upload airquality_s5p dataset
Browse files
airquality_s5p/airquality_s5p.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96d82c0e7b8678cd9d8168324a7f2fae3a3f7ed03e97911a5c8b5738eecb6880
|
3 |
+
size 272559465
|
airquality_s5p/dataset_airquality_s5p.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import DataLoader, Dataset
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
+
import rasterio
|
6 |
+
import numpy as np
|
7 |
+
from pyproj import Transformer
|
8 |
+
from datetime import date
|
9 |
+
|
10 |
+
class S5P_EEAAirQualityDataset(Dataset):
|
11 |
+
'''
|
12 |
+
1973/494 train/test air quality dataset for NO2 and O3, measure from S5P, label from EEA
|
13 |
+
annual: 1x56x56x1 annual avg
|
14 |
+
seasonal: 4x56x56x1 seasonal avg
|
15 |
+
s5p nodata: -inf
|
16 |
+
label nodata: -3.4e38 # this needs to be masked out for loss and metric calculation
|
17 |
+
'''
|
18 |
+
|
19 |
+
def __init__(self, root_dir, modality='no2', mode='annual', split='train', meta=False):
|
20 |
+
self.root_dir = root_dir
|
21 |
+
self.mode = mode
|
22 |
+
self.modality = modality
|
23 |
+
|
24 |
+
if self.mode == 'annual':
|
25 |
+
mode_dir = 's5p_annual'
|
26 |
+
elif self.mode == 'seasonal':
|
27 |
+
mode_dir = 's5p_seasonal'
|
28 |
+
|
29 |
+
self.img_dir = os.path.join(root_dir, modality, split, mode_dir)
|
30 |
+
self.label_dir = os.path.join(root_dir, modality, split, 'label_annual')
|
31 |
+
|
32 |
+
self.fnames = sorted(os.listdir(self.label_dir))
|
33 |
+
|
34 |
+
self.meta = meta
|
35 |
+
if self.meta:
|
36 |
+
self.reference_date = date(1970, 1, 1)
|
37 |
+
|
38 |
+
def __len__(self):
|
39 |
+
return len(self.fnames)
|
40 |
+
|
41 |
+
def __getitem__(self, idx):
|
42 |
+
fname = self.fnames[idx] # label filename
|
43 |
+
label_path = os.path.join(self.label_dir, fname)
|
44 |
+
img_path = os.path.join(self.img_dir, fname.replace('.tif', ''))
|
45 |
+
img_fnames = os.listdir(img_path)
|
46 |
+
img_paths = []
|
47 |
+
for img_fname in img_fnames:
|
48 |
+
img_paths.append(os.path.join(img_path, img_fname))
|
49 |
+
|
50 |
+
# img
|
51 |
+
imgs = []
|
52 |
+
meta_infos = []
|
53 |
+
for img_path in img_paths:
|
54 |
+
with rasterio.open(img_path) as src:
|
55 |
+
img = src.read(1)
|
56 |
+
img = cv2.resize(img, (56,56), interpolation=cv2.INTER_CUBIC)
|
57 |
+
img[np.isnan(img)] = 0
|
58 |
+
img = torch.from_numpy(img).float()
|
59 |
+
img = img.unsqueeze(0)
|
60 |
+
|
61 |
+
if self.meta:
|
62 |
+
cx,cy = src.xy(src.height // 2, src.width // 2)
|
63 |
+
crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326')
|
64 |
+
lon, lat = crs_transformer.transform(cx,cy)
|
65 |
+
#lon, lat = cx, cy
|
66 |
+
img_fname = os.path.basename(img_path)
|
67 |
+
date_str = img_fname.split('_')[0][:10]
|
68 |
+
date_obj = date(int(date_str[:4]), int(date_str[5:7]), int(date_str[8:10]))
|
69 |
+
delta = (date_obj - self.reference_date).days
|
70 |
+
meta_info = np.array([lon, lat, delta, 0]).astype(np.float32)
|
71 |
+
else:
|
72 |
+
meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32)
|
73 |
+
|
74 |
+
imgs.append(img)
|
75 |
+
meta_infos.append(meta_info)
|
76 |
+
if self.mode == 'seasonal':
|
77 |
+
# pad to 4 images if less than 4
|
78 |
+
while len(imgs) < 4:
|
79 |
+
imgs.append(img)
|
80 |
+
img_paths.append(img_path)
|
81 |
+
meta_infos.append(meta_info)
|
82 |
+
# label
|
83 |
+
with rasterio.open(label_path) as src:
|
84 |
+
label = src.read(1)
|
85 |
+
label = cv2.resize(label, (56,56), interpolation=cv2.INTER_CUBIC) # 0-650
|
86 |
+
label[label<-1e10] = np.nan
|
87 |
+
label[label>1e10] = np.nan
|
88 |
+
#label[np.isnan(label)] = -1e10
|
89 |
+
label = torch.from_numpy(label.astype('float32'))
|
90 |
+
#nan_mask = (label > -1e10)
|
91 |
+
|
92 |
+
if self.mode == 'annual':
|
93 |
+
return imgs[0], meta_infos[0], label#, nan_mask #,label_path
|
94 |
+
elif self.mode == 'seasonal':
|
95 |
+
return imgs[0], imgs[1], imgs[2], imgs[3], meta_infos[0], meta_infos[1], meta_infos[2], meta_infos[3], label#, nan_mask #,label_path
|
96 |
+
|
97 |
+
if __name__ == '__main__':
|
98 |
+
dataset = S5P_EEAAirQualityDataset(root_dir='./airquality_s5p', modality='no2', mode='annual', split='train')
|
99 |
+
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
|
100 |
+
for i, data in enumerate(dataloader):
|
101 |
+
print(data[0].shape, data[1].shape, data[2].shape, data[3].shape)
|
102 |
+
break
|