_at_8 | 0.247231 | | |
+-------------------------------+----------+ | |
| eval_recall_at_8 | 0.088033 | | |
+-------------------------------+----------+ | |
| eval_precision_at_15 | 0.188265 | | |
+-------------------------------+----------+ | |
| eval_recall_at_15 | 0.12263 | | |
+-------------------------------+----------+ | |
| eval_rare_f1_micro | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_f1_macro | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_precision | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_recall | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_precision_at_5 | 0.007832 | | |
+-------------------------------+----------+ | |
| eval_rare_recall_at_5 | 0.002522 | | |
+-------------------------------+----------+ | |
| eval_rare_precision_at_8 | 0.007466 | | |
+-------------------------------+----------+ | |
| eval_rare_recall_at_8 | 0.003996 | | |
+-------------------------------+----------+ | |
| eval_rare_precision_at_15 | 0.006962 | | |
+-------------------------------+----------+ | |
| eval_rare_recall_at_15 | 0.006522 | | |
+-------------------------------+----------+ | |
| eval_not_rare_f1_micro | 0 | | |
+-------------------------------+----------+ | |
| eval_not_rare_f1_macro | 0 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision | 0 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall | 0 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision_at_5 | 0.277136 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall_at_5 | 0.170671 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision_at_8 | 0.24733 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall_at_8 | 0.234122 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision_at_15 | 0.188792 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall_at_15 | 0.324266 | | |
+-------------------------------+----------+ | |
| eval_loss | 0.02093 | | |
+-------------------------------+----------+[0m - [multilabel_classify.py:2211:on_evaluate] | |
2025-06-16 18:30:59,092 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262 - [multilabel_classify.py:2449:_save] | |
2025-06-16 18:30:59,094 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262 - [multilabel_classify.py:2454:_save] | |
2025-06-16 18:30:59,095 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-262: | |
+---------+-------------------+------------+ | |
| Index | Saved File | Size | | |
+=========+===================+============+ | |
| 1 | training_args.bin | 0.01 MB | | |
+---------+-------------------+------------+ | |
| 2 | model.safetensors | 4600.97 MB | | |
+---------+-------------------+------------+ | |
| 3 | config.json | 0.00 MB | | |
+---------+-------------------+------------+ - [multilabel_classify.py:2471:_save] | |
2025-06-16 18:31:17,991 - INFO - | |
[36m🚂 Training Metrics (Step 270) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.023 | | |
+---------------+----------+ | |
| grad_norm | 0.016343 | | |
+---------------+----------+ | |
| learning_rate | 5.4e-05 | | |
+---------------+----------+ | |
| epoch | 1.03048 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:31:37,431 - INFO - | |
[36m🚂 Training Metrics (Step 280) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0217 | | |
+---------------+----------+ | |
| grad_norm | 0.005856 | | |
+---------------+----------+ | |
| learning_rate | 5.6e-05 | | |
+---------------+----------+ | |
| epoch | 1.06857 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:31:56,913 - INFO - | |
[36m🚂 Training Metrics (Step 290) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0229 | | |
+---------------+----------+ | |
| grad_norm | 0.009098 | | |
+---------------+----------+ | |
| learning_rate | 5.8e-05 | | |
+---------------+----------+ | |
| epoch | 1.10667 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:32:16,404 - INFO - | |
[36m🚂 Training Metrics (Step 300) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0236 | | |
+---------------+----------+ | |
| grad_norm | 0.022614 | | |
+---------------+----------+ | |
| learning_rate | 6e-05 | | |
+---------------+----------+ | |
| epoch | 1.14476 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:32:35,906 - INFO - | |
[36m🚂 Training Metrics (Step 310) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0226 | | |
+---------------+----------+ | |
| grad_norm | 0.013578 | | |
+---------------+----------+ | |
| learning_rate | 6.2e-05 | | |
+---------------+----------+ | |
| epoch | 1.18286 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:32:55,390 - INFO - | |
[36m🚂 Training Metrics (Step 320) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0223 | | |
+---------------+----------+ | |
| grad_norm | 0.003184 | | |
+---------------+----------+ | |
| learning_rate | 6.4e-05 | | |
+---------------+----------+ | |
| epoch | 1.22095 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:33:15,069 - INFO - | |
[36m🚂 Training Metrics (Step 330) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.023 | | |
+---------------+----------+ | |
| grad_norm | 0.019315 | | |
+---------------+----------+ | |
| learning_rate | 6.6e-05 | | |
+---------------+----------+ | |
| epoch | 1.25905 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:33:34,555 - INFO - | |
[36m🚂 Training Metrics (Step 340) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0225 | | |
+---------------+----------+ | |
| grad_norm | 0.018046 | | |
+---------------+----------+ | |
| learning_rate | 6.8e-05 | | |
+---------------+----------+ | |
| epoch | 1.29714 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:33:54,043 - INFO - | |
[36m🚂 Training Metrics (Step 350) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0231 | | |
+---------------+----------+ | |
| grad_norm | 0.015778 | | |
+---------------+----------+ | |
| learning_rate | 7e-05 | | |
+---------------+----------+ | |
| epoch | 1.33524 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:34:13,538 - INFO - | |
[36m🚂 Training Metrics (Step 360) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0228 | | |
+---------------+----------+ | |
| grad_norm | 0.007371 | | |
+---------------+----------+ | |
| learning_rate | 7.2e-05 | | |
+---------------+----------+ | |
| epoch | 1.37333 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:34:33,040 - INFO - | |
[36m🚂 Training Metrics (Step 370) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0223 | | |
+---------------+----------+ | |
| grad_norm | 0.012295 | | |
+---------------+----------+ | |
| learning_rate | 7.4e-05 | | |
+---------------+----------+ | |
| epoch | 1.41143 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:34:52,552 - INFO - | |
[36m🚂 Training Metrics (Step 380) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0217 | | |
+---------------+----------+ | |
| grad_norm | 0.028032 | | |
+---------------+----------+ | |
| learning_rate | 7.6e-05 | | |
+---------------+----------+ | |
| epoch | 1.44952 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:35:12,089 - INFO - | |
[36m🚂 Training Metrics (Step 390) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0197 | | |
+---------------+----------+ | |
| grad_norm | 0.013432 | | |
+---------------+----------+ | |
| learning_rate | 7.8e-05 | | |
+---------------+----------+ | |
| epoch | 1.48762 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:35:31,624 - INFO - | |
[36m🚂 Training Metrics (Step 400) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0198 | | |
+---------------+----------+ | |
| grad_norm | 0.027268 | | |
+---------------+----------+ | |
| learning_rate | 8e-05 | | |
+---------------+----------+ | |
| epoch | 1.52571 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:35:51,161 - INFO - | |
[36m🚂 Training Metrics (Step 410) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0193 | | |
+---------------+----------+ | |
| grad_norm | 0.017981 | | |
+---------------+----------+ | |
| learning_rate | 8.2e-05 | | |
+---------------+----------+ | |
| epoch | 1.56381 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:36:10,684 - INFO - | |
[36m🚂 Training Metrics (Step 420) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0182 | | |
+---------------+----------+ | |
| grad_norm | 0.020879 | | |
+---------------+----------+ | |
| learning_rate | 8.4e-05 | | |
+---------------+----------+ | |
| epoch | 1.6019 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:36:30,217 - INFO - | |
[36m🚂 Training Metrics (Step 430) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0185 | | |
+---------------+----------+ | |
| grad_norm | 0.015975 | | |
+---------------+----------+ | |
| learning_rate | 8.6e-05 | | |
+---------------+----------+ | |
| epoch | 1.64 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:36:49,726 - INFO - | |
[36m🚂 Training Metrics (Step 440) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0177 | | |
+---------------+----------+ | |
| grad_norm | 0.006284 | | |
+---------------+----------+ | |
| learning_rate | 8.8e-05 | | |
+---------------+----------+ | |
| epoch | 1.67809 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:37:09,223 - INFO - | |
[36m🚂 Training Metrics (Step 450) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0182 | | |
+---------------+----------+ | |
| grad_norm | 0.010877 | | |
+---------------+----------+ | |
| learning_rate | 9e-05 | | |
+---------------+----------+ | |
| epoch | 1.71619 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:37:28,750 - INFO - | |
[36m🚂 Training Metrics (Step 460) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0181 | | |
+---------------+----------+ | |
| grad_norm | 0.010465 | | |
+---------------+----------+ | |
| learning_rate | 9.2e-05 | | |
+---------------+----------+ | |
| epoch | 1.75429 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:37:48,279 - INFO - | |
[36m🚂 Training Metrics (Step 470) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0188 | | |
+---------------+----------+ | |
| grad_norm | 0.023603 | | |
+---------------+----------+ | |
| learning_rate | 9.4e-05 | | |
+---------------+----------+ | |
| epoch | 1.79238 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:38:07,816 - INFO - | |
[36m🚂 Training Metrics (Step 480) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0187 | | |
+---------------+----------+ | |
| grad_norm | 0.029903 | | |
+---------------+----------+ | |
| learning_rate | 9.6e-05 | | |
+---------------+----------+ | |
| epoch | 1.83048 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:38:27,360 - INFO - | |
[36m🚂 Training Metrics (Step 490) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0187 | | |
+---------------+----------+ | |
| grad_norm | 0.024319 | | |
+---------------+----------+ | |
| learning_rate | 9.8e-05 | | |
+---------------+----------+ | |
| epoch | 1.86857 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:38:46,901 - INFO - | |
[36m🚂 Training Metrics (Step 500) 🚂 | |
+---------------+---------+ | |
| Metric | Value | | |
+===============+=========+ | |
| loss | 0.0181 | | |
+---------------+---------+ | |
| grad_norm | 0.02574 | | |
+---------------+---------+ | |
| learning_rate | 0.0001 | | |
+---------------+---------+ | |
| epoch | 1.90667 | | |
+---------------+---------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:39:06,405 - INFO - | |
[36m🚂 Training Metrics (Step 510) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0174 | | |
+---------------+----------+ | |
| grad_norm | 0.016141 | | |
+---------------+----------+ | |
| learning_rate | 0.0001 | | |
+---------------+----------+ | |
| epoch | 1.94476 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:39:25,924 - INFO - | |
[36m🚂 Training Metrics (Step 520) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0181 | | |
+---------------+----------+ | |
| grad_norm | 0.007738 | | |
+---------------+----------+ | |
| learning_rate | 0.0001 | | |
+---------------+----------+ | |
| epoch | 1.98286 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:39:34,215 - INFO - Removing 'token_type_ids' from eval_dataset as they are not needed. - [multilabel_classify.py:2356:evaluate] | |
2025-06-16 18:52:58,617 - INFO - | |
[33m🔍 Evaluation Metrics 🔍 | |
+-------------------------------+----------+ | |
| Metric | Value | | |
+===============================+==========+ | |
| eval_f1_micro | 0 | | |
+-------------------------------+----------+ | |
| eval_f1_macro | 0 | | |
+-------------------------------+----------+ | |
| eval_precision_at_5 | 0.277532 | | |
+-------------------------------+----------+ | |
| eval_recall_at_5 | 0.065113 | | |
+-------------------------------+----------+ | |
| eval_precision_at_8 | 0.254203 | | |
+-------------------------------+----------+ | |
| eval_recall_at_8 | 0.091028 | | |
+-------------------------------+----------+ | |
| eval_precision_at_15 | 0.193434 | | |
+-------------------------------+----------+ | |
| eval_recall_at_15 | 0.127009 | | |
+-------------------------------+----------+ | |
| eval_rare_f1_micro | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_f1_macro | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_precision | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_recall | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_precision_at_5 | 0.029509 | | |
+-------------------------------+----------+ | |
| eval_rare_recall_at_5 | 0.009105 | | |
+-------------------------------+----------+ | |
| eval_rare_precision_at_8 | 0.025069 | | |
+-------------------------------+----------+ | |
| eval_rare_recall_at_8 | 0.012753 | | |
+-------------------------------+----------+ | |
| eval_rare_precision_at_15 | 0.022969 | | |
+-------------------------------+----------+ | |
| eval_rare_recall_at_15 | 0.021418 | | |
+-------------------------------+----------+ | |
| eval_not_rare_f1_micro | 0 | | |
+-------------------------------+----------+ | |
| eval_not_rare_f1_macro | 0 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision | 0 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall | 0 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision_at_5 | 0.277373 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall_at_5 | 0.171545 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision_at_8 | 0.254203 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall_at_8 | 0.240055 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision_at_15 | 0.193302 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall_at_15 | 0.33663 | | |
+-------------------------------+----------+ | |
| eval_loss | 0.016997 | | |
+-------------------------------+----------+[0m - [multilabel_classify.py:2211:on_evaluate] | |
2025-06-16 18:52:59,937 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-524 - [multilabel_classify.py:2449:_save] | |
2025-06-16 18:52:59,939 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-524 - [multilabel_classify.py:2454:_save] | |
2025-06-16 18:52:59,940 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-524: | |
+---------+-------------------+------------+ | |
| Index | Saved File | Size | | |
+=========+===================+============+ | |
| 1 | training_args.bin | 0.01 MB | | |
+---------+-------------------+------------+ | |
| 2 | model.safetensors | 4600.97 MB | | |
+---------+-------------------+------------+ | |
| 3 | config.json | 0.00 MB | | |
+---------+-------------------+------------+ - [multilabel_classify.py:2471:_save] | |
2025-06-16 18:53:14,917 - INFO - | |
[36m🚂 Training Metrics (Step 530) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0174 | | |
+---------------+----------+ | |
| grad_norm | 0.017119 | | |
+---------------+----------+ | |
| learning_rate | 9.9e-05 | | |
+---------------+----------+ | |
| epoch | 2.02286 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:53:34,401 - INFO - | |
[36m🚂 Training Metrics (Step 540) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0185 | | |
+---------------+----------+ | |
| grad_norm | 0.020773 | | |
+---------------+----------+ | |
| learning_rate | 9.9e-05 | | |
+---------------+----------+ | |
| epoch | 2.06095 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:53:53,887 - INFO - | |
[36m🚂 Training Metrics (Step 550) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0181 | | |
+---------------+----------+ | |
| grad_norm | 0.028108 | | |
+---------------+----------+ | |
| learning_rate | 9.8e-05 | | |
+---------------+----------+ | |
| epoch | 2.09905 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:54:13,389 - INFO - | |
[36m🚂 Training Metrics (Step 560) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0179 | | |
+---------------+----------+ | |
| grad_norm | 0.010793 | | |
+---------------+----------+ | |
| learning_rate | 9.7e-05 | | |
+---------------+----------+ | |
| epoch | 2.13714 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:54:32,877 - INFO - | |
[36m🚂 Training Metrics (Step 570) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0175 | | |
+---------------+----------+ | |
| grad_norm | 0.028471 | | |
+---------------+----------+ | |
| learning_rate | 9.6e-05 | | |
+---------------+----------+ | |
| epoch | 2.17524 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:54:52,379 - INFO - | |
[36m🚂 Training Metrics (Step 580) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0175 | | |
+---------------+----------+ | |
| grad_norm | 0.031605 | | |
+---------------+----------+ | |
| learning_rate | 9.5e-05 | | |
+---------------+----------+ | |
| epoch | 2.21333 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:55:11,913 - INFO - | |
[36m🚂 Training Metrics (Step 590) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0181 | | |
+---------------+----------+ | |
| grad_norm | 0.006935 | | |
+---------------+----------+ | |
| learning_rate | 9.4e-05 | | |
+---------------+----------+ | |
| epoch | 2.25143 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:55:31,420 - INFO - | |
[36m🚂 Training Metrics (Step 600) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0183 | | |
+---------------+----------+ | |
| grad_norm | 0.026774 | | |
+---------------+----------+ | |
| learning_rate | 9.2e-05 | | |
+---------------+----------+ | |
| epoch | 2.28952 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:55:50,930 - INFO - | |
[36m🚂 Training Metrics (Step 610) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0175 | | |
+---------------+----------+ | |
| grad_norm | 0.010172 | | |
+---------------+----------+ | |
| learning_rate | 9e-05 | | |
+---------------+----------+ | |
| epoch | 2.32762 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:56:10,447 - INFO - | |
[36m🚂 Training Metrics (Step 620) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0173 | | |
+---------------+----------+ | |
| grad_norm | 0.007341 | | |
+---------------+----------+ | |
| learning_rate | 8.9e-05 | | |
+---------------+----------+ | |
| epoch | 2.36571 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:56:29,953 - INFO - | |
[36m🚂 Training Metrics (Step 630) 🚂 | |
+---------------+---------+ | |
| Metric | Value | | |
+===============+=========+ | |
| loss | 0.0178 | | |
+---------------+---------+ | |
| grad_norm | 0.00705 | | |
+---------------+---------+ | |
| learning_rate | 8.7e-05 | | |
+---------------+---------+ | |
| epoch | 2.40381 | | |
+---------------+---------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:56:49,469 - INFO - | |
[36m🚂 Training Metrics (Step 640) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0174 | | |
+---------------+----------+ | |
| grad_norm | 0.019678 | | |
+---------------+----------+ | |
| learning_rate | 8.5e-05 | | |
+---------------+----------+ | |
| epoch | 2.44191 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:57:08,999 - INFO - | |
[36m🚂 Training Metrics (Step 650) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0173 | | |
+---------------+----------+ | |
| grad_norm | 0.013822 | | |
+---------------+----------+ | |
| learning_rate | 8.3e-05 | | |
+---------------+----------+ | |
| epoch | 2.48 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:57:28,534 - INFO - | |
[36m🚂 Training Metrics (Step 660) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0185 | | |
+---------------+----------+ | |
| grad_norm | 0.027862 | | |
+---------------+----------+ | |
| learning_rate | 8.1e-05 | | |
+---------------+----------+ | |
| epoch | 2.5181 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:57:48,057 - INFO - | |
[36m🚂 Training Metrics (Step 670) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.018 | | |
+---------------+----------+ | |
| grad_norm | 0.031936 | | |
+---------------+----------+ | |
| learning_rate | 7.8e-05 | | |
+---------------+----------+ | |
| epoch | 2.55619 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:58:07,596 - INFO - | |
[36m🚂 Training Metrics (Step 680) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0176 | | |
+---------------+----------+ | |
| grad_norm | 0.017191 | | |
+---------------+----------+ | |
| learning_rate | 7.6e-05 | | |
+---------------+----------+ | |
| epoch | 2.59429 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:58:27,126 - INFO - | |
[36m🚂 Training Metrics (Step 690) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0175 | | |
+---------------+----------+ | |
| grad_norm | 0.006769 | | |
+---------------+----------+ | |
| learning_rate | 7.3e-05 | | |
+---------------+----------+ | |
| epoch | 2.63238 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:58:46,663 - INFO - | |
[36m🚂 Training Metrics (Step 700) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0183 | | |
+---------------+----------+ | |
| grad_norm | 0.042239 | | |
+---------------+----------+ | |
| learning_rate | 7.1e-05 | | |
+---------------+----------+ | |
| epoch | 2.67048 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:59:06,183 - INFO - | |
[36m🚂 Training Metrics (Step 710) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0182 | | |
+---------------+----------+ | |
| grad_norm | 0.027337 | | |
+---------------+----------+ | |
| learning_rate | 6.8e-05 | | |
+---------------+----------+ | |
| epoch | 2.70857 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:59:25,691 - INFO - | |
[36m🚂 Training Metrics (Step 720) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0178 | | |
+---------------+----------+ | |
| grad_norm | 0.009165 | | |
+---------------+----------+ | |
| learning_rate | 6.6e-05 | | |
+---------------+----------+ | |
| epoch | 2.74667 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 18:59:45,196 - INFO - | |
[36m🚂 Training Metrics (Step 730) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0173 | | |
+---------------+----------+ | |
| grad_norm | 0.034446 | | |
+---------------+----------+ | |
| learning_rate | 6.3e-05 | | |
+---------------+----------+ | |
| epoch | 2.78476 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:00:04,707 - INFO - | |
[36m🚂 Training Metrics (Step 740) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0177 | | |
+---------------+----------+ | |
| grad_norm | 0.036923 | | |
+---------------+----------+ | |
| learning_rate | 6e-05 | | |
+---------------+----------+ | |
| epoch | 2.82286 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:00:24,233 - INFO - | |
[36m🚂 Training Metrics (Step 750) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0177 | | |
+---------------+----------+ | |
| grad_norm | 0.019272 | | |
+---------------+----------+ | |
| learning_rate | 5.7e-05 | | |
+---------------+----------+ | |
| epoch | 2.86095 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:00:43,737 - INFO - | |
[36m🚂 Training Metrics (Step 760) 🚂 | |
+---------------+---------+ | |
| Metric | Value | | |
+===============+=========+ | |
| loss | 0.0172 | | |
+---------------+---------+ | |
| grad_norm | 0.00851 | | |
+---------------+---------+ | |
| learning_rate | 5.4e-05 | | |
+---------------+---------+ | |
| epoch | 2.89905 | | |
+---------------+---------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:01:03,258 - INFO - | |
[36m🚂 Training Metrics (Step 770) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0182 | | |
+---------------+----------+ | |
| grad_norm | 0.011208 | | |
+---------------+----------+ | |
| learning_rate | 5.2e-05 | | |
+---------------+----------+ | |
| epoch | 2.93714 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:01:22,759 - INFO - | |
[36m🚂 Training Metrics (Step 780) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0176 | | |
+---------------+----------+ | |
| grad_norm | 0.018971 | | |
+---------------+----------+ | |
| learning_rate | 4.9e-05 | | |
+---------------+----------+ | |
| epoch | 2.97524 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:01:34,955 - INFO - Removing 'token_type_ids' from eval_dataset as they are not needed. - [multilabel_classify.py:2356:evaluate] | |
2025-06-16 19:15:07,900 - INFO - | |
[33m🔍 Evaluation Metrics 🔍 | |
+-------------------------------+----------+ | |
| Metric | Value | | |
+===============================+==========+ | |
| eval_f1_micro | 0.00048 | | |
+-------------------------------+----------+ | |
| eval_f1_macro | 4e-06 | | |
+-------------------------------+----------+ | |
| eval_precision_at_5 | 0.284415 | | |
+-------------------------------+----------+ | |
| eval_recall_at_5 | 0.066494 | | |
+-------------------------------+----------+ | |
| eval_precision_at_8 | 0.254203 | | |
+-------------------------------+----------+ | |
| eval_recall_at_8 | 0.091028 | | |
+-------------------------------+----------+ | |
| eval_precision_at_15 | 0.190796 | | |
+-------------------------------+----------+ | |
| eval_recall_at_15 | 0.122706 | | |
+-------------------------------+----------+ | |
| eval_rare_f1_micro | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_f1_macro | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_precision | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_recall | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_precision_at_5 | 0.028244 | | |
+-------------------------------+----------+ | |
| eval_rare_recall_at_5 | 0.008353 | | |
+-------------------------------+----------+ | |
| eval_rare_precision_at_8 | 0.024624 | | |
+-------------------------------+----------+ | |
| eval_rare_recall_at_8 | 0.011806 | | |
+-------------------------------+----------+ | |
| eval_rare_precision_at_15 | 0.027321 | | |
+-------------------------------+----------+ | |
| eval_rare_recall_at_15 | 0.023346 | | |
+-------------------------------+----------+ | |
| eval_not_rare_f1_micro | 0.001304 | | |
+-------------------------------+----------+ | |
| eval_not_rare_f1_macro | 0.000269 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision | 0.283019 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall | 0.000653 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision_at_5 | 0.284415 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall_at_5 | 0.175523 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision_at_8 | 0.254203 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall_at_8 | 0.240055 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision_at_15 | 0.19077 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall_at_15 | 0.323003 | | |
+-------------------------------+----------+ | |
| eval_loss | 0.017024 | | |
+-------------------------------+----------+[0m - [multilabel_classify.py:2211:on_evaluate] | |
2025-06-16 19:15:09,208 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-786 - [multilabel_classify.py:2449:_save] | |
2025-06-16 19:15:09,210 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-786 - [multilabel_classify.py:2454:_save] | |
2025-06-16 19:15:09,211 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-786: | |
+---------+-------------------+------------+ | |
| Index | Saved File | Size | | |
+=========+===================+============+ | |
| 1 | training_args.bin | 0.01 MB | | |
+---------+-------------------+------------+ | |
| 2 | model.safetensors | 4600.97 MB | | |
+---------+-------------------+------------+ | |
| 3 | config.json | 0.00 MB | | |
+---------+-------------------+------------+ - [multilabel_classify.py:2471:_save] | |
2025-06-16 19:15:20,302 - INFO - | |
[36m🚂 Training Metrics (Step 790) 🚂 | |
+---------------+---------+ | |
| Metric | Value | | |
+===============+=========+ | |
| loss | 0.0179 | | |
+---------------+---------+ | |
| grad_norm | 0.02621 | | |
+---------------+---------+ | |
| learning_rate | 4.6e-05 | | |
+---------------+---------+ | |
| epoch | 3.01524 | | |
+---------------+---------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:15:39,961 - INFO - | |
[36m🚂 Training Metrics (Step 800) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0175 | | |
+---------------+----------+ | |
| grad_norm | 0.008445 | | |
+---------------+----------+ | |
| learning_rate | 4.3e-05 | | |
+---------------+----------+ | |
| epoch | 3.05333 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:15:59,433 - INFO - | |
[36m🚂 Training Metrics (Step 810) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0175 | | |
+---------------+----------+ | |
| grad_norm | 0.008988 | | |
+---------------+----------+ | |
| learning_rate | 4e-05 | | |
+---------------+----------+ | |
| epoch | 3.09143 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:16:18,942 - INFO - | |
[36m🚂 Training Metrics (Step 820) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0176 | | |
+---------------+----------+ | |
| grad_norm | 0.008902 | | |
+---------------+----------+ | |
| learning_rate | 3.8e-05 | | |
+---------------+----------+ | |
| epoch | 3.12952 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:16:38,433 - INFO - | |
[36m🚂 Training Metrics (Step 830) 🚂 | |
+---------------+---------+ | |
| Metric | Value | | |
+===============+=========+ | |
| loss | 0.0172 | | |
+---------------+---------+ | |
| grad_norm | 0.01081 | | |
+---------------+---------+ | |
| learning_rate | 3.5e-05 | | |
+---------------+---------+ | |
| epoch | 3.16762 | | |
+---------------+---------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:16:57,922 - INFO - | |
[36m🚂 Training Metrics (Step 840) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0168 | | |
+---------------+----------+ | |
| grad_norm | 0.014023 | | |
+---------------+----------+ | |
| learning_rate | 3.2e-05 | | |
+---------------+----------+ | |
| epoch | 3.20571 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:17:17,420 - INFO - | |
[36m🚂 Training Metrics (Step 850) 🚂 | |
+---------------+---------+ | |
| Metric | Value | | |
+===============+=========+ | |
| loss | 0.017 | | |
+---------------+---------+ | |
| grad_norm | 0.00913 | | |
+---------------+---------+ | |
| learning_rate | 3e-05 | | |
+---------------+---------+ | |
| epoch | 3.24381 | | |
+---------------+---------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:17:36,939 - INFO - | |
[36m🚂 Training Metrics (Step 860) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0172 | | |
+---------------+----------+ | |
| grad_norm | 0.012359 | | |
+---------------+----------+ | |
| learning_rate | 2.7e-05 | | |
+---------------+----------+ | |
| epoch | 3.28191 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:17:56,446 - INFO - | |
[36m🚂 Training Metrics (Step 870) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0178 | | |
+---------------+----------+ | |
| grad_norm | 0.011665 | | |
+---------------+----------+ | |
| learning_rate | 2.5e-05 | | |
+---------------+----------+ | |
| epoch | 3.32 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:18:15,972 - INFO - | |
[36m🚂 Training Metrics (Step 880) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0173 | | |
+---------------+----------+ | |
| grad_norm | 0.010671 | | |
+---------------+----------+ | |
| learning_rate | 2.2e-05 | | |
+---------------+----------+ | |
| epoch | 3.3581 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:18:35,489 - INFO - | |
[36m🚂 Training Metrics (Step 890) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0181 | | |
+---------------+----------+ | |
| grad_norm | 0.007859 | | |
+---------------+----------+ | |
| learning_rate | 2e-05 | | |
+---------------+----------+ | |
| epoch | 3.39619 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:18:55,024 - INFO - | |
[36m🚂 Training Metrics (Step 900) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0179 | | |
+---------------+----------+ | |
| grad_norm | 0.025227 | | |
+---------------+----------+ | |
| learning_rate | 1.8e-05 | | |
+---------------+----------+ | |
| epoch | 3.43429 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:19:14,537 - INFO - | |
[36m🚂 Training Metrics (Step 910) 🚂 | |
+---------------+---------+ | |
| Metric | Value | | |
+===============+=========+ | |
| loss | 0.0178 | | |
+---------------+---------+ | |
| grad_norm | 0.00911 | | |
+---------------+---------+ | |
| learning_rate | 1.6e-05 | | |
+---------------+---------+ | |
| epoch | 3.47238 | | |
+---------------+---------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:19:34,051 - INFO - | |
[36m🚂 Training Metrics (Step 920) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0181 | | |
+---------------+----------+ | |
| grad_norm | 0.011931 | | |
+---------------+----------+ | |
| learning_rate | 1.4e-05 | | |
+---------------+----------+ | |
| epoch | 3.51048 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:19:53,570 - INFO - | |
[36m🚂 Training Metrics (Step 930) 🚂 | |
+---------------+---------+ | |
| Metric | Value | | |
+===============+=========+ | |
| loss | 0.0181 | | |
+---------------+---------+ | |
| grad_norm | 0.03169 | | |
+---------------+---------+ | |
| learning_rate | 1.2e-05 | | |
+---------------+---------+ | |
| epoch | 3.54857 | | |
+---------------+---------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:20:13,096 - INFO - | |
[36m🚂 Training Metrics (Step 940) 🚂 | |
+---------------+---------+ | |
| Metric | Value | | |
+===============+=========+ | |
| loss | 0.0182 | | |
+---------------+---------+ | |
| grad_norm | 0.02254 | | |
+---------------+---------+ | |
| learning_rate | 1e-05 | | |
+---------------+---------+ | |
| epoch | 3.58667 | | |
+---------------+---------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:20:32,607 - INFO - | |
[36m🚂 Training Metrics (Step 950) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0173 | | |
+---------------+----------+ | |
| grad_norm | 0.009264 | | |
+---------------+----------+ | |
| learning_rate | 9e-06 | | |
+---------------+----------+ | |
| epoch | 3.62476 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:20:52,157 - INFO - | |
[36m🚂 Training Metrics (Step 960) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0176 | | |
+---------------+----------+ | |
| grad_norm | 0.008533 | | |
+---------------+----------+ | |
| learning_rate | 7e-06 | | |
+---------------+----------+ | |
| epoch | 3.66286 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:21:11,673 - INFO - | |
[36m🚂 Training Metrics (Step 970) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0182 | | |
+---------------+----------+ | |
| grad_norm | 0.008758 | | |
+---------------+----------+ | |
| learning_rate | 6e-06 | | |
+---------------+----------+ | |
| epoch | 3.70095 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:21:31,199 - INFO - | |
[36m🚂 Training Metrics (Step 980) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0176 | | |
+---------------+----------+ | |
| grad_norm | 0.015255 | | |
+---------------+----------+ | |
| learning_rate | 5e-06 | | |
+---------------+----------+ | |
| epoch | 3.73905 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:21:50,724 - INFO - | |
[36m🚂 Training Metrics (Step 990) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0171 | | |
+---------------+----------+ | |
| grad_norm | 0.010326 | | |
+---------------+----------+ | |
| learning_rate | 4e-06 | | |
+---------------+----------+ | |
| epoch | 3.77714 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:22:10,247 - INFO - | |
[36m🚂 Training Metrics (Step 1000) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0176 | | |
+---------------+----------+ | |
| grad_norm | 0.009529 | | |
+---------------+----------+ | |
| learning_rate | 3e-06 | | |
+---------------+----------+ | |
| epoch | 3.81524 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:22:29,759 - INFO - | |
[36m🚂 Training Metrics (Step 1010) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0175 | | |
+---------------+----------+ | |
| grad_norm | 0.007658 | | |
+---------------+----------+ | |
| learning_rate | 2e-06 | | |
+---------------+----------+ | |
| epoch | 3.85333 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:22:49,262 - INFO - | |
[36m🚂 Training Metrics (Step 1020) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0173 | | |
+---------------+----------+ | |
| grad_norm | 0.012725 | | |
+---------------+----------+ | |
| learning_rate | 2e-06 | | |
+---------------+----------+ | |
| epoch | 3.89143 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:23:08,795 - INFO - | |
[36m🚂 Training Metrics (Step 1030) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0181 | | |
+---------------+----------+ | |
| grad_norm | 0.025473 | | |
+---------------+----------+ | |
| learning_rate | 1e-06 | | |
+---------------+----------+ | |
| epoch | 3.92952 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:23:28,303 - INFO - | |
[36m🚂 Training Metrics (Step 1040) 🚂 | |
+---------------+----------+ | |
| Metric | Value | | |
+===============+==========+ | |
| loss | 0.0167 | | |
+---------------+----------+ | |
| grad_norm | 0.008335 | | |
+---------------+----------+ | |
| learning_rate | 1e-06 | | |
+---------------+----------+ | |
| epoch | 3.96762 | | |
+---------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:23:45,277 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-1048 - [multilabel_classify.py:2449:_save] | |
2025-06-16 19:23:45,279 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-1048 - [multilabel_classify.py:2454:_save] | |
2025-06-16 19:23:45,280 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-1048: | |
+---------+-------------------+------------+ | |
| Index | Saved File | Size | | |
+=========+===================+============+ | |
| 1 | training_args.bin | 0.01 MB | | |
+---------+-------------------+------------+ | |
| 2 | model.safetensors | 4600.97 MB | | |
+---------+-------------------+------------+ | |
| 3 | config.json | 0.00 MB | | |
+---------+-------------------+------------+ - [multilabel_classify.py:2471:_save] | |
2025-06-16 19:23:45,928 - INFO - Removing 'token_type_ids' from eval_dataset as they are not needed. - [multilabel_classify.py:2356:evaluate] | |
2025-06-16 19:37:11,613 - INFO - | |
[33m🔍 Evaluation Metrics 🔍 | |
+-------------------------------+----------+ | |
| Metric | Value | | |
+===============================+==========+ | |
| eval_f1_micro | 0.000544 | | |
+-------------------------------+----------+ | |
| eval_f1_macro | 5e-06 | | |
+-------------------------------+----------+ | |
| eval_precision_at_5 | 0.284652 | | |
+-------------------------------+----------+ | |
| eval_recall_at_5 | 0.066423 | | |
+-------------------------------+----------+ | |
| eval_precision_at_8 | 0.254203 | | |
+-------------------------------+----------+ | |
| eval_recall_at_8 | 0.091031 | | |
+-------------------------------+----------+ | |
| eval_precision_at_15 | 0.192563 | | |
+-------------------------------+----------+ | |
| eval_recall_at_15 | 0.125212 | | |
+-------------------------------+----------+ | |
| eval_rare_f1_micro | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_f1_macro | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_precision | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_recall | 0 | | |
+-------------------------------+----------+ | |
| eval_rare_precision_at_5 | 0.026345 | | |
+-------------------------------+----------+ | |
| eval_rare_recall_at_5 | 0.006949 | | |
+-------------------------------+----------+ | |
| eval_rare_precision_at_8 | 0.026701 | | |
+-------------------------------+----------+ | |
| eval_rare_recall_at_8 | 0.011773 | | |
+-------------------------------+----------+ | |
| eval_rare_precision_at_15 | 0.025738 | | |
+-------------------------------+----------+ | |
| eval_rare_recall_at_15 | 0.021891 | | |
+-------------------------------+----------+ | |
| eval_not_rare_f1_micro | 0.001477 | | |
+-------------------------------+----------+ | |
| eval_not_rare_f1_macro | 0.000307 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision | 0.257576 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall | 0.000741 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision_at_5 | 0.284731 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall_at_5 | 0.175564 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision_at_8 | 0.254203 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall_at_8 | 0.240067 | | |
+-------------------------------+----------+ | |
| eval_not_rare_precision_at_15 | 0.192563 | | |
+-------------------------------+----------+ | |
| eval_not_rare_recall_at_15 | 0.33241 | | |
+-------------------------------+----------+ | |
| eval_loss | 0.017044 | | |
+-------------------------------+----------+[0m - [multilabel_classify.py:2211:on_evaluate] | |
2025-06-16 19:37:15,436 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-1048 - [multilabel_classify.py:2449:_save] | |
2025-06-16 19:37:15,438 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-1048 - [multilabel_classify.py:2454:_save] | |
2025-06-16 19:37:15,439 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-1048: | |
+---------+--------------------+------------+ | |
| Index | Saved File | Size | | |
+=========+====================+============+ | |
| 1 | training_args.bin | 0.01 MB | | |
+---------+--------------------+------------+ | |
| 2 | optimizer.pt | 1308.77 MB | | |
+---------+--------------------+------------+ | |
| 3 | model.safetensors | 4600.97 MB | | |
+---------+--------------------+------------+ | |
| 4 | scaler.pt | 0.00 MB | | |
+---------+--------------------+------------+ | |
| 5 | config.json | 0.00 MB | | |
+---------+--------------------+------------+ | |
| 6 | scheduler.pt | 0.00 MB | | |
+---------+--------------------+------------+ | |
| 7 | trainer_state.json | 0.02 MB | | |
+---------+--------------------+------------+ | |
| 8 | rng_state.pth | 0.01 MB | | |
+---------+--------------------+------------+ - [multilabel_classify.py:2471:_save] | |
2025-06-16 19:37:16,939 - INFO - 📂 Loading best model from ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-524 - [multilabel_classify.py:2523:_load_best_model] | |
2025-06-16 19:37:16,939 - INFO - 🖥️ Model is on device: cuda:0 - [multilabel_classify.py:2533:_load_best_model] | |
2025-06-16 19:37:17,000 - INFO - 🔑 Key order comparison: | |
+---------+--------------------------------------------+--------------------------------------------------------------------------------------+ | |
| Index | Saved state_dict Keys | Model state_dict Keys | | |
+=========+============================================+======================================================================================+ | |
| 1 | attention.in_proj_bias | boost_mul | | |
+---------+--------------------------------------------+--------------------------------------------------------------------------------------+ | |
| 2 | attention.in_proj_weight | boost_add | | |
+---------+--------------------------------------------+--------------------------------------------------------------------------------------+ | |
| 3 | attention.out_proj.bias | base_model.base_model.model.model.embed_tokens.weight | | |
+---------+--------------------------------------------+--------------------------------------------------------------------------------------+ | |
| 4 | attention.out_proj.weight | base_model.base_model.model.model.layers.0.self_attn.q_proj.base_layer.weight | | |
+---------+--------------------------------------------+--------------------------------------------------------------------------------------+ | |
| 5 | base_model.base_model.model.lm_head.weight | base_model.base_model.model.model.layers.0.self_attn.q_proj.base_layer.weight.absmax | | |
+---------+--------------------------------------------+--------------------------------------------------------------------------------------+ - [multilabel_classify.py:2557:_load_best_model] | |
2025-06-16 19:37:18,002 - INFO - ✅ Loaded best model weights from ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/checkpoint-524/model.safetensors - [multilabel_classify.py:2574:_load_best_model] | |
2025-06-16 19:37:18,041 - INFO - ✔️ Weight for boost_mul matches between saved and loaded state_dict - [multilabel_classify.py:2586:_load_best_model] | |
2025-06-16 19:37:18,075 - INFO - ✔️ Weight for boost_add matches between saved and loaded state_dict - [multilabel_classify.py:2586:_load_best_model] | |
2025-06-16 19:37:18,090 - INFO - | |
[36m🚂 Training Metrics (Step 1048) 🚂 | |
+--------------------------+----------+ | |
| Metric | Value | | |
+==========================+==========+ | |
| train_runtime | 5311.2 | | |
+--------------------------+----------+ | |
| train_samples_per_second | 6.321 | | |
+--------------------------+----------+ | |
| train_steps_per_second | 0.197 | | |
+--------------------------+----------+ | |
| total_flos | 0 | | |
+--------------------------+----------+ | |
| train_loss | 0.028082 | | |
+--------------------------+----------+ | |
| epoch | 3.9981 | | |
+--------------------------+----------+[0m - [multilabel_classify.py:2192:on_log] | |
2025-06-16 19:37:18,091 - INFO - ✨ Training Completed! ✨ - [multilabel_classify.py:2065:on_train_end] | |
2025-06-16 19:37:18,162 - INFO - 📊 Training loss plot saved as '../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/train_loss_plot.png' - [multilabel_classify.py:2261:on_train_end] | |
2025-06-16 19:37:18,229 - INFO - 📊 Evaluation loss plot saved as '../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/eval_loss_plot.png' - [multilabel_classify.py:2275:on_train_end] | |
2025-06-16 19:37:18,291 - INFO - 📊 Evaluation metric plot saved as '../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b/eval_precision_at_15_plot.png' - [multilabel_classify.py:2296:on_train_end] | |
2025-06-16 19:37:18,291 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:101:log_section] | |
2025-06-16 19:37:18,291 - INFO - + ✨ MODEL SAVING + - [multilabel_classify.py:102:log_section] | |
2025-06-16 19:37:18,291 - INFO - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ - [multilabel_classify.py:105:log_section] | |
2025-06-16 19:37:18,291 - INFO - 💾 Saving trained model and pushing to Hugging Face Hub... - [multilabel_classify.py:4073:main] | |
2025-06-16 19:37:18,292 - INFO - 📁 Creating/using output directory: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3049:save_and_push] | |
2025-06-16 19:37:19,588 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:2449:_save] | |
2025-06-16 19:37:19,590 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:2454:_save] | |
2025-06-16 19:37:19,591 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b: | |
+---------+-------------------------------+------------+ | |
| Index | Saved File | Size | | |
+=========+===============================+============+ | |
| 1 | eval_loss_plot.png | 0.03 MB | | |
+---------+-------------------------------+------------+ | |
| 2 | training_args.bin | 0.01 MB | | |
+---------+-------------------------------+------------+ | |
| 3 | model.safetensors | 4600.97 MB | | |
+---------+-------------------------------+------------+ | |
| 4 | config.json | 0.00 MB | | |
+---------+-------------------------------+------------+ | |
| 5 | train_loss_plot.png | 0.02 MB | | |
+---------+-------------------------------+------------+ | |
| 6 | eval_precision_at_15_plot.png | 0.04 MB | | |
+---------+-------------------------------+------------+ - [multilabel_classify.py:2471:_save] | |
2025-06-16 19:37:23,306 - INFO - 💾 Model weights saved in safetensors format: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:2449:_save] | |
2025-06-16 19:37:23,308 - INFO - ⚙️ Config saved in checkpoint: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:2454:_save] | |
2025-06-16 19:37:23,309 - INFO - 📋 Saved files in ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b: | |
+---------+-------------------------------+------------+ | |
| Index | Saved File | Size | | |
+=========+===============================+============+ | |
| 1 | eval_loss_plot.png | 0.03 MB | | |
+---------+-------------------------------+------------+ | |
| 2 | training_args.bin | 0.01 MB | | |
+---------+-------------------------------+------------+ | |
| 3 | model.safetensors | 4600.97 MB | | |
+---------+-------------------------------+------------+ | |
| 4 | config.json | 0.00 MB | | |
+---------+-------------------------------+------------+ | |
| 5 | train_loss_plot.png | 0.02 MB | | |
+---------+-------------------------------+------------+ | |
| 6 | eval_precision_at_15_plot.png | 0.04 MB | | |
+---------+-------------------------------+------------+ - [multilabel_classify.py:2471:_save] | |
2025-06-16 19:38:59,928 - INFO - 💾 Model saved to: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3053:save_and_push] | |
2025-06-16 19:38:59,958 - INFO - 🖌️ Tokenizer saved to: ../tmp/MIMIC4_DEMO/mimic4_classify_mistral7b - [multilabel_classify.py:3057:save_and_push] | |