Upload finetune.py
Browse files- finetune.py +96 -0
finetune.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from datasets import load_dataset
|
4 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
5 |
+
import torch, csv
|
6 |
+
file_dict = {
|
7 |
+
"train" : "name_dataset.csv",
|
8 |
+
"test" : "name_dataset.csv"
|
9 |
+
}
|
10 |
+
|
11 |
+
dataset = load_dataset(
|
12 |
+
'csv',
|
13 |
+
data_files=file_dict,
|
14 |
+
delimiter=',',
|
15 |
+
column_names=['text', 'label'],
|
16 |
+
skiprows=1
|
17 |
+
)
|
18 |
+
|
19 |
+
print(f"Train dataset size: {len(dataset['train'])}")
|
20 |
+
print(f"Test dataset size: {len(dataset['test'])}")
|
21 |
+
|
22 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
23 |
+
from datasets import concatenate_datasets
|
24 |
+
|
25 |
+
model_id = "t5-small"
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
27 |
+
|
28 |
+
def tokenize_function(example):
|
29 |
+
model_inputs = tokenizer(example["text"], truncation=True)
|
30 |
+
targets = tokenizer(example["label"], truncation=True)
|
31 |
+
model_inputs['labels'] = targets['input_ids']
|
32 |
+
return model_inputs
|
33 |
+
|
34 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
35 |
+
tokenized_datasets = tokenized_datasets.remove_columns("text")
|
36 |
+
tokenized_datasets = tokenized_datasets.remove_columns("label")
|
37 |
+
|
38 |
+
from transformers import DataCollatorForSeq2Seq
|
39 |
+
model =T5ForConditionalGeneration.from_pretrained(model_id)
|
40 |
+
|
41 |
+
from peft import LoraConfig, get_peft_model,TaskType
|
42 |
+
|
43 |
+
|
44 |
+
lora_config = LoraConfig(
|
45 |
+
r=16,
|
46 |
+
lora_alpha=32,
|
47 |
+
target_modules=["q", "v"],
|
48 |
+
lora_dropout=0.05,
|
49 |
+
bias="none",
|
50 |
+
task_type=TaskType.SEQ_2_SEQ_LM
|
51 |
+
)
|
52 |
+
model = get_peft_model(model, lora_config)
|
53 |
+
model.print_trainable_parameters()
|
54 |
+
|
55 |
+
label_pad_token_id = -100
|
56 |
+
data_collator = DataCollatorForSeq2Seq(
|
57 |
+
tokenizer,
|
58 |
+
model=model,
|
59 |
+
label_pad_token_id=label_pad_token_id,
|
60 |
+
pad_to_multiple_of=8
|
61 |
+
)
|
62 |
+
|
63 |
+
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments
|
64 |
+
|
65 |
+
output_dir = "lora-t5"
|
66 |
+
training_args = Seq2SeqTrainingArguments(
|
67 |
+
output_dir=output_dir,
|
68 |
+
auto_find_batch_size=True,
|
69 |
+
learning_rate=1e-3,
|
70 |
+
num_train_epochs=100,
|
71 |
+
logging_dir=f"{output_dir}/logs",
|
72 |
+
logging_strategy="steps",
|
73 |
+
logging_steps=500,
|
74 |
+
save_strategy="no",
|
75 |
+
# report_to="tensorboard",
|
76 |
+
)
|
77 |
+
|
78 |
+
trainer = Seq2SeqTrainer(
|
79 |
+
model=model,
|
80 |
+
args=training_args,
|
81 |
+
data_collator=data_collator,
|
82 |
+
train_dataset=tokenized_datasets["train"],
|
83 |
+
)
|
84 |
+
model.config.use_cache = False
|
85 |
+
trainer.train()
|
86 |
+
peft_model_id = "name-peft"
|
87 |
+
trainer.model.save_pretrained(peft_model_id)
|
88 |
+
tokenizer.save_pretrained(peft_model_id)
|
89 |
+
from transformers import T5ForConditionalGeneration, AutoTokenizer
|
90 |
+
from peft import PeftModel
|
91 |
+
base_model = T5ForConditionalGeneration.from_pretrained(model_id)
|
92 |
+
peft_model = PeftModel.from_pretrained(base_model, "name-peft")
|
93 |
+
peft_model = peft_model.merge_and_unload()
|
94 |
+
peft_model.save_pretrained("name-extraction")
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
96 |
+
tokenizer.save_pretrained("name-extraction")
|