Upload generate-embeddings-uv-vllm.py
Browse files- generate-embeddings-uv-vllm.py +320 -0
generate-embeddings-uv-vllm.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# /// script
|
2 |
+
# requires-python = ">=3.10"
|
3 |
+
# dependencies = [
|
4 |
+
# "datasets",
|
5 |
+
# "huggingface-hub[hf_transfer]",
|
6 |
+
# "flashinfer-python",
|
7 |
+
# "hf-xet>= 1.1.7",
|
8 |
+
# "torch",
|
9 |
+
# "transformers",
|
10 |
+
# "vllm",
|
11 |
+
# ]
|
12 |
+
#
|
13 |
+
# ///
|
14 |
+
"""
|
15 |
+
Generate responses for prompts in a dataset using vLLM for efficient GPU inference.
|
16 |
+
|
17 |
+
This script loads a dataset from Hugging Face Hub containing chat-formatted messages,
|
18 |
+
applies the model's chat template, generates responses using vLLM, and saves the
|
19 |
+
results back to the Hub with a comprehensive dataset card.
|
20 |
+
|
21 |
+
Example usage:
|
22 |
+
# Local execution with auto GPU detection
|
23 |
+
uv run generate-responses.py \\
|
24 |
+
username/input-dataset \\
|
25 |
+
username/output-dataset \\
|
26 |
+
--messages-column messages
|
27 |
+
|
28 |
+
# With custom model and sampling parameters
|
29 |
+
uv run generate-responses.py \\
|
30 |
+
username/input-dataset \\
|
31 |
+
username/output-dataset \\
|
32 |
+
--model-id meta-llama/Llama-3.1-8B-Instruct \\
|
33 |
+
--temperature 0.9 \\
|
34 |
+
--top-p 0.95 \\
|
35 |
+
--max-tokens 2048
|
36 |
+
|
37 |
+
# HF Jobs execution (see script output for full command)
|
38 |
+
hf jobs uv run --flavor a100x4 ...
|
39 |
+
"""
|
40 |
+
|
41 |
+
import argparse
|
42 |
+
import logging
|
43 |
+
import os
|
44 |
+
import sys
|
45 |
+
from datetime import datetime
|
46 |
+
from typing import Optional
|
47 |
+
|
48 |
+
from datasets import load_dataset
|
49 |
+
from huggingface_hub import get_token, login
|
50 |
+
from torch import cuda
|
51 |
+
from tqdm.auto import tqdm
|
52 |
+
from transformers import AutoTokenizer
|
53 |
+
from vllm import LLM
|
54 |
+
from dotenv import load_dotenv
|
55 |
+
|
56 |
+
# Enable HF Transfer for faster downloads
|
57 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
58 |
+
|
59 |
+
logging.basicConfig(
|
60 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
61 |
+
)
|
62 |
+
logger = logging.getLogger(__name__)
|
63 |
+
|
64 |
+
|
65 |
+
def check_gpu_availability() -> int:
|
66 |
+
"""Check if CUDA is available and return the number of GPUs."""
|
67 |
+
if not cuda.is_available():
|
68 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
69 |
+
logger.error(
|
70 |
+
"Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor."
|
71 |
+
)
|
72 |
+
sys.exit(1)
|
73 |
+
|
74 |
+
num_gpus = cuda.device_count()
|
75 |
+
for i in range(num_gpus):
|
76 |
+
gpu_name = cuda.get_device_name(i)
|
77 |
+
gpu_memory = cuda.get_device_properties(i).total_memory / 1024**3
|
78 |
+
logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory")
|
79 |
+
|
80 |
+
return num_gpus
|
81 |
+
|
82 |
+
def main(
|
83 |
+
src_dataset_hub_id: str,
|
84 |
+
output_dataset_hub_id: str,
|
85 |
+
model_id: str = "Qwen/Qwen3-Embedding-0.6B",
|
86 |
+
input_column: str = "text",
|
87 |
+
output_column: str = "embeddings",
|
88 |
+
gpu_memory_utilization: float = 0.90,
|
89 |
+
input_truncation_len: Optional[int] = None,
|
90 |
+
tensor_parallel_size: Optional[int] = None,
|
91 |
+
max_samples: Optional[int] = None,
|
92 |
+
hf_token: Optional[str] = None,
|
93 |
+
):
|
94 |
+
"""
|
95 |
+
Main generation pipeline.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
src_dataset_hub_id: Input dataset on Hugging Face Hub
|
99 |
+
output_dataset_hub_id: Where to save results on Hugging Face Hub
|
100 |
+
model_id: Hugging Face model ID for embedding generation
|
101 |
+
input_column: Column name containing documents to embed
|
102 |
+
output_column: Column name for generated embeddings
|
103 |
+
gpu_memory_utilization: GPU memory utilization factor
|
104 |
+
input_truncation_len: Maximum input length (None uses model default)
|
105 |
+
tensor_parallel_size: Number of GPUs to use (auto-detect if None)
|
106 |
+
max_samples: Maximum number of samples to process (None for all)
|
107 |
+
hf_token: Hugging Face authentication token
|
108 |
+
"""
|
109 |
+
generation_start_time = datetime.now().isoformat()
|
110 |
+
|
111 |
+
# GPU check and configuration
|
112 |
+
num_gpus = check_gpu_availability()
|
113 |
+
if tensor_parallel_size is None:
|
114 |
+
tensor_parallel_size = num_gpus
|
115 |
+
logger.info(
|
116 |
+
f"Auto-detected {num_gpus} GPU(s), using tensor_parallel_size={tensor_parallel_size}"
|
117 |
+
)
|
118 |
+
else:
|
119 |
+
logger.info(f"Using specified tensor_parallel_size={tensor_parallel_size}")
|
120 |
+
if tensor_parallel_size > num_gpus:
|
121 |
+
logger.warning(
|
122 |
+
f"Requested {tensor_parallel_size} GPUs but only {num_gpus} available"
|
123 |
+
)
|
124 |
+
|
125 |
+
# Authentication - try multiple methods
|
126 |
+
load_dotenv()
|
127 |
+
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") or get_token()
|
128 |
+
|
129 |
+
if not HF_TOKEN:
|
130 |
+
logger.error("No HuggingFace token found. Please provide token via:")
|
131 |
+
logger.error(" 1. --hf-token argument")
|
132 |
+
logger.error(" 2. HF_TOKEN environment variable")
|
133 |
+
logger.error(" 3. Run 'huggingface-cli login' or use login() in Python")
|
134 |
+
sys.exit(1)
|
135 |
+
|
136 |
+
logger.info("HuggingFace token found, authenticating...")
|
137 |
+
login(token=HF_TOKEN)
|
138 |
+
|
139 |
+
# Initialize vLLM
|
140 |
+
logger.info(f"Loading model: {model_id}")
|
141 |
+
vllm_kwargs = {
|
142 |
+
"model": model_id,
|
143 |
+
"tensor_parallel_size": tensor_parallel_size,
|
144 |
+
"gpu_memory_utilization": gpu_memory_utilization,
|
145 |
+
"task": "embed",
|
146 |
+
"max_model_len": input_truncation_len + 128,
|
147 |
+
}
|
148 |
+
|
149 |
+
llm = LLM(**vllm_kwargs)
|
150 |
+
|
151 |
+
# Load tokenizer for chat template
|
152 |
+
logger.info("Loading tokenizer...")
|
153 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
154 |
+
|
155 |
+
# Load dataset
|
156 |
+
logger.info(f"Loading dataset: {src_dataset_hub_id}")
|
157 |
+
dataset = load_dataset(src_dataset_hub_id, split="train")
|
158 |
+
|
159 |
+
# Apply max_samples if specified
|
160 |
+
if max_samples is not None and max_samples < len(dataset):
|
161 |
+
logger.info(f"Limiting dataset to {max_samples} samples")
|
162 |
+
dataset = dataset.select(range(max_samples))
|
163 |
+
|
164 |
+
total_examples = len(dataset)
|
165 |
+
logger.info(f"Dataset loaded with {total_examples:,} examples")
|
166 |
+
|
167 |
+
# Determine which column to use and validate
|
168 |
+
if input_column not in dataset.column_names:
|
169 |
+
logger.error(
|
170 |
+
f"Column '{input_column}' not found. Available columns: {dataset.column_names}"
|
171 |
+
)
|
172 |
+
sys.exit(1)
|
173 |
+
logger.info(f"Using input column mode with column: '{input_column}'")
|
174 |
+
|
175 |
+
# Process documents and truncate if specified
|
176 |
+
logger.info("Preparing documents...")
|
177 |
+
all_documents = []
|
178 |
+
for example in tqdm(dataset, desc="Processing documents"):
|
179 |
+
document = f"# {example['title_dl']}\n\nFrom: {example['source_url']}\n\n{example[input_column]}"
|
180 |
+
# apply tokenizer to the document, then truncate using token counts
|
181 |
+
if input_truncation_len is not None:
|
182 |
+
tokens = tokenizer.encode(document)
|
183 |
+
if len(tokens) > input_truncation_len:
|
184 |
+
document = tokenizer.decode(tokens[:input_truncation_len])
|
185 |
+
all_documents.append(document) # this is a list of strings
|
186 |
+
|
187 |
+
# Generate embeddings - vLLM handles batching internally
|
188 |
+
logger.info("vLLM will handle batching and scheduling automatically")
|
189 |
+
outputs = llm.embed(all_documents)
|
190 |
+
|
191 |
+
# Extract generated embeddings and create full response list
|
192 |
+
logger.info("Extracting generated embeddings...")
|
193 |
+
embeddings = [o.outputs.embedding for o in outputs]
|
194 |
+
|
195 |
+
# Add responses to dataset
|
196 |
+
logger.info("Adding responses to dataset...")
|
197 |
+
dataset = dataset.add_column(output_column, embeddings)
|
198 |
+
|
199 |
+
# Push dataset to hub
|
200 |
+
logger.info(f"Pushing dataset to: {output_dataset_hub_id}")
|
201 |
+
dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)
|
202 |
+
|
203 |
+
logger.info("✅ Embedding generation complete!")
|
204 |
+
logger.info(
|
205 |
+
f"Dataset available at: https://huggingface.co/datasets/{output_dataset_hub_id}"
|
206 |
+
)
|
207 |
+
|
208 |
+
|
209 |
+
if __name__ == "__main__":
|
210 |
+
if len(sys.argv) > 1:
|
211 |
+
parser = argparse.ArgumentParser(
|
212 |
+
description="Generate responses for dataset prompts using vLLM",
|
213 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
214 |
+
epilog="""
|
215 |
+
Examples:
|
216 |
+
# Basic usage with default Qwen model
|
217 |
+
uv run generate-embeddings-uv-vllm.py input-dataset output-dataset
|
218 |
+
|
219 |
+
# With custom model and parameters
|
220 |
+
uv run generate-embeddings-uv-vllm.py input-dataset output-dataset \\
|
221 |
+
--model-id Qwen/Qwen3-Embedding-0.6B \\
|
222 |
+
--input-column text \\
|
223 |
+
--output-column embeddings
|
224 |
+
|
225 |
+
# Force specific GPU configuration
|
226 |
+
uv run generate-embeddings-uv-vllm.py input-dataset output-dataset \\
|
227 |
+
--tensor-parallel-size 2 \\
|
228 |
+
--gpu-memory-utilization 0.95
|
229 |
+
|
230 |
+
# Using environment variable for token
|
231 |
+
HF_TOKEN=hf_xxx uv run generate-embeddings-uv-vllm.py input-dataset output-dataset
|
232 |
+
""",
|
233 |
+
)
|
234 |
+
|
235 |
+
parser.add_argument(
|
236 |
+
"src_dataset_hub_id",
|
237 |
+
help="Input dataset on Hugging Face Hub (e.g., username/dataset-name)",
|
238 |
+
)
|
239 |
+
parser.add_argument(
|
240 |
+
"output_dataset_hub_id", help="Output dataset name on Hugging Face Hub"
|
241 |
+
)
|
242 |
+
parser.add_argument(
|
243 |
+
"--model-id",
|
244 |
+
type=str,
|
245 |
+
default="Qwen/Qwen3-Embedding-0.6B",
|
246 |
+
help="Model to use for generation (default: Qwen3-Embedding-0.6B)",
|
247 |
+
)
|
248 |
+
parser.add_argument(
|
249 |
+
"--input-column",
|
250 |
+
type=str,
|
251 |
+
default="text",
|
252 |
+
help="Column containing text to embed (default: text)",
|
253 |
+
)
|
254 |
+
parser.add_argument(
|
255 |
+
"--output-column",
|
256 |
+
type=str,
|
257 |
+
default="embeddings",
|
258 |
+
help="Column name for generated embeddings (default: embeddings)",
|
259 |
+
)
|
260 |
+
parser.add_argument(
|
261 |
+
"--max-samples",
|
262 |
+
type=int,
|
263 |
+
help="Maximum number of samples to process (default: all)",
|
264 |
+
)
|
265 |
+
parser.add_argument(
|
266 |
+
"--input-truncation-len",
|
267 |
+
type=int,
|
268 |
+
help="Maximum input length (default: model's default)",
|
269 |
+
)
|
270 |
+
parser.add_argument(
|
271 |
+
"--tensor-parallel-size",
|
272 |
+
type=int,
|
273 |
+
help="Number of GPUs to use (default: auto-detect)",
|
274 |
+
)
|
275 |
+
parser.add_argument(
|
276 |
+
"--gpu-memory-utilization",
|
277 |
+
type=float,
|
278 |
+
default=0.90,
|
279 |
+
help="GPU memory utilization factor (default: 0.90)",
|
280 |
+
)
|
281 |
+
parser.add_argument(
|
282 |
+
"--hf-token",
|
283 |
+
type=str,
|
284 |
+
help="Hugging Face token (can also use HF_TOKEN env var)",
|
285 |
+
)
|
286 |
+
args = parser.parse_args()
|
287 |
+
|
288 |
+
main(
|
289 |
+
src_dataset_hub_id=args.src_dataset_hub_id,
|
290 |
+
output_dataset_hub_id=args.output_dataset_hub_id,
|
291 |
+
model_id=args.model_id,
|
292 |
+
input_column=args.input_column,
|
293 |
+
output_column=args.output_column,
|
294 |
+
gpu_memory_utilization=args.gpu_memory_utilization,
|
295 |
+
input_truncation_len=args.input_truncation_len,
|
296 |
+
tensor_parallel_size=args.tensor_parallel_size,
|
297 |
+
max_samples=args.max_samples,
|
298 |
+
hf_token=args.hf_token,
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
# Show HF Jobs example when run without arguments
|
302 |
+
print("""
|
303 |
+
vLLM Response Generation Script
|
304 |
+
==============================
|
305 |
+
|
306 |
+
This script requires arguments. For usage information:
|
307 |
+
uv run generate-responses.py --help
|
308 |
+
|
309 |
+
Example HF Jobs command with multi-GPU:
|
310 |
+
# If you're logged in with huggingface-cli, token will be auto-detected
|
311 |
+
hf jobs uv run \\
|
312 |
+
--flavor l4x4 \\
|
313 |
+
https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \\
|
314 |
+
username/input-dataset \\
|
315 |
+
username/output-dataset \\
|
316 |
+
--messages-column messages \\
|
317 |
+
--model-id Qwen/Qwen3-30B-A3B-Instruct-2507 \\
|
318 |
+
--temperature 0.7 \\
|
319 |
+
--max-tokens 16384
|
320 |
+
""")
|