Upload senbench_clouds2_wrapper.py
Browse files
    	
        cloud_s2/senbench_clouds2_wrapper.py
    ADDED
    
    | @@ -0,0 +1,188 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import kornia as K
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            from torchgeo.datasets.geo import NonGeoDataset
         | 
| 4 | 
            +
            import os
         | 
| 5 | 
            +
            from collections.abc import Callable, Sequence
         | 
| 6 | 
            +
            from torch import Tensor
         | 
| 7 | 
            +
            import numpy as np
         | 
| 8 | 
            +
            import rasterio
         | 
| 9 | 
            +
            import cv2
         | 
| 10 | 
            +
            from pyproj import Transformer
         | 
| 11 | 
            +
            from datetime import date
         | 
| 12 | 
            +
            from typing import TypeAlias, ClassVar
         | 
| 13 | 
            +
            import pathlib
         | 
| 14 | 
            +
            from shapely import wkt
         | 
| 15 | 
            +
            import pandas as pd
         | 
| 16 | 
            +
            import tacoreader
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import logging
         | 
| 19 | 
            +
            import pdb
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            logging.getLogger("rasterio").setLevel(logging.ERROR)
         | 
| 22 | 
            +
            Path: TypeAlias = str | os.PathLike[str]
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            class SenBenchCloudS2(NonGeoDataset):
         | 
| 25 | 
            +
                url = None
         | 
| 26 | 
            +
                #base_dir = 'all_imgs'
         | 
| 27 | 
            +
                all_band_names = ('B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B10', 'B11', 'B12')
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                split_filenames = {
         | 
| 30 | 
            +
                    'train': 'cloudsen12-l1c-train.taco',
         | 
| 31 | 
            +
                    'val': 'cloudsen12-l1c-val.taco',
         | 
| 32 | 
            +
                    'test': 'cloudsen12-l1c-test.taco',
         | 
| 33 | 
            +
                }
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                Cls_index_multi = {
         | 
| 36 | 
            +
                    'clear': 0,
         | 
| 37 | 
            +
                    'thick cloud': 1,
         | 
| 38 | 
            +
                    'thin cloud': 2,
         | 
| 39 | 
            +
                    'cloud shadow': 3,
         | 
| 40 | 
            +
                }
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
             | 
| 44 | 
            +
                def __init__(
         | 
| 45 | 
            +
                    self,
         | 
| 46 | 
            +
                    root: Path = 'data',
         | 
| 47 | 
            +
                    split: str = 'train',
         | 
| 48 | 
            +
                    bands: Sequence[str] = all_band_names,
         | 
| 49 | 
            +
                    transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
         | 
| 50 | 
            +
                    download: bool = False,
         | 
| 51 | 
            +
                ) -> None:
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                    self.root = root
         | 
| 54 | 
            +
                    self.transforms = transforms
         | 
| 55 | 
            +
                    self.download = download
         | 
| 56 | 
            +
                    #self.checksum = checksum
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                    assert split in ['train', 'val', 'test']
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                    self.bands = bands
         | 
| 61 | 
            +
                    self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names]
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    taco_file = os.path.join(root,self.split_filenames[split])
         | 
| 64 | 
            +
                    self.dataset = tacoreader.load(taco_file)
         | 
| 65 | 
            +
                    self.cache = {}
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                    # filter corrupted entries
         | 
| 68 | 
            +
                    count = 0
         | 
| 69 | 
            +
                    count_corrupted = 0
         | 
| 70 | 
            +
                    #pdb.set_trace()
         | 
| 71 | 
            +
                    for i in range(len(self.dataset)):
         | 
| 72 | 
            +
                        try:
         | 
| 73 | 
            +
                            sample = self.dataset.read(i)
         | 
| 74 | 
            +
                            s2l1c = sample.read(0) # str
         | 
| 75 | 
            +
                            target = sample.read(1) # str
         | 
| 76 | 
            +
                            coord = sample['stac:centroid'][0] # str
         | 
| 77 | 
            +
                            time_start = sample['stac:time_start'][0] # str
         | 
| 78 | 
            +
                            self.cache[count] = (s2l1c, target, coord, time_start)
         | 
| 79 | 
            +
                            count += 1
         | 
| 80 | 
            +
                        except Exception as e:
         | 
| 81 | 
            +
                            count_corrupted += 1
         | 
| 82 | 
            +
                    self.length = count
         | 
| 83 | 
            +
                    print(split,count,"valid samples.")
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                    self.reference_date = date(1970, 1, 1)
         | 
| 86 | 
            +
                    self.patch_area = (16*10/1000)**2 # patchsize 16 pix, gsd 10m
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                def __len__(self):
         | 
| 89 | 
            +
                    return self.length
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                def __getitem__(self, index):
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    #pdb.set_trace()
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                    # if index not in self.cache:
         | 
| 96 | 
            +
                    #     sample = self.dataset.read(index)
         | 
| 97 | 
            +
                    #     s2l1c = sample.read(0) # str
         | 
| 98 | 
            +
                    #     target = sample.read(1) # str
         | 
| 99 | 
            +
                    #     coord = sample['stac:centroid'][0] # str
         | 
| 100 | 
            +
                    #     time_start = sample['stac:time_start'][0] # str
         | 
| 101 | 
            +
                    #     self.cache[index] = (s2l1c, target, coord, time_start)
         | 
| 102 | 
            +
                    # else:
         | 
| 103 | 
            +
                    #pdb.set_trace()
         | 
| 104 | 
            +
                    s2l1c, target, coord, time_start = self.cache[index]
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    # Open the files and load data
         | 
| 107 | 
            +
                    with rasterio.open(s2l1c) as src, rasterio.open(target) as dst:
         | 
| 108 | 
            +
                        s2l1c_data = src.read().astype('float32')
         | 
| 109 | 
            +
                        target_data = dst.read(1)
         | 
| 110 | 
            +
                    image = torch.from_numpy(s2l1c_data)
         | 
| 111 | 
            +
                    label = torch.from_numpy(target_data).long()
         | 
| 112 | 
            +
                    
         | 
| 113 | 
            +
                    coord = wkt.loads(coord).coords[0]
         | 
| 114 | 
            +
                    date_obj = pd.to_datetime(time_start, unit='s').date()
         | 
| 115 | 
            +
                    delta = (date_obj - self.reference_date).days
         | 
| 116 | 
            +
                    meta_info = np.array([coord[0], coord[1], delta, self.patch_area]).astype(np.float32)
         | 
| 117 | 
            +
                    meta_info = torch.from_numpy(meta_info)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                    sample = {'image': image, 'mask': label, 'meta': meta_info}
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    if self.transforms is not None:
         | 
| 122 | 
            +
                        sample = self.transforms(sample)
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    return sample
         | 
| 125 | 
            +
             | 
| 126 | 
            +
             | 
| 127 | 
            +
            class SegDataAugmentation(torch.nn.Module):
         | 
| 128 | 
            +
                def __init__(self, split, size, band_stats):
         | 
| 129 | 
            +
                    super().__init__()
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    if band_stats is not None:
         | 
| 132 | 
            +
                        mean = band_stats['mean']
         | 
| 133 | 
            +
                        std = band_stats['std']
         | 
| 134 | 
            +
                    else:
         | 
| 135 | 
            +
                        mean = [0.0]
         | 
| 136 | 
            +
                        std = [1.0]
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    mean = torch.Tensor(mean)
         | 
| 139 | 
            +
                    std = torch.Tensor(std)
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    self.norm = K.augmentation.Normalize(mean=mean, std=std)
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    if split == "train":
         | 
| 144 | 
            +
                        self.transform = K.augmentation.AugmentationSequential(
         | 
| 145 | 
            +
                            K.augmentation.Resize(size=size, align_corners=True),
         | 
| 146 | 
            +
                            K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True),
         | 
| 147 | 
            +
                            K.augmentation.RandomHorizontalFlip(p=0.5),
         | 
| 148 | 
            +
                            K.augmentation.RandomVerticalFlip(p=0.5),
         | 
| 149 | 
            +
                            data_keys=["input", "mask"],
         | 
| 150 | 
            +
                        )
         | 
| 151 | 
            +
                    else:
         | 
| 152 | 
            +
                        self.transform = K.augmentation.AugmentationSequential(
         | 
| 153 | 
            +
                            K.augmentation.Resize(size=size, align_corners=True),
         | 
| 154 | 
            +
                            data_keys=["input", "mask"],
         | 
| 155 | 
            +
                        )
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                @torch.no_grad()
         | 
| 158 | 
            +
                def forward(self, batch: dict[str,]):
         | 
| 159 | 
            +
                    """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
         | 
| 160 | 
            +
                    x,mask = batch["image"], batch["mask"]
         | 
| 161 | 
            +
                    x = self.norm(x)
         | 
| 162 | 
            +
                    x_out, mask_out = self.transform(x, mask)
         | 
| 163 | 
            +
                    return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"]
         | 
| 164 | 
            +
             | 
| 165 | 
            +
             | 
| 166 | 
            +
            class SenBenchCloudS2Dataset:
         | 
| 167 | 
            +
                def __init__(self, config):
         | 
| 168 | 
            +
                    self.dataset_config = config
         | 
| 169 | 
            +
                    self.img_size = (config.image_resolution, config.image_resolution)
         | 
| 170 | 
            +
                    self.root_dir = config.data_path
         | 
| 171 | 
            +
                    self.bands = config.band_names
         | 
| 172 | 
            +
                    self.band_stats = config.band_stats
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                def create_dataset(self):
         | 
| 175 | 
            +
                    train_transform = SegDataAugmentation(split="train", size=self.img_size, band_stats=self.band_stats)
         | 
| 176 | 
            +
                    eval_transform = SegDataAugmentation(split="test", size=self.img_size, band_stats=self.band_stats)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                    dataset_train = SenBenchCloudS2(
         | 
| 179 | 
            +
                        root=self.root_dir, split="train", bands=self.bands, transforms=train_transform
         | 
| 180 | 
            +
                    )
         | 
| 181 | 
            +
                    dataset_val = SenBenchCloudS2(
         | 
| 182 | 
            +
                        root=self.root_dir, split="val", bands=self.bands, transforms=eval_transform
         | 
| 183 | 
            +
                    )
         | 
| 184 | 
            +
                    dataset_test = SenBenchCloudS2(
         | 
| 185 | 
            +
                        root=self.root_dir, split="test", bands=self.bands, transforms=eval_transform
         | 
| 186 | 
            +
                    )
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    return dataset_train, dataset_val, dataset_test
         |